Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(4-Nitrophenoxy)butanol

Zareen Akhter, ${ }^{\text {a* }}$ Vickie McKee, ${ }^{\text {b }}$ Muhammad Saif Ullah Khan, ${ }^{\text {a }}$ Bushra Iftikhar ${ }^{\text {a }}$ and Humaira M. Siddiqi ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ${ }^{\mathbf{b}}$ Chemistry Department, Loughborough University, Loughborough LE11 3TU, England
Correspondence e-mail: zareenakhter@yahoo.com

Received 26 February 2011; accepted 1 March 2011
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.045 ; w R$ factor $=0.139 ;$ data-to-parameter ratio $=21.0$.

The crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$, features intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (nitro) hydrogen bonding, which links molecules into supramolecular chains running parallel to the $b c$ diagonal. There is also $\pi-\pi$ stacking between 4-nitrophenyl groups, the interplanar distance between the nitrobenzene rings being 3.472 (2) A.

Related literature

For background material on polymers containing flexible linkages, see: Chandrasekhar (2005); Patil et al. (2010); SchabBalcerzak et al. (2002); Shahram Mehdipour-Ataei \& Zigheimat (2007); Scholl et al. (2007); Shockravi et al. (2007). For studies on related compounds based on flexible monomers, see: Choi et al. (2004); Liu et al. (2008).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \\
& M_{r}=211.21 \\
& \text { Triclinic, } P \overline{1} \\
& a=4.7971(6) \AA \\
& b=10.6035(13) \AA \\
& c=11.2523(14) \AA \\
& \alpha=117.521(2)^{\circ} \\
& \beta=92.451(2)^{\circ}
\end{aligned}
$$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) $T_{\text {min }}=0.954, T_{\text {max }}=0.983$

5772 measured reflections 2924 independent reflections 2224 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.139$
independent and constrained
$S=1.06$
2924 reflections
139 parameters
refinement
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$0.80(3)$	$2.10(2)$	$2.8808(14)$	$163(2)$
Symmetry code: (i) $x+2, y+1, z+1$.				

Data collection: APEX2 (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and the Chemistry Department, Loughborough University, England, for providing laboratory and analytical facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2724).

References

Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandrasekhar, V. (2005). In Inorganic and Organometallic Polymers. Heidelberg: Springer-Verlag.
Choi, E. J., Ahn, J. C., Chien, L. C., Lee, C. K., Zin, W. C., Kim, D. C. \& Shin, S. T. (2004). Macromolecules, 37, 71-78.

Liu, Z., Yu, F., Zhang, Q., Zeng, Y. \& Wang, Y. (2008). Eur. Polym. J. 44, 27182727.

Patil, A. S., Medhi, M., Sadavarte, N. V., Wadgaonkar, P. P. \& Maldar, N. N. (2010). Mater. Sci. Eng. B, 168, 111-116.

Schab-Balcerzak, E., Sek, D., Volozhin, A., Chamenko, T. \& Jarzabek, B. (2002). Eur. Polym. J. 38, 423-430.

Scholl, M., Kadlecova, Z. \& Klok, H.-A. (2007). Prog. Polym. Sci. 34, $24-61$.
Shahram Mehdipour-Ataei, S. \& Zigheimat, F. (2007). Eur. Polym. J. 43, 10201026.

Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Shockravi, A., Mehdipour-Ataei, S., Abouzari-Lotf, E. \& Zakeri, M. (2007). Eur. Polym. J. 43, 620-627.

supporting information

4-(4-Nitrophenoxy)butanol

Zareen Akhter, Vickie McKee, Muhammad Saif Ullah Khan, Bushra Iftikhar and Humaira M. Siddiqi

S1. Comment

Polymers are an important class of materials which have either supplemented or replaced conventional substances such as wood, stone, metal, glass and ceramics in modern technological applications (Chandrasekhar, 2005). Therefore, considerable research in recent years has focused upon producing novel polymeric materials with a better balance of physical and chemical properties (Shockravi et al., 2007). Various flexible linkages such as the ether moiety (Patil et al., 2010) and methylene spacers (Scholl et al., 2007) can be introduced into the polymer backbone in order to improve their properties. The incorporation of an aryl-ether moiety is believed to impart enhanced solubility and processability to the polymers while maintaining their toughness (Shahram Mehdipour-Ataei \& Zigheimat, 2007). On the other hand, the inclusion of aliphatic methylene spacers in the macrochain increases the degree of freedom by reducing the segmental barrier and effectively disrupts intermolecular interactions (Schab-Balcerzak et al., 2002). Thus, the final polymer prepared from the monomers containing flexible linkages not only exhibits an enhancement in its processability but also shows an improvement in its performance as these flexible linkages also bestow mesogenic (Choi et al., 2004) and optical properties (Liu et al., 2008) to the resulting polymeric materials. The title compound, (I), Fig. 1, is a nitro-alcohol precursor with built-in methylene spacers along with aryl-ether moiety, which was prepared as part of our quest to design and synthesize structurally modified monomers for processable high performance polymers.

The alcohol group is H -bonded to the nitro group of a neighbouring molecule, Table 1. These link molecules into supramolecular chains running along the $b c$ diagonal, Fig. 2 . There are $\pi-\pi$ interactions between the chains; the interplanar distance between the nitrobenzene rings is 3.472 (2) \AA (symmetry operation: $x-1, y, z$).

S2. Experimental

The title compound (I) was synthesized by Williamson's etherification of 1,4-butane diol and p-nitrochlorobenzene. A three-necked round bottom flask equipped with reflux condenser, thermometer and nitrogen inlet was charged with a suspension of 1,4-butane diol ($1.69 \mathrm{ml} ; 19.1 \mathrm{mmol}$) and anhydrous potassium carbonate ($2.65 \mathrm{~g} ; 19.1 \mathrm{mmol}$) in dimethylformamide (40 ml) and stirred for 30 min . The resulting mixture was heated to $383-393 \mathrm{~K}$ for 6 h . The reaction mixture was poured into 500 ml of chilled water, cooled to room temperature and the crude product was filtered as a light-yellow solid mass. The product was then washed thoroughly with water, dissolved in ethanol and set aside for crystallization. Yield 79\%, M.pt. 344 K.

S3. Refinement

H atoms were placed in calculated positions using a riding model with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.95 and $0.99 \AA$ for aryl and methylene groups, respectively, and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The hydrogen bonded to oxygen was located from difference maps; the coordinates were refined freely with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
Perspective view of the molecule, showing ellipsoids at the 50% probability level. Hydrogen atoms are shown as arbitrary spheres.

Figure 2
Packing diagram viewed down the a axis. Hydrogen atoms have been omitted and the dashed line represent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

4-(4-Nitrophenoxy)butanol

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$
$M_{r}=211.21$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=4.7971$ (6) \AA
$b=10.6035$ (13) \AA
$c=11.2523(14) \AA$
$\alpha=117.521(2)^{\circ}$
$\beta=92.451(2)^{\circ}$
$\gamma=94.971(2)^{\circ}$
$V=503.46(11) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F(000)=224 \\
& D_{\mathrm{x}}=1.393 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 416 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1750 \text { reflections } \\
& \theta=3.6-30.2^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.44 \times 0.21 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.954, T_{\text {max }}=0.983$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.139$
$S=1.06$
2924 reflections
139 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0693 P)^{2}+0.098 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.44295(19)$	$0.42787(10)$	$0.15618(9)$	$0.0266(2)$
C1	$0.2302(3)$	$0.33362(13)$	$0.06879(12)$	$0.0218(2)$

C2	$0.1670(3)$	$0.34735(14)$	$-0.04730(13)$	$0.0263(3)$
H2	0.2744	0.4178	-0.0617	0.032^{*}
C3	$-0.0513(3)$	$0.25860(14)$	$-0.14057(13)$	$0.0265(3)$
H3	-0.0961	0.2678	-0.2191	0.032^{*}
C4	$-0.2045(3)$	$0.15560(13)$	$-0.11787(12)$	$0.0223(3)$
N1	$-0.4365(2)$	$0.06242(11)$	$-0.21523(11)$	$0.0252(2)$
O2	$-0.4898(2)$	$0.07525(11)$	$-0.31628(10)$	$0.0348(3)$
O3	$-0.5727(2)$	$-0.02676(11)$	$-0.19184(10)$	$0.0371(3)$
C5	$-0.1435(3)$	$0.13965(13)$	$-0.00455(12)$	$0.0240(3)$
H5	-0.2508	0.0684	0.0087	0.029^{*}
C6	$0.0756(3)$	$0.22859(13)$	$0.08947(12)$	$0.0240(3)$
H6	0.1203	0.2182	0.1673	0.029^{*}
C7	$0.5221(3)$	$0.41461(14)$	$0.27521(13)$	$0.0261(3)$
H7A	0.5888	0.3204	0.2494	0.031^{*}
H7B	0.3588	0.4228	0.3281	0.031^{*}
C8	$0.7545(3)$	$0.53402(14)$	$0.35747(13)$	$0.0265(3)$
H8A	0.9078	0.5294	0.3000	0.032^{*}
H8B	0.8316	0.5188	0.4323	0.032^{*}
C9	$0.6588(3)$	$0.68272(14)$	$0.41563(13)$	$0.0281(3)$
H9A	0.5873	0.6991	0.3407	0.034^{*}
H9B	0.5015	0.6865	0.4709	0.034^{*}
C10	$0.8899(3)$	$0.80179(15)$	$0.50147(13)$	$0.0298(3)$
H10A	1.0544	0.7956	0.4497	0.036^{*}
H10B	0.8225	0.8961	0.5287	0.036^{*}
O4	$0.9673(3)$	$0.78689(13)$	$0.61746(11)$	$0.0442(3)$
H4	$1.096(5)$	$0.847(3)$	$0.661(2)$	0.066^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0287(5)$	$0.0279(5)$	$0.0219(4)$	$-0.0073(4)$	$-0.0059(3)$	$0.0129(4)$
C1	$0.0223(6)$	$0.0224(6)$	$0.0189(5)$	$-0.0004(4)$	$-0.0003(4)$	$0.0088(5)$
C2	$0.0293(6)$	$0.0286(6)$	$0.0235(6)$	$-0.0036(5)$	$0.0000(5)$	$0.0156(5)$
C3	$0.0294(6)$	$0.0309(6)$	$0.0214(6)$	$-0.0016(5)$	$-0.0011(5)$	$0.0154(5)$
C4	$0.0216(6)$	$0.0225(6)$	$0.0198(5)$	$0.0002(4)$	$-0.0005(4)$	$0.0081(5)$
N1	$0.0248(5)$	$0.0258(5)$	$0.0226(5)$	$0.0000(4)$	$-0.0013(4)$	$0.0101(4)$
O2	$0.0382(6)$	$0.0388(6)$	$0.0266(5)$	$-0.0028(4)$	$-0.0088(4)$	$0.0170(4)$
O3	$0.0369(6)$	$0.0384(6)$	$0.0329(5)$	$-0.0153(4)$	$-0.0073(4)$	$0.0183(5)$
C5	$0.0263(6)$	$0.0244(6)$	$0.0226(6)$	$-0.0017(5)$	$0.0005(5)$	$0.0129(5)$
C6	$0.0271(6)$	$0.0255(6)$	$0.0207(5)$	$-0.0002(5)$	$-0.0006(5)$	$0.0128(5)$
C7	$0.0272(6)$	$0.0287(6)$	$0.0226(6)$	$0.0002(5)$	$-0.0032(5)$	$0.0133(5)$
C8	$0.0225(6)$	$0.0293(6)$	$0.0245(6)$	$0.0016(5)$	$-0.0042(5)$	$0.0107(5)$
C9	$0.0261(6)$	$0.0289(7)$	$0.0243(6)$	$0.0026(5)$	$-0.0036(5)$	$0.0088(5)$
C10	$0.0339(7)$	$0.0294(7)$	$0.0223(6)$	$-0.0018(5)$	$-0.0016(5)$	$0.0101(5)$
O4	$0.0490(7)$	$0.0521(7)$	$0.0263(5)$	$-0.0254(5)$	$-0.0147(5)$	$0.0208(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C1	1.3551 (14)	C6-H6	0.9500
O1-C7	1.4484 (14)	C7-C8	1.5120 (17)
C1-C6	1.3984 (17)	C7-H7A	0.9900
C1-C2	1.4033 (16)	C7-H7B	0.9900
C2-C3	1.3805 (18)	C8-C9	1.5240 (19)
C2-H2	0.9500	C8-H8A	0.9900
C3-C4	1.3903 (17)	C8-H8B	0.9900
C3-H3	0.9500	C9-C10	1.5149 (18)
C4-C5	1.3842 (16)	C9-H9A	0.9900
$\mathrm{C} 4-\mathrm{N} 1$	1.4559 (15)	C9-H9B	0.9900
$\mathrm{N} 1-\mathrm{O} 2$	1.2252 (14)	C10-O4	1.4233 (17)
N1-O3	1.2361 (14)	C10-H10A	0.9900
C5-C6	1.3872 (17)	C10-H10B	0.9900
C5-H5	0.9500	O4-H4	0.80 (3)
C1-O1-C7	117.77 (10)	C8-C7-H7A	110.2
O1-C1-C6	123.97 (11)	O1-C7-H7B	110.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.82 (11)	C8-C7-H7B	110.2
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.20 (11)	H7A-C7-H7B	108.5
C3-C2-C1	120.07 (11)	C7-C8-C9	113.49 (11)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0	C7-C8-H8A	108.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0	C9-C8-H8A	108.9
C2-C3-C4	118.99 (11)	C7-C8-H8B	108.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.5	C9-C8-H8B	108.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5	H8A-C8-H8B	107.7
C5-C4-C3	121.74 (11)	C10-C9-C8	113.36 (11)
C5-C4-N1	118.96 (11)	C10-C9-H9A	108.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	119.30 (11)	C8-C9-H9A	108.9
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	122.62 (11)	C10-C9-H9B	108.9
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 4$	119.22 (10)	C8-C9-H9B	108.9
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4$	118.16 (10)	H9A-C9-H9B	107.7
C4-C5-C6	119.48 (11)	O4-C10-C9	108.37 (11)
C4-C5-H5	120.3	O4-C10-H10A	110.0
C6-C5-H5	120.3	C9-C10-H10A	110.0
C5-C6-C1	119.51 (11)	O4-C10-H10B	110.0
C5-C6-H6	120.2	C9-C10-H10B	110.0
C1-C6-H6	120.2	H10A-C10-H10B	108.4
O1-C7-C8	107.39 (10)	C10-O4-H4	108.2 (17)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	110.2		

Hydrogen-bond geometry $\left(A,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\mathrm{i}}$	$0.80(3)$	$2.10(2)$	$2.8808(14)$	$163(2)$

Symmetry code: (i) $x+2, y+1, z+1$.

