metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2,2′-bi­pyrimidine-κ2N1,N1′)di­bromidomanganese(II) nitro­methane monosolvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 16 March 2011; accepted 17 March 2011; online 23 March 2011)

The asymmetric unit of the title compound, [MnBr2(C8H6N4)2]·CH3NO2, contains one half of a neutral MnII complex and one half of a nitro­methane solvent mol­ecule, the complete mol­ecules being generated by the application of twofold symmetry. In the complex, the MnII ion has a distorted cis-Br2N4 octa­hedral coordination geometry defined by four N atoms of the two chelating 2,2′-bipyrimidine ligands and two Br ions. There are intra- and inter­molecular C—H⋯Br and C—H⋯N contacts.

Related literature

For the crystal structures of mononuclear 2,2′-bipyrimidine MnII complexes, see: Hong et al. (1996[Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335-2340.]); Smith et al. (2001[Smith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727-1734.]).

[Scheme 1]

Experimental

Crystal data
  • [MnBr2(C8H6N4)2]·CH3NO2

  • Mr = 592.14

  • Orthorhombic, C 2221

  • a = 8.3876 (4) Å

  • b = 12.1772 (6) Å

  • c = 20.7479 (11) Å

  • V = 2119.14 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.43 mm−1

  • T = 200 K

  • 0.17 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 1.000

  • 7872 measured reflections

  • 2608 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.078

  • S = 1.02

  • 2608 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1121 Friedel pairs

  • Flack parameter: −0.003 (16)

Table 1
Selected geometric parameters (Å, °)

Mn1—Br1 2.6140 (9)
Mn1—N1 2.292 (5)
Mn1—N3 2.306 (5)
N1i—Mn1—N1 158.0 (2)
N3—Mn1—N3i 89.5 (2)
Br1—Mn1—Br1i 98.66 (5)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.95 2.87 3.542 (6) 129
C2—H2⋯Br1ii 0.95 2.91 3.802 (6) 156
C6—H6⋯Br1iii 0.95 2.86 3.752 (5) 157
C9—H9C⋯N2iv 0.98 2.57 3.430 (5) 147
Symmetry codes: (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Mononuclear MnII complexes of 2,2'-bipyrimidine ligand have been investigated previously (Hong et al., 1996; Smith et al., 2001). The asymmetric unit of the title compound, [MnBr2(bpym)2].CH3NO2 (where bpym is 2,2'-bipyrimidine; C8H6N4), contains half of a neutral Mn(II) complex and half of a nitromethane solvent molecule (Fig. 1). The complex is disposed about a twofold rotation axis running in the [010] direction passing through the Mn1 atom with the special position at (0, y, 1/4) (Wyckoff letter b). The solvent molecule is also located on a twofold rotation axis, but the axis is running along the [100] direction passing through the N5 and C9 atoms, which lie on the special positions of (x, 1/2, 0) (Wyckoff letter a). Because of the symmetry of the twofold rotation, the methyl group of the nitromethane molecule was modelled as disordered over two sites.

In the complex, the MnII ion is six-coordinated in a distorted octahedral environment defined by four N atoms of the two chelating 2,2'-bipyrimidine ligands and two Br- anions, Table 1, which define a cis-Br2N4 donor set. The main contributions to the distortion are the tight N—Mn—N chelate angle and the Br—Br repulsion (N1—Mn1—N3a = 71.1 (2) ° and Br1—Mn1—Br1a = 98.66 (5) °; symmetry code a: -x, y, 1/2 - z), which result in non-linear trans axes (<N3—Mn1—Br1a = 163.6 (1) ° and <N1—Mn1—N1a = 158.0 (2) °). The Mn—N bond lengths are almost equivalent (Table 1) and the dihedral angle between the least-squares planes of the two bpym ligands is 73.05 (7) °.

In the crystal structure, the complexes are stacked in columns along the a axis. When viewed down the c axis, the successive complexes are stacked in the opposite direction. In the columns, several inter- and intramolecular π-π interactions between adjacent pyrimidine rings are present. The shortest distance between Cg1 (the centroid of ring N1—C4) and Cg2i (ring N3—C8, symmetry code i: 1/2 - x, 1/2 + y, 1/2 - z) is 4.411 (3) Å, and the dihedral angle between the ring planes is 4.7 (3) °. Moreover, there are intra- and inter-molecular C—H···Br and C—H···N contacts with d(C···Br) = 3.542 (6)–3.802 (6) Å, and d(C···N) = 3.430 (5) Å (Fig. 2, Table 2).

Related literature top

For the crystal structures of mononuclear 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001).

Experimental top

To a solution of MnBr2.4H2O (0.2867 g, 1.000 mmol) in EtOH (30 ml) was added 2,2'-bipyrimidine (0.1584 g, 1.002 mmol) followed by stirring for 3 h. The precipitate was separated by filtration, washed with EtOH and dried at 323 K to give a yellow powder (0.3441 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The H atoms of the methyl group of the nitromethane solvent molecule were modelled as disordered over two sites rotated by 60° from one another, with an occupancy ratio of 0.5:0.5.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [Symmetry codes: (a) -x, y, 1/2 - z, (b) x, 1 - y, -z]. H atoms are shown as small circles of arbitrary radius and the bonds of the disordered methyl group are shown with dashed lines.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Bis(2,2'-bipyrimidine-κ2N,N')dibromidomanganese(II) nitromethane monosolvate top
Crystal data top
[MnBr2(C8H6N4)2]·CH3NO2F(000) = 1164
Mr = 592.14Dx = 1.856 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 2401 reflections
a = 8.3876 (4) Åθ = 3.0–25.5°
b = 12.1772 (6) ŵ = 4.43 mm1
c = 20.7479 (11) ÅT = 200 K
V = 2119.14 (18) Å3Block, yellow
Z = 40.17 × 0.10 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2608 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.825, Tmax = 1.000k = 1615
7872 measured reflectionsl = 2427
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2608 reflectionsΔρmax = 0.87 e Å3
143 parametersΔρmin = 0.86 e Å3
0 restraintsAbsolute structure: Flack (1983), 1121 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (16)
Crystal data top
[MnBr2(C8H6N4)2]·CH3NO2V = 2119.14 (18) Å3
Mr = 592.14Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 8.3876 (4) ŵ = 4.43 mm1
b = 12.1772 (6) ÅT = 200 K
c = 20.7479 (11) Å0.17 × 0.10 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2608 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1818 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.069
7872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.87 e Å3
S = 1.02Δρmin = 0.86 e Å3
2608 reflectionsAbsolute structure: Flack (1983), 1121 Friedel pairs
143 parametersAbsolute structure parameter: 0.003 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.17577 (6)0.51358 (4)0.18610 (3)0.03361 (16)
Mn10.00000.37369 (10)0.25000.0262 (3)
N10.1984 (5)0.3378 (3)0.3230 (2)0.0258 (11)
N20.2612 (6)0.2496 (4)0.4234 (2)0.0306 (12)
N30.0862 (5)0.2392 (4)0.1799 (3)0.0261 (10)
N40.0382 (6)0.1601 (4)0.0767 (2)0.0341 (13)
C10.3439 (6)0.3827 (4)0.3225 (3)0.0288 (12)
H10.37280.42990.28800.035*
C20.4533 (6)0.3625 (5)0.3707 (3)0.0323 (15)
H20.55720.39350.36940.039*
C30.4059 (7)0.2952 (5)0.4210 (3)0.0331 (16)
H30.47890.28090.45500.040*
C40.1658 (7)0.2722 (4)0.3736 (3)0.0246 (12)
C50.2306 (6)0.1925 (4)0.1809 (3)0.0324 (14)
H50.29710.20280.21750.039*
C60.2853 (6)0.1295 (5)0.1300 (3)0.0332 (15)
H60.38760.09600.13080.040*
C70.1849 (8)0.1177 (5)0.0783 (3)0.0373 (14)
H70.22140.07750.04200.045*
C80.0027 (7)0.2208 (4)0.1271 (3)0.0255 (12)
O10.0029 (7)0.4220 (4)0.0230 (2)0.0712 (16)
N50.0678 (8)0.50000.00000.0372 (18)
C90.2426 (8)0.50000.00000.046 (3)
H9A0.28150.48430.04360.069*0.50
H9B0.28150.57210.01380.069*0.50
H9C0.28150.44350.02970.069*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0310 (3)0.0361 (3)0.0337 (3)0.0004 (3)0.0036 (3)0.0056 (3)
Mn10.0250 (6)0.0294 (7)0.0240 (7)0.0000.0007 (6)0.000
N10.024 (2)0.025 (2)0.028 (3)0.002 (2)0.002 (2)0.002 (2)
N20.028 (3)0.036 (3)0.028 (3)0.003 (2)0.004 (2)0.007 (3)
N30.023 (2)0.030 (2)0.025 (3)0.0023 (19)0.004 (2)0.002 (2)
N40.031 (3)0.038 (3)0.034 (3)0.004 (2)0.005 (2)0.000 (3)
C10.030 (3)0.032 (3)0.025 (3)0.000 (3)0.002 (3)0.004 (3)
C20.024 (3)0.035 (4)0.038 (4)0.009 (3)0.001 (3)0.002 (3)
C30.030 (4)0.041 (4)0.028 (4)0.004 (3)0.007 (3)0.005 (3)
C40.025 (3)0.025 (3)0.024 (3)0.009 (3)0.002 (3)0.008 (2)
C50.034 (3)0.030 (3)0.033 (4)0.003 (3)0.003 (3)0.004 (3)
C60.027 (3)0.031 (3)0.042 (4)0.011 (3)0.006 (3)0.004 (3)
C70.037 (4)0.039 (4)0.036 (4)0.006 (4)0.003 (3)0.009 (3)
C80.033 (3)0.021 (3)0.022 (3)0.004 (3)0.002 (3)0.006 (2)
O10.070 (3)0.066 (4)0.077 (4)0.027 (3)0.007 (3)0.002 (3)
N50.046 (5)0.033 (5)0.032 (5)0.0000.0000.003 (4)
C90.032 (4)0.065 (7)0.040 (6)0.0000.0000.017 (6)
Geometric parameters (Å, º) top
Mn1—Br12.6140 (9)C2—C31.386 (8)
Mn1—N1i2.292 (5)C2—H20.9500
Mn1—N12.292 (5)C3—H30.9500
Mn1—N32.306 (5)C4—C8i1.505 (8)
Mn1—N3i2.306 (5)C5—C61.385 (8)
Mn1—Br1i2.6140 (9)C5—H50.9500
N1—C11.338 (6)C6—C71.370 (8)
N1—C41.347 (7)C6—H60.9500
N2—C31.336 (6)C7—H70.9500
N2—C41.336 (7)C8—C4i1.505 (8)
N3—C51.338 (6)O1—N51.217 (5)
N3—C81.344 (7)N5—O1ii1.217 (5)
N4—C81.326 (7)N5—C91.466 (9)
N4—C71.334 (7)C9—H9A0.9800
C1—C21.379 (7)C9—H9B0.9800
C1—H10.9500C9—H9C0.9800
N1i—Mn1—N1158.0 (2)C3—C2—H2121.3
N1i—Mn1—N371.06 (16)N2—C3—C2122.3 (6)
N1—Mn1—N393.09 (15)N2—C3—H3118.8
N1i—Mn1—N3i93.09 (15)C2—C3—H3118.8
N1—Mn1—N3i71.06 (16)N2—C4—N1127.2 (5)
N3—Mn1—N3i89.5 (2)N2—C4—C8i117.8 (5)
N1i—Mn1—Br1101.45 (11)N1—C4—C8i115.1 (5)
N1—Mn1—Br192.87 (11)N3—C5—C6121.6 (6)
N3—Mn1—Br188.07 (11)N3—C5—H5119.2
N3i—Mn1—Br1163.59 (10)C6—C5—H5119.2
N1i—Mn1—Br1i92.87 (11)C7—C6—C5116.8 (5)
N1—Mn1—Br1i101.45 (11)C7—C6—H6121.6
N3—Mn1—Br1i163.59 (10)C5—C6—H6121.6
N3i—Mn1—Br1i88.07 (11)N4—C7—C6123.1 (6)
Br1—Mn1—Br1i98.66 (5)N4—C7—H7118.4
C1—N1—C4115.6 (5)C6—C7—H7118.4
C1—N1—Mn1125.4 (4)N4—C8—N3126.3 (6)
C4—N1—Mn1118.7 (4)N4—C8—C4i117.4 (5)
C3—N2—C4115.4 (5)N3—C8—C4i116.2 (5)
C5—N3—C8116.3 (5)O1—N5—O1ii121.6 (8)
C5—N3—Mn1125.1 (4)O1—N5—C9119.2 (4)
C8—N3—Mn1117.3 (4)O1ii—N5—C9119.2 (4)
C8—N4—C7115.7 (5)N5—C9—H9A109.5
N1—C1—C2122.0 (5)N5—C9—H9B109.5
N1—C1—H1119.0H9A—C9—H9B109.5
C2—C1—H1119.0N5—C9—H9C109.5
C1—C2—C3117.4 (5)H9A—C9—H9C109.5
C1—C2—H2121.3H9B—C9—H9C109.5
N1i—Mn1—N1—C1130.5 (4)Mn1—N1—C1—C2175.5 (4)
N3—Mn1—N1—C187.8 (4)N1—C1—C2—C31.4 (8)
N3i—Mn1—N1—C1176.2 (4)C4—N2—C3—C20.8 (8)
Br1—Mn1—N1—C10.4 (4)C1—C2—C3—N20.8 (9)
Br1i—Mn1—N1—C199.9 (4)C3—N2—C4—N12.1 (8)
N1i—Mn1—N1—C454.4 (4)C3—N2—C4—C8i178.5 (5)
N3—Mn1—N1—C497.1 (4)C1—N1—C4—N21.6 (8)
N3i—Mn1—N1—C48.7 (4)Mn1—N1—C4—N2174.0 (4)
Br1—Mn1—N1—C4174.7 (4)C1—N1—C4—C8i179.0 (4)
Br1i—Mn1—N1—C475.3 (4)Mn1—N1—C4—C8i5.4 (6)
N1i—Mn1—N3—C5178.2 (5)C8—N3—C5—C60.5 (7)
N1—Mn1—N3—C517.4 (4)Mn1—N3—C5—C6166.5 (4)
N3i—Mn1—N3—C588.4 (5)N3—C5—C6—C70.3 (8)
Br1—Mn1—N3—C575.4 (4)C8—N4—C7—C63.8 (9)
Br1i—Mn1—N3—C5169.8 (3)C5—C6—C7—N42.6 (9)
N1i—Mn1—N3—C811.3 (4)C7—N4—C8—N33.0 (9)
N1—Mn1—N3—C8175.7 (4)C7—N4—C8—C4i178.6 (5)
N3i—Mn1—N3—C8104.7 (4)C5—N3—C8—N40.9 (8)
Br1—Mn1—N3—C891.5 (4)Mn1—N3—C8—N4168.9 (4)
Br1i—Mn1—N3—C823.3 (7)C5—N3—C8—C4i179.3 (4)
C4—N1—C1—C20.3 (7)Mn1—N3—C8—C4i12.7 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.873.542 (6)129
C2—H2···Br1iii0.952.913.802 (6)156
C6—H6···Br1iv0.952.863.752 (5)157
C9—H9C···N2v0.982.573.430 (5)147
Symmetry codes: (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[MnBr2(C8H6N4)2]·CH3NO2
Mr592.14
Crystal system, space groupOrthorhombic, C2221
Temperature (K)200
a, b, c (Å)8.3876 (4), 12.1772 (6), 20.7479 (11)
V3)2119.14 (18)
Z4
Radiation typeMo Kα
µ (mm1)4.43
Crystal size (mm)0.17 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7872, 2608, 1818
Rint0.069
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.078, 1.02
No. of reflections2608
No. of parameters143
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.86
Absolute structureFlack (1983), 1121 Friedel pairs
Absolute structure parameter0.003 (16)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—Br12.6140 (9)Mn1—N32.306 (5)
Mn1—N12.292 (5)
N1i—Mn1—N1158.0 (2)Br1—Mn1—Br1i98.66 (5)
N3—Mn1—N3i89.5 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.873.542 (6)129
C2—H2···Br1ii0.952.913.802 (6)156
C6—H6···Br1iii0.952.863.752 (5)157
C9—H9C···N2iv0.982.573.430 (5)147
Symmetry codes: (ii) x+1, y, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626). The author thanks the KBSI, Jeonju Center, for the X-ray data collection.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationHong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.  CSD CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSmith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727–1734.  CSD CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds