organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o770-o771

Eprosartan mesylate, an angiotensin II receptor antagonist

aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 10 November 2010; accepted 22 February 2011; online 2 March 2011)

The title compound, eprosartan mesylate {systematic name: 2-butyl-1-(4-carb­oxy­benz­yl)-5-[(E)-2-carb­oxy-3-(thio­phen-2-yl)prop-1-en­yl]-1H-imidazol-3-ium methane­sulfonate}, C23H25N2O4S+·CH3O3S, one of the angiotensin II-receptor antagonists, is effective in regulating hypertension, induced or exacerbated by angiotensin II, and in the treatment of congestive heart failure, renal failure and glaucoma. In the eprosartan residue, which appears in this crystal in the cationic imidazolium form, the benzene ring plane is almost orthogonal to that of the imidazole ring, making a dihedral angle of 87.89 (2)°. The thio­phene ring forms dihedral angles of 66.54 (2) and 67.12 (2)° with the benzene and imidazole rings, respectively. The imidazolium NH group and the H atom of the aromatic carboxyl group participate in hydrogen bonds with the the O atoms of the anion, thus forming centrosymmetric aggregates made up of two cations and two anions each. The second carboxyl group further links the above-mentioned aggregates through a conventional centrosymmetric hydrogen-bonding motif into infinite chains along [011].

Related literature

For applications of eprosartan mesylate in medicine, see: Punzi & Punzi (2005[Punzi, H. A. & Punzi, C. F. (2005). Am. J. Hypertens. 18, 93A.]); Punzi et al. (2004[Punzi, H. A., Punzi, C. F. & The Eprosartan Investigation Group (2004). J. Hum. Hypertens. 18, 655-661.]); Hillaert et al. (2003[Hillaert, S., Beer, T. R. M., Beer, J. O. & Bossche, W. (2003). J. Chromatogr. A, 984, 135-146.]). For the crystal structures of other eprosartan derivatives, see: Wu et al. (2009[Wu, J. M., Wang, J. P. & Sun, C. R. (2009). Chin. J. Struct. Chem. 28, 1087-1092.]); Sheng et al. (1999[Sheng, J., Venkatesh, G. M., Duddu, S. P. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1021-1029.]). For the preparation of eprosartan mesylate, see Bandi et al. (2010[Bandi, P. R., Kura, R. R., Rapolu, R. R., Dasari, M. R. & Medabalimi, P. R. R. (2010). US Patent No. 20100166850.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25N2O4S+·CH3O3S

  • Mr = 520.60

  • Triclinic, [P \overline 1]

  • a = 8.6635 (4) Å

  • b = 12.6935 (7) Å

  • c = 13.6679 (8) Å

  • α = 112.700 (2)°

  • β = 101.386 (1)°

  • γ = 96.718 (1)°

  • V = 1327.97 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 193 K

  • 0.48 × 0.34 × 0.16 mm

Data collection
  • Rigaku R-AXIS-RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.879, Tmax = 0.961

  • 10590 measured reflections

  • 4689 independent reflections

  • 3248 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.225

  • S = 0.99

  • 4689 reflections

  • 318 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5 0.88 1.86 2.697 (5) 158
O1—H1⋯O2i 0.84 1.80 2.628 (5) 171
O3—H3⋯O6ii 0.84 1.78 2.597 (5) 162
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corpporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Angiotensin-II-receptor antagonists are safe and effective agents for the treatment of hypertension and heart failure, either alone, or in conjunction with hydrochlorothiazide, a thiazide diuretic (Hillaert et al., 2003; Punzi & Punzi, 2005). The title compound, eprosartan mesylate, is one of the highly selective, orally active, non-peptide angiotensin-II-receptor antagonists, which has low likelihood for undesirable drug interactions. It is reported that eprosartan mesylate may be potentially attractive in the treatment of elderly patients who are often on multiple drug regimens (Punzi et al.,2004).

The crystal structure of eprosartan in the form of monohydrate of neutral molecule has been recently published (Wu et al., 2009). Although the title compound was known already for more than a decade (Sheng et al.,1999), its crystal structure has not yet been reported and represents the subject of the present paper.

The asymmetric unit, comprising eprosartan cation and mesylate anion, is shown in Fig.1. Geometric parameters of the cation are comparable to that of the neutral eprosartan (Wu et al., 2009). Phenyl ring plane is almost orthogonal to imidazole plane, corresponding dihedral angle being equal to 87.89 (2)°. Thiophene plane forms dihedral angles of 66.54 (2)° and 67.12 (2)°, with phenyl and imidazole planes, respectively. Conformation of the molecule in the structure of eprosartan hydrate (Wu et al., 2009) shows substantial differences; in particular the dihedral angle between thiophene and imidazole planes in hydrate structure is much smaller [24.78 (2)°].

The imidazolium NH-group and carboxyl H atom bound to O3 participate in H-bonds with the the oxygen atoms of the anion thus forming centrosymmetric aggregates made up of two cations and two anions each (Fig.2). The second carboxyl H atom (bound to O1) is involved in centrosymmetric H-bonding motive, typical for carboxyl structures; in this way the above mentioned aggregates get linked into infinite chains stretching along the [011] direction.

Related literature top

For applications of eprosartan mesylate in medicine, see: Punzi & Punzi (2005); Punzi et al. (2004); Hillaert et al. (2003). For the crystal structures of other eprosartan derivatives, see: Wu et al. (2009); Sheng et al. (1999). For the preparation of eprosartan mesylate, see Bandi et al. (2010).

Experimental top

Methyl-4-[(2-n-butyl-5-formyl-1H-imidazol-1-yl) methyl] benzoate (10 g), was added to a mixture of 135 ml of n-heptane and 15 ml of dichloromethane at room temperature. The reaction mixture was maintained in Dean Stark apparatus at 343–353 K for the duration of 15–30 min. Then piperidinium acetate catalyst (2.8 g of piperidine and 5.55 g of acetic acid) dissolved in the mixture of 8.5 ml n-heptane and 1.5 ml dichloromethane was added to the reaction mixture followed by addition of 2-thiophene-2-yl-methylmalonic acid monoethyl ester (17.3 g). Reaction temperature was maintained at 343–353 K for 20 h. After reaction completion, cooling to room temperature, ethanol and de-ionized water were added, and pH was adjusted to 1 using 1M HCl. The layers were separated, and the aqueous layer was washed with n-heptane. Then pH of the aqueous layer was adjusted to 6 with 1M NaOH and the solution was extracted with toluene. Combined organic layers were concentrated under vacuum, the residue was dissolved in 130 ml of ethanol, and solution of NaOH (13.5 g of NaOH in 65 ml of water) was added and stirred for 1–2 h. Thereafter, pH of the reaction mixture was adjusted to 4.5–5 with 1M HCl. The precipitated solid was filtered, washed with water and dried under vacuum to yield 11 g of eprosartan (Bandi et al., 2010). 10 g of eprosartan was dissolved in 150 ml of isopropyl alcohol at room temperature. 6.8 g of methane sulfonic acid was added to the clear solution which was then stirred for about 2 h. The solid was filtered, washed with isopropyl alcohol and dried to yield 10 g of eprosartan mesylate, which was recrystallized from ethanol solution, giving colorless crystals of the title compound suitable for X-ray diffraction.

Refinement top

The difference density map indicated the presence of a possible H atom at the N2 atom, thus confirming proton transfer from mesylate to imidazole. Subsequently, this H atom was placed in calculated position with N—H 0.88 Å and refined as riding with Uiso(H) = 1.2Ueq(N). All other H atoms were placed in calculated positions as well with O—H 0.84 Å, and C—H bonds of 0.99 Å for methylene, 0.98 Å for methyl, and 0.95Å for aromatic H atoms; all H-atoms were included in the refinement in riding model approximation, with Uiso(H) = 1.2Ueq of the carrying atom (1.5 Ueq in case of OH and methyl groups). Temperature factors of the O4 and C23 atoms were restrained to represent isotropic behavior [ISOR 0.003 according to SHELXL97 (Sheldrick, 2008)]. The highest peak in the residual difference map [1.35 e Å-3] is at a distance of 0.97 Å from the O4 atom.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku,2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately down the a axis. H-bonds are shown as dashed lines.
2-butyl-1-(4-carboxybenzyl)-5-[(E)-2-carboxy-3-(thiophen-2-yl)prop- 1-enyl]-1H-imidazol-3-ium methanesulfonate top
Crystal data top
C23H25N2O4S+·CH3O3SZ = 2
Mr = 520.60F(000) = 548
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6635 (4) ÅCell parameters from 8503 reflections
b = 12.6935 (7) Åθ = 3.0–27.4°
c = 13.6679 (8) ŵ = 0.25 mm1
α = 112.700 (2)°T = 193 K
β = 101.386 (1)°Platelet, colorless
γ = 96.718 (1)°0.48 × 0.34 × 0.16 mm
V = 1327.97 (12) Å3
Data collection top
Rigaku R-AXIS-RAPID/ZJUG
diffractometer
4689 independent reflections
Radiation source: rotating anode3248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.879, Tmax = 0.961l = 1616
10590 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0839P)2 + 3.6024P]
where P = (Fo2 + 2Fc2)/3
4689 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 1.35 e Å3
12 restraintsΔρmin = 0.62 e Å3
Crystal data top
C23H25N2O4S+·CH3O3Sγ = 96.718 (1)°
Mr = 520.60V = 1327.97 (12) Å3
Triclinic, P1Z = 2
a = 8.6635 (4) ÅMo Kα radiation
b = 12.6935 (7) ŵ = 0.25 mm1
c = 13.6679 (8) ÅT = 193 K
α = 112.700 (2)°0.48 × 0.34 × 0.16 mm
β = 101.386 (1)°
Data collection top
Rigaku R-AXIS-RAPID/ZJUG
diffractometer
4689 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3248 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.961Rint = 0.022
10590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08312 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 0.99Δρmax = 1.35 e Å3
4689 reflectionsΔρmin = 0.62 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.4103 (5)0.4459 (4)0.8655 (3)0.0774 (12)
O71.0612 (4)0.4213 (4)0.3064 (4)0.0925 (14)
O50.7861 (5)0.4244 (5)0.3127 (4)0.0928 (14)
O60.8704 (7)0.2450 (4)0.2308 (5)0.1191 (19)
C240.8490 (8)0.3725 (6)0.1275 (5)0.0821 (17)
H24A0.73480.33680.09060.123*
H24B0.91530.32870.08290.123*
H24C0.87070.45370.13660.123*
O40.3022 (10)0.1534 (7)0.6016 (7)0.165 (3)
S20.89587 (14)0.36913 (11)0.25638 (10)0.0517 (4)
S10.9345 (2)0.2510 (2)0.84615 (15)0.0991 (7)
N10.3712 (4)0.3219 (3)0.4681 (3)0.0437 (8)
N20.5741 (4)0.3570 (3)0.4086 (3)0.0449 (8)
H2A0.63290.36110.36400.054*
O10.6716 (4)0.4864 (4)0.9480 (3)0.0751 (11)
H10.63750.51051.00440.113*
C10.5038 (5)0.3802 (4)0.5597 (3)0.0431 (10)
C30.4180 (5)0.3063 (4)0.3763 (3)0.0443 (10)
C20.6297 (5)0.4018 (4)0.5203 (3)0.0450 (10)
H20.73700.44090.56250.054*
O30.1466 (5)0.0801 (4)0.7013 (4)0.0770 (11)
H30.14720.14120.71160.116*
C40.4876 (5)0.4100 (4)0.6710 (3)0.0473 (10)
H40.39060.43250.68500.057*
C120.2101 (5)0.2783 (4)0.4736 (4)0.0511 (11)
H12A0.13410.24650.39950.061*
H12B0.17160.34360.52330.061*
C50.5937 (6)0.4090 (4)0.7544 (4)0.0499 (11)
C150.1446 (6)0.0995 (4)0.6343 (4)0.0561 (12)
H150.09450.10240.69100.067*
C130.2129 (5)0.1834 (4)0.5152 (4)0.0463 (10)
C60.5533 (6)0.4495 (5)0.8623 (4)0.0552 (12)
C140.1433 (6)0.1868 (4)0.5977 (4)0.0553 (12)
H140.09360.24980.63010.066*
C70.7515 (6)0.3701 (5)0.7518 (4)0.0636 (14)
H7A0.76590.34550.67660.076*
H7B0.84150.43650.80250.076*
C170.2873 (7)0.0043 (5)0.5060 (5)0.0708 (15)
H170.33720.05850.47370.085*
C90.6218 (6)0.1805 (4)0.7697 (4)0.0523 (11)
H90.51120.17350.73740.063*
C80.7559 (7)0.2699 (5)0.7850 (4)0.0625 (14)
C160.2179 (6)0.0083 (4)0.5895 (4)0.0547 (11)
C180.2848 (7)0.0905 (4)0.4692 (5)0.0649 (14)
H180.33280.08670.41150.078*
C200.3160 (6)0.2441 (5)0.2616 (4)0.0629 (13)
H20A0.22650.28430.25300.075*
H20B0.26780.16400.24970.075*
C190.2231 (8)0.0823 (5)0.6307 (6)0.0813 (18)
C100.6885 (12)0.1052 (6)0.8128 (6)0.100 (2)
H100.62270.04000.81300.120*
C220.2867 (9)0.1741 (8)0.0603 (5)0.114 (3)
H22A0.19780.21570.05540.137*
H22B0.23890.09370.04800.137*
C210.3989 (7)0.2353 (6)0.1744 (4)0.0809 (17)
H21A0.44920.31490.18630.097*
H21B0.48600.19230.18040.097*
C110.8466 (12)0.1306 (7)0.8526 (6)0.103 (2)
H110.90400.08530.88170.123*
C230.3652 (14)0.1675 (11)0.0273 (10)0.167 (4)
H23A0.28580.12650.09900.251*
H23B0.45200.12480.02430.251*
H23C0.41020.24660.01710.251*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.070 (2)0.131 (3)0.049 (2)0.048 (2)0.0280 (18)0.042 (2)
O70.048 (2)0.137 (4)0.085 (3)0.002 (2)0.006 (2)0.049 (3)
O50.091 (3)0.141 (4)0.088 (3)0.056 (3)0.056 (2)0.066 (3)
O60.170 (5)0.078 (3)0.125 (4)0.013 (3)0.024 (4)0.071 (3)
C240.096 (4)0.108 (5)0.060 (3)0.030 (4)0.025 (3)0.049 (3)
O40.186 (4)0.158 (3)0.180 (4)0.050 (3)0.067 (3)0.089 (3)
S20.0486 (7)0.0683 (8)0.0548 (7)0.0151 (6)0.0172 (5)0.0407 (6)
S10.0965 (13)0.1373 (17)0.0840 (12)0.0633 (12)0.0275 (10)0.0554 (12)
N10.046 (2)0.054 (2)0.043 (2)0.0174 (17)0.0175 (16)0.0288 (17)
N20.049 (2)0.057 (2)0.0415 (19)0.0199 (17)0.0198 (16)0.0274 (17)
O10.073 (2)0.110 (3)0.0413 (19)0.031 (2)0.0161 (18)0.028 (2)
C10.050 (2)0.048 (2)0.039 (2)0.018 (2)0.0169 (19)0.0216 (19)
C30.050 (2)0.051 (2)0.041 (2)0.019 (2)0.0165 (19)0.025 (2)
C20.051 (2)0.050 (2)0.038 (2)0.016 (2)0.0135 (19)0.0209 (19)
O30.090 (3)0.078 (3)0.084 (3)0.020 (2)0.028 (2)0.053 (2)
C40.055 (3)0.054 (3)0.042 (2)0.022 (2)0.019 (2)0.025 (2)
C120.046 (2)0.064 (3)0.056 (3)0.016 (2)0.018 (2)0.036 (2)
C50.056 (3)0.060 (3)0.046 (3)0.022 (2)0.021 (2)0.029 (2)
C150.062 (3)0.063 (3)0.056 (3)0.016 (2)0.028 (2)0.032 (2)
C130.041 (2)0.054 (3)0.047 (2)0.009 (2)0.0128 (19)0.024 (2)
C60.065 (3)0.072 (3)0.044 (3)0.030 (3)0.022 (2)0.033 (2)
C140.063 (3)0.058 (3)0.061 (3)0.026 (2)0.031 (2)0.031 (2)
C70.061 (3)0.095 (4)0.058 (3)0.032 (3)0.027 (2)0.046 (3)
C170.084 (4)0.059 (3)0.091 (4)0.031 (3)0.052 (3)0.035 (3)
C90.064 (3)0.049 (3)0.052 (3)0.022 (2)0.019 (2)0.026 (2)
C80.077 (3)0.088 (4)0.040 (3)0.047 (3)0.028 (2)0.032 (3)
C160.054 (3)0.048 (3)0.066 (3)0.011 (2)0.019 (2)0.027 (2)
C180.078 (4)0.063 (3)0.072 (3)0.024 (3)0.045 (3)0.033 (3)
C200.060 (3)0.085 (4)0.041 (3)0.016 (3)0.011 (2)0.026 (3)
C190.095 (4)0.062 (3)0.118 (5)0.044 (3)0.055 (4)0.049 (4)
C100.137 (7)0.075 (4)0.093 (5)0.026 (5)0.044 (5)0.033 (4)
C220.103 (5)0.170 (8)0.045 (3)0.005 (5)0.016 (3)0.029 (4)
C210.082 (4)0.104 (5)0.045 (3)0.008 (3)0.014 (3)0.024 (3)
C110.151 (7)0.104 (5)0.089 (5)0.075 (6)0.044 (5)0.060 (4)
C230.168 (5)0.173 (5)0.158 (5)0.032 (3)0.045 (3)0.067 (3)
Geometric parameters (Å, º) top
O2—C61.245 (6)C15—C161.378 (7)
O7—S21.414 (4)C15—C141.381 (6)
O5—S21.421 (4)C15—H150.9500
O6—S21.455 (4)C13—C141.370 (6)
C24—S21.747 (5)C13—C181.388 (7)
C24—H24A0.9800C14—H140.9500
C24—H24B0.9800C7—C81.509 (7)
C24—H24C0.9800C7—H7A0.9900
O4—C191.191 (8)C7—H7B0.9900
S1—C111.668 (8)C17—C181.369 (7)
S1—C81.698 (5)C17—C161.378 (7)
N1—C31.343 (5)C17—H170.9500
N1—C11.398 (5)C9—C101.423 (9)
N1—C121.468 (5)C9—C81.448 (7)
N2—C31.334 (5)C9—H90.9500
N2—C21.365 (5)C16—C191.465 (7)
N2—H2A0.8800C18—H180.9500
O1—C61.277 (6)C20—C211.484 (7)
O1—H10.8400C20—H20A0.9900
C1—C21.353 (6)C20—H20B0.9900
C1—C41.459 (6)C10—C111.320 (10)
C3—C201.482 (6)C10—H100.9500
C2—H20.9500C22—C211.506 (8)
O3—C191.268 (7)C22—C231.470 (12)
O3—H30.8400C22—H22A0.9900
C4—C51.320 (6)C22—H22B0.9900
C4—H40.9500C21—H21A0.9900
C12—C131.518 (6)C21—H21B0.9900
C12—H12A0.9900C11—H110.9500
C12—H12B0.9900C23—H23A0.9800
C5—C61.491 (6)C23—H23B0.9800
C5—C71.509 (6)C23—H23C0.9800
S2—C24—H24A109.5C8—C7—C5111.0 (4)
S2—C24—H24B109.5C8—C7—H7A109.4
H24A—C24—H24B109.5C5—C7—H7A109.4
S2—C24—H24C109.5C8—C7—H7B109.4
H24A—C24—H24C109.5C5—C7—H7B109.4
H24B—C24—H24C109.5H7A—C7—H7B108.0
O7—S2—O5116.2 (3)C18—C17—C16120.4 (5)
O7—S2—O6109.4 (3)C18—C17—H17119.8
O5—S2—O6112.5 (3)C16—C17—H17119.8
O7—S2—C24107.5 (3)C10—C9—C8106.3 (5)
O5—S2—C24106.6 (3)C10—C9—H9126.9
O6—S2—C24103.8 (3)C8—C9—H9126.9
C11—S1—C892.4 (4)C9—C8—C7127.8 (4)
C3—N1—C1109.3 (3)C9—C8—S1112.1 (4)
C3—N1—C12126.4 (4)C7—C8—S1120.0 (4)
C1—N1—C12124.1 (3)C15—C16—C17119.0 (4)
C3—N2—C2110.5 (3)C15—C16—C19120.4 (5)
C3—N2—H2A124.7C17—C16—C19120.7 (5)
C2—N2—H2A124.7C17—C18—C13120.9 (5)
C6—O1—H1109.5C17—C18—H18119.6
C2—C1—N1106.1 (4)C13—C18—H18119.6
C2—C1—C4132.7 (4)C3—C20—C21115.9 (4)
N1—C1—C4121.2 (4)C3—C20—H20A108.3
N2—C3—N1106.7 (4)C21—C20—H20A108.3
N2—C3—C20126.8 (4)C3—C20—H20B108.3
N1—C3—C20126.6 (4)C21—C20—H20B108.3
C1—C2—N2107.3 (4)H20A—C20—H20B107.4
C1—C2—H2126.3O4—C19—O3121.1 (7)
N2—C2—H2126.3O4—C19—C16120.6 (7)
C19—O3—H3109.5O3—C19—C16118.3 (5)
C5—C4—C1126.8 (4)C11—C10—C9116.6 (7)
C5—C4—H4116.6C11—C10—H10121.7
C1—C4—H4116.6C9—C10—H10121.7
N1—C12—C13110.8 (3)C21—C22—C23113.8 (7)
N1—C12—H12A109.5C21—C22—H22A108.8
C13—C12—H12A109.5C23—C22—H22A108.8
N1—C12—H12B109.5C21—C22—H22B108.8
C13—C12—H12B109.5C23—C22—H22B108.8
H12A—C12—H12B108.1H22A—C22—H22B107.7
C4—C5—C6116.9 (4)C22—C21—C20112.9 (5)
C4—C5—C7126.8 (4)C22—C21—H21A109.0
C6—C5—C7116.4 (4)C20—C21—H21A109.0
C16—C15—C14120.5 (4)C22—C21—H21B109.0
C16—C15—H15119.7C20—C21—H21B109.0
C14—C15—H15119.7H21A—C21—H21B107.8
C14—C13—C18118.6 (4)C10—C11—S1112.7 (6)
C14—C13—C12120.9 (4)C10—C11—H11123.7
C18—C13—C12120.5 (4)S1—C11—H11123.7
O2—C6—O1123.5 (4)C22—C23—H23A109.5
O2—C6—C5120.0 (4)C22—C23—H23B109.5
O1—C6—C5116.5 (4)H23A—C23—H23B109.5
C13—C14—C15120.6 (4)C22—C23—H23C109.5
C13—C14—H14119.7H23A—C23—H23C109.5
C15—C14—H14119.7H23B—C23—H23C109.5
C3—N1—C1—C21.7 (5)C16—C15—C14—C130.9 (8)
C12—N1—C1—C2177.7 (4)C4—C5—C7—C8120.2 (5)
C3—N1—C1—C4179.3 (4)C6—C5—C7—C859.3 (6)
C12—N1—C1—C44.7 (6)C10—C9—C8—C7178.9 (5)
C2—N2—C3—N12.1 (5)C10—C9—C8—S10.0 (5)
C2—N2—C3—C20177.6 (4)C5—C7—C8—C930.1 (7)
C1—N1—C3—N22.3 (5)C5—C7—C8—S1151.1 (4)
C12—N1—C3—N2178.2 (4)C11—S1—C8—C90.7 (4)
C1—N1—C3—C20177.3 (4)C11—S1—C8—C7178.3 (4)
C12—N1—C3—C201.5 (7)C14—C15—C16—C171.2 (8)
N1—C1—C2—N20.4 (5)C14—C15—C16—C19178.2 (5)
C4—C1—C2—N2177.6 (4)C18—C17—C16—C150.7 (9)
C3—N2—C2—C11.1 (5)C18—C17—C16—C19178.7 (6)
C2—C1—C4—C539.5 (8)C16—C17—C18—C130.2 (9)
N1—C1—C4—C5143.6 (5)C14—C13—C18—C170.5 (8)
C3—N1—C12—C13111.2 (5)C12—C13—C18—C17179.7 (5)
C1—N1—C12—C1364.1 (5)N2—C3—C20—C211.8 (8)
C1—C4—C5—C6176.7 (4)N1—C3—C20—C21177.8 (5)
C1—C4—C5—C73.8 (8)C15—C16—C19—O4171.1 (7)
N1—C12—C13—C14131.3 (5)C17—C16—C19—O48.3 (11)
N1—C12—C13—C1849.5 (6)C15—C16—C19—O36.2 (9)
C4—C5—C6—O223.4 (7)C17—C16—C19—O3174.4 (6)
C7—C5—C6—O2156.2 (5)C8—C9—C10—C111.0 (8)
C4—C5—C6—O1156.8 (5)C23—C22—C21—C20178.2 (8)
C7—C5—C6—O123.6 (7)C3—C20—C21—C22178.4 (6)
C18—C13—C14—C150.0 (7)C9—C10—C11—S11.6 (9)
C12—C13—C14—C15179.2 (4)C8—S1—C11—C101.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.881.862.697 (5)158
O1—H1···O2i0.841.802.628 (5)171
O3—H3···O6ii0.841.782.597 (5)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H25N2O4S+·CH3O3S
Mr520.60
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.6635 (4), 12.6935 (7), 13.6679 (8)
α, β, γ (°)112.700 (2), 101.386 (1), 96.718 (1)
V3)1327.97 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.48 × 0.34 × 0.16
Data collection
DiffractometerRigaku R-AXIS-RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.879, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10590, 4689, 3248
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.225, 0.99
No. of reflections4689
No. of parameters318
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.62

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku,2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.881.862.697 (5)158
O1—H1···O2i0.841.802.628 (5)171
O3—H3···O6ii0.841.782.597 (5)162
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

Acknowledgements

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).

References

First citationBandi, P. R., Kura, R. R., Rapolu, R. R., Dasari, M. R. & Medabalimi, P. R. R. (2010). US Patent No. 20100166850.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHillaert, S., Beer, T. R. M., Beer, J. O. & Bossche, W. (2003). J. Chromatogr. A, 984, 135–146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPunzi, H. A. & Punzi, C. F. (2005). Am. J. Hypertens. 18, 93A.  CrossRef Google Scholar
First citationPunzi, H. A., Punzi, C. F. & The Eprosartan Investigation Group (2004). J. Hum. Hypertens. 18, 655–661.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corpporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, J., Venkatesh, G. M., Duddu, S. P. & Grant, D. J. W. (1999). J. Pharm. Sci. 88, 1021–1029.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J. M., Wang, J. P. & Sun, C. R. (2009). Chin. J. Struct. Chem. 28, 1087–1092.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o770-o771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds