organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-dimeth­­oxy­phen­yl)phosphinic acid

aDepartment of Biological and Chemical Engineering, Chien-Shiung Institute of Technology, Taicang 215411, Suzhou, People's Republic of China, and bSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: larry_18@163.com

(Received 17 February 2011; accepted 6 March 2011; online 15 March 2011)

In the crystal structure of the title compound, C16H19O6P, inter­molecular O—H⋯O inter­actions link the mol­ecules into chains parallel to the b axis. These chains are linked by C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.7307 (29) Å] into a three-dimensional network. The dihedral angle between the benzene rings is 73.5 (1)°. The C and O atoms of all four methoxy groups lie very close to the mean planes of their attached rings; the C atoms are 0.055 (2)–0.1038 (1) Å out of the mean plane of the attached rings.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of the title compound, see: Watson et al. (2006[Watson, D. A., Chiu, M. & Bergman, R. G. (2006). Organometallics, 25, 4731-4733.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19O6P

  • Mr = 338.28

  • Monoclinic, P 21 /n

  • a = 14.554 (3) Å

  • b = 7.7620 (16) Å

  • c = 14.634 (3) Å

  • β = 96.14 (3)°

  • V = 1643.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.944, Tmax = 0.981

  • 3138 measured reflections

  • 3014 independent reflections

  • 2136 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.162

  • S = 1.01

  • 3014 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.82 1.71 2.482 (3) 155
C14—H14BCg2ii 0.96 2.90 3.571 (4) 128
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, bis(3,5-dimethoxyphenyl)phosphinic acid (I) is an important intermediate for preparing metal phosphine complexes.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The dihedral angle between ring 1 (C1—C6) and ring 2 (C7—C12) is 73.5 (1)°. The P atom is situated close to the best planes through the benzene rings (deviation P of -0.054 (1) and 0.014 (1) Å for ring 1 and 2, respectively).

The C and O atoms of all methoxy groups lie very close to the mean planes of their attached rings. The C13 and C14 atoms of methoxy groups are 0.064 (1) and 0.1038 (1) Å, respectively, out of the C1–C6 mean plane. The C15 and C16 atoms are 0.055 (2) and 0.096 (1) Å, respectively, out of the C7–C8 mean plane.

In the crystal structure, intermolecular O—H···O interactions link the molecules into chains parallel to the b-direction (Table 1, Fig. 2). These chains are linked by C—H···π (Table 1) and ππ interactions [distance Cg1···Cg1ii = 3.7307 (29) Å where Cg1 is the centroid of C1—C6; symmetry code ii: 2 - x,-y,1 - z] to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For the synthesis of the title compound, which is commonly used in the preparation of phosphine catalysts, see: Watson et al. (2006).

Experimental top

The title compound was synthesized by the reaction of dimethoxyphenyl bromide, t-BuLi, N,N-dimethylphosphoramic dichloride in aqueous HCl and THF (Watson et al., 2006). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (50 mg) in ethyl acetate (10 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93 and 0.96 Å for aromatic and methoxy H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for phenyl H and x = 1.5 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I). Dashed lines indicate hydrogen bonds or ππ interactions .
Bis(3,5-dimethoxyphenyl)phosphinic acid top
Crystal data top
C16H19O6PF(000) = 712
Mr = 338.28Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.554 (3) Åθ = 10–14°
b = 7.7620 (16) ŵ = 0.20 mm1
c = 14.634 (3) ÅT = 298 K
β = 96.14 (3)°Block, colorless
V = 1643.7 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2136 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.944, Tmax = 0.981l = 1717
3138 measured reflections3 standard reflections every 200 reflections
3014 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H19O6PV = 1643.7 (6) Å3
Mr = 338.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.554 (3) ŵ = 0.20 mm1
b = 7.7620 (16) ÅT = 298 K
c = 14.634 (3) Å0.30 × 0.20 × 0.10 mm
β = 96.14 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2136 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.944, Tmax = 0.9813 standard reflections every 200 reflections
3138 measured reflections intensity decay: 1%
3014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
3014 reflectionsΔρmin = 0.32 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.84250 (5)0.16050 (10)0.25720 (5)0.0347 (2)
O10.83620 (18)0.2020 (3)0.55369 (14)0.0568 (7)
C10.84208 (19)0.0319 (4)0.41535 (19)0.0369 (7)
H1A0.81510.11820.37740.044*
O20.96481 (18)0.3582 (3)0.57873 (15)0.0582 (7)
C20.8584 (2)0.0570 (4)0.5091 (2)0.0388 (7)
O30.9727 (2)0.3021 (4)0.0512 (2)0.0853 (10)
C30.8993 (2)0.0712 (4)0.5657 (2)0.0417 (7)
H3A0.90990.05290.62870.050*
O41.17640 (19)0.1274 (4)0.1644 (2)0.0833 (9)
C40.9241 (2)0.2244 (4)0.5293 (2)0.0403 (7)
O50.85561 (14)0.3545 (3)0.23979 (14)0.0429 (5)
H5A0.81250.40840.25770.064*
C50.9083 (2)0.2521 (4)0.4345 (2)0.0397 (7)
H5B0.92560.35560.40930.048*
O60.74981 (14)0.0893 (3)0.22249 (13)0.0432 (5)
C60.86672 (19)0.1244 (4)0.37875 (19)0.0342 (7)
C70.9317 (2)0.0648 (4)0.19870 (19)0.0388 (7)
C81.0195 (2)0.1405 (4)0.2072 (2)0.0482 (8)
H8A1.03130.23930.24240.058*
C91.0885 (2)0.0655 (5)0.1622 (2)0.0570 (9)
C101.0691 (3)0.0832 (5)0.1110 (3)0.0669 (11)
H10A1.11560.13460.08160.080*
C110.9820 (3)0.1564 (5)0.1027 (2)0.0577 (9)
C120.9129 (2)0.0827 (4)0.1475 (2)0.0469 (8)
H12A0.85440.13200.14310.056*
C130.7992 (3)0.3423 (4)0.5002 (2)0.0583 (9)
H13A0.78710.43620.53990.087*
H13B0.84260.37820.45910.087*
H13C0.74260.30760.46530.087*
C140.9762 (3)0.3417 (5)0.6759 (2)0.0683 (11)
H14A1.00510.44360.70260.102*
H14B1.01430.24340.69290.102*
H14C0.91690.32690.69790.102*
C150.8843 (4)0.3867 (6)0.0433 (3)0.0889 (15)
H15A0.88670.48790.00590.133*
H15B0.83790.30970.01540.133*
H15C0.86950.41900.10330.133*
C161.1963 (3)0.2843 (7)0.2119 (4)0.0937 (16)
H16A1.25970.31500.20830.141*
H16B1.18590.27070.27520.141*
H16C1.15690.37360.18450.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0339 (4)0.0366 (4)0.0325 (4)0.0010 (3)0.0014 (3)0.0043 (3)
O10.0837 (18)0.0470 (14)0.0378 (12)0.0164 (12)0.0022 (11)0.0083 (10)
C10.0355 (15)0.0396 (16)0.0347 (15)0.0025 (13)0.0010 (12)0.0011 (13)
O20.0813 (17)0.0495 (14)0.0405 (12)0.0168 (13)0.0085 (11)0.0039 (11)
C20.0410 (17)0.0379 (17)0.0370 (16)0.0002 (14)0.0009 (13)0.0034 (13)
O30.106 (2)0.0688 (19)0.088 (2)0.0052 (17)0.0441 (18)0.0322 (16)
C30.0444 (17)0.0488 (19)0.0308 (15)0.0022 (15)0.0016 (13)0.0010 (14)
O40.0547 (16)0.099 (2)0.102 (2)0.0111 (16)0.0322 (15)0.0187 (19)
C40.0409 (17)0.0399 (17)0.0384 (16)0.0004 (14)0.0039 (13)0.0040 (14)
O50.0405 (12)0.0402 (12)0.0480 (12)0.0013 (10)0.0044 (9)0.0060 (10)
C50.0435 (17)0.0362 (17)0.0386 (16)0.0003 (14)0.0014 (13)0.0027 (14)
O60.0406 (12)0.0478 (13)0.0391 (11)0.0042 (10)0.0060 (9)0.0079 (10)
C60.0290 (15)0.0383 (16)0.0345 (15)0.0030 (12)0.0002 (12)0.0010 (13)
C70.0448 (18)0.0412 (17)0.0302 (15)0.0056 (14)0.0025 (13)0.0041 (13)
C80.0483 (19)0.054 (2)0.0426 (17)0.0002 (16)0.0067 (15)0.0035 (15)
C90.049 (2)0.070 (2)0.055 (2)0.0012 (18)0.0166 (16)0.0011 (19)
C100.071 (3)0.069 (3)0.066 (2)0.009 (2)0.031 (2)0.004 (2)
C110.079 (3)0.053 (2)0.0446 (19)0.003 (2)0.0201 (18)0.0024 (17)
C120.052 (2)0.0481 (19)0.0411 (17)0.0011 (16)0.0081 (15)0.0012 (16)
C130.077 (3)0.047 (2)0.051 (2)0.0154 (19)0.0073 (18)0.0025 (17)
C140.096 (3)0.066 (3)0.0411 (19)0.021 (2)0.0045 (19)0.0060 (19)
C150.118 (4)0.065 (3)0.086 (3)0.017 (3)0.024 (3)0.025 (2)
C160.062 (3)0.121 (4)0.103 (4)0.027 (3)0.030 (3)0.020 (3)
Geometric parameters (Å, º) top
P—O61.496 (2)C7—C121.379 (4)
P—O51.542 (2)C7—C81.400 (4)
P—C71.791 (3)C8—C91.387 (5)
P—C61.798 (3)C8—H8A0.9300
O1—C21.357 (4)C9—C101.389 (5)
O1—C131.414 (4)C10—C111.383 (5)
C1—C21.381 (4)C10—H10A0.9300
C1—C61.389 (4)C11—C121.381 (5)
C1—H1A0.9300C12—H12A0.9300
O2—C41.365 (4)C13—H13A0.9600
O2—C141.419 (4)C13—H13B0.9600
C2—C31.388 (4)C13—H13C0.9600
O3—C111.358 (4)C14—H14A0.9600
O3—C151.437 (5)C14—H14B0.9600
C3—C41.367 (4)C14—H14C0.9600
C3—H3A0.9300C15—H15A0.9600
O4—C91.363 (4)C15—H15B0.9600
O4—C161.417 (5)C15—H15C0.9600
C4—C51.397 (4)C16—H16A0.9600
O5—H5A0.8200C16—H16B0.9600
C5—C61.382 (4)C16—H16C0.9600
C5—H5B0.9300
O6—P—O5115.32 (12)O4—C9—C10116.3 (3)
O6—P—C7110.96 (14)C8—C9—C10119.2 (3)
O5—P—C7102.55 (13)C11—C10—C9121.4 (3)
O6—P—C6110.65 (13)C11—C10—H10A119.3
O5—P—C6107.51 (13)C9—C10—H10A119.3
C7—P—C6109.45 (13)O3—C11—C12125.0 (4)
C2—O1—C13117.9 (2)O3—C11—C10115.3 (3)
C2—C1—C6118.9 (3)C12—C11—C10119.7 (3)
C2—C1—H1A120.6C7—C12—C11119.3 (3)
C6—C1—H1A120.6C7—C12—H12A120.3
C4—O2—C14117.4 (3)C11—C12—H12A120.3
O1—C2—C1124.8 (3)O1—C13—H13A109.5
O1—C2—C3114.6 (3)O1—C13—H13B109.5
C1—C2—C3120.6 (3)H13A—C13—H13B109.5
C11—O3—C15117.4 (3)O1—C13—H13C109.5
C4—C3—C2120.4 (3)H13A—C13—H13C109.5
C4—C3—H3A119.8H13B—C13—H13C109.5
C2—C3—H3A119.8O2—C14—H14A109.5
C9—O4—C16117.2 (3)O2—C14—H14B109.5
O2—C4—C3124.9 (3)H14A—C14—H14B109.5
O2—C4—C5115.2 (3)O2—C14—H14C109.5
C3—C4—C5119.9 (3)H14A—C14—H14C109.5
P—O5—H5A109.5H14B—C14—H14C109.5
C6—C5—C4119.4 (3)O3—C15—H15A109.5
C6—C5—H5B120.3O3—C15—H15B109.5
C4—C5—H5B120.3H15A—C15—H15B109.5
C5—C6—C1120.9 (3)O3—C15—H15C109.5
C5—C6—P120.0 (2)H15A—C15—H15C109.5
C1—C6—P119.1 (2)H15B—C15—H15C109.5
C12—C7—C8121.5 (3)O4—C16—H16A109.5
C12—C7—P119.5 (2)O4—C16—H16B109.5
C8—C7—P119.0 (2)H16A—C16—H16B109.5
C9—C8—C7118.9 (3)O4—C16—H16C109.5
C9—C8—H8A120.6H16A—C16—H16C109.5
C7—C8—H8A120.6H16B—C16—H16C109.5
O4—C9—C8124.5 (4)
C13—O1—C2—C14.3 (5)O6—P—C7—C1214.6 (3)
C13—O1—C2—C3176.4 (3)O5—P—C7—C12138.3 (2)
C6—C1—C2—O1178.8 (3)C6—P—C7—C12107.8 (3)
C6—C1—C2—C30.5 (4)O6—P—C7—C8166.3 (2)
O1—C2—C3—C4179.4 (3)O5—P—C7—C842.6 (3)
C1—C2—C3—C40.0 (5)C6—P—C7—C871.3 (3)
C14—O2—C4—C34.7 (5)C12—C7—C8—C90.6 (5)
C14—O2—C4—C5175.5 (3)P—C7—C8—C9179.7 (2)
C2—C3—C4—O2179.9 (3)C16—O4—C9—C83.7 (6)
C2—C3—C4—C50.1 (5)C16—O4—C9—C10176.5 (4)
O2—C4—C5—C6179.5 (3)C7—C8—C9—O4179.5 (3)
C3—C4—C5—C60.7 (5)C7—C8—C9—C100.7 (5)
C4—C5—C6—C11.2 (4)O4—C9—C10—C11179.1 (4)
C4—C5—C6—P178.0 (2)C8—C9—C10—C111.0 (6)
C2—C1—C6—C51.1 (4)C15—O3—C11—C120.6 (6)
C2—C1—C6—P178.1 (2)C15—O3—C11—C10177.8 (4)
O6—P—C6—C5139.0 (2)C9—C10—C11—O3179.6 (3)
O5—P—C6—C512.2 (3)C9—C10—C11—C121.2 (6)
C7—P—C6—C598.4 (3)C8—C7—C12—C110.7 (5)
O6—P—C6—C140.2 (3)P—C7—C12—C11179.8 (2)
O5—P—C6—C1167.0 (2)O3—C11—C12—C7179.2 (3)
C7—P—C6—C182.3 (2)C10—C11—C12—C71.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.712.482 (3)155
C14—H14B···Cg2ii0.962.903.571 (4)128
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H19O6P
Mr338.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.554 (3), 7.7620 (16), 14.634 (3)
β (°) 96.14 (3)
V3)1643.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.944, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3138, 3014, 2136
Rint0.032
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.01
No. of reflections3014
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.712.482 (3)155
C14—H14B···Cg2ii0.962.903.571 (4)128
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, D. A., Chiu, M. & Bergman, R. G. (2006). Organometallics, 25, 4731–4733.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds