supplementary materials


zj2003 scheme

Acta Cryst. (2011). E67, o801-o802    [ doi:10.1107/S1600536811007550 ]

5''-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-5-fluoro-1',1''-dimethylindoline-3-spiro-2'-pyrrolidine-3'-spiro-3''-piperidine-2,4''-dione

J. K. Sundar, B. D. Bala, S. Natarajan, J. Suresh and P. L. N. Lakshman

Abstract top

The piperidine ring of the title compound, C30H26Cl2FN3O2, adopts a twisted chair conformation. The pyrrolidine ring has a twisted envelope structure with the N atom at the flap [displaced by 0.592 (3) Å]. The fluorooxindole, chlorophenyl and chlorobenzylidene groups are planar with r.m.s. deviations of 0.0348, 0.0048 and 0.0048 Å, respectively. The structure is stabilized by intermolecular N-H...O hydrogen bonds.

Comment top

In the family of heterocyclic compounds, nitrogen containing heterocycles especially substituted piperidin-4-ones have considerable importance due to their variety of biological properties such as analgesic (Jerom et al., 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), antimicrobial, bactericidal, fungicidal, herbicidal, anticancer, CNS stimulant and depressant activities (Mobio et al., 1989; Katritzky & Fan, 1990; Ganellin & Spickett, 1965) and antiviral, antitumour (El-Subbagh et al., 2000). Also they are important synthetic intermediates in the preparation of various pharmaceuticals (Wang & Wuorola, 1992) and widely prevalent in natural products such as alkaloids (Angle & Breitenbucher, 1995). Hence, the present X-ray crystallographic study of the title compound has been carried out to determine the conformation of the system.

The piperidine ring of the title compound, C30H26N3O2Cl2F, adopts a twisted chair conformation (C8/C9/C10/C11/N1/C12). Pyrrolidine ring has the twisted envelope structure with N atom at the flap (0.592 (3)Å from the mean plane formed by the atoms C10/C14/C23/C24) and this orientation may be influenced by the intramolecular C23—H23A···O2 hydrogen bond (Table 1).

Fluorooxindole, the chlorophenyl and chlorophenylmethylidine groups are planar as confirmed by thevalues of the r.m.s. deviation (0.0348 Å, 0.0048Å and 0.0048 Å), respectively,from the mean planes of the above groups. Flurooxindole is inclined with the plane of chlorophenyl by 33.99 (2)° and 55.56 (2)° with the mean plane of chlorophenylmethilidine. The sum of the bond angles around N1 atom (334.22°) of the piperidine ring in the molecule is in accordance with the sp2 hybridization. Further, the structure is stabilized by intermolecular N—H···O hydrogen bond and intramolecular C—H···O hydrogen bonds.

Related literature top

For biological applications of 1,4-dihydropyridine derivatives, see: Jerom & Spencer (1988); Perumal et al. (2001); Hagenbach & Gysin (1952); Mobio et al. (1989); Katritzky & Fan (1990); Ganellin & Spickett (1965); El-Subbagh et al. (2000). For their use as synthetic intermediates in the preparation of various pharmaceuticals, see: Wang & Wuorola (1992). For their ocurrence in natural products such as alkaloids, see: Angle & Breitenbucher (1995).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-chlorobenzylidene]tetrahydro-4 (1H)-pyridin-ones (1 mmol), 5-fluoroisatin (1 mmol) and sarcosine in methanol (10 ml) was refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the pure product. The product was dissolved in methonol and allowed to evoporate at room temperature. Transparent, needle-shaped, colourless crystals of small sizes (8 x 2 x 2 mm3)were obtained in a period of about a week. Yield:94%; M.p:224 °C

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.The N-bound H atom is located in a difference Fourier map and its positional parameters were refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram
5''-(4-Chlorobenzylidene)-4'-(4-chlorophenyl)-5-fluoro-1',1''-dimethylindoline- 3-spiro-2'-pyrrolidine-3'-spiro-3''-piperidine-2,4''-dione top
Crystal data top
C30H26Cl2FN3O2F(000) = 1144
Mr = 550.44Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 16.694 (3) Åθ = 2–25°
b = 8.705 (4) ŵ = 0.29 mm1
c = 18.474 (3) ÅT = 293 K
β = 103.27 (4)°Block, colourless
V = 2613.3 (14) Å30.23 × 0.21 × 0.18 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
2891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
graphiteθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 019
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.936, Tmax = 0.950l = 2121
5427 measured reflections3 standard reflections every 60 min
4581 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.726P]
where P = (Fo2 + 2Fc2)/3
4581 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C30H26Cl2FN3O2V = 2613.3 (14) Å3
Mr = 550.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.694 (3) ŵ = 0.29 mm1
b = 8.705 (4) ÅT = 293 K
c = 18.474 (3) Å0.23 × 0.21 × 0.18 mm
β = 103.27 (4)°
Data collection top
Nonius MACH3
diffractometer
2891 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.936, Tmax = 0.950θmax = 25.0°
5427 measured reflections3 standard reflections every 60 min
4581 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.33 e Å3
4581 reflectionsAbsolute structure: ?
349 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15668 (5)0.37573 (8)0.72167 (3)0.0831 (2)
Cl20.36431 (5)0.61752 (10)0.00265 (4)0.0919 (3)
N10.05322 (10)0.13961 (19)0.27962 (9)0.0464 (4)
O10.07132 (10)0.52336 (18)0.24553 (8)0.0613 (4)
C80.03804 (12)0.3538 (2)0.33420 (11)0.0419 (5)
F10.32228 (9)0.21475 (19)0.36806 (8)0.0808 (5)
N30.05530 (14)0.1040 (2)0.21711 (12)0.0603 (6)
C120.02137 (13)0.2314 (2)0.34544 (11)0.0473 (5)
H12A0.00600.16410.38540.057*
H12B0.06710.27970.36080.057*
C90.03991 (12)0.4022 (2)0.25700 (11)0.0435 (5)
O20.05184 (11)0.0289 (2)0.12232 (10)0.0724 (5)
N20.08528 (11)0.2056 (2)0.11641 (9)0.0524 (5)
C200.12500 (14)0.0377 (3)0.26298 (13)0.0511 (6)
C150.12839 (13)0.1176 (2)0.24568 (11)0.0448 (5)
C50.04926 (13)0.3405 (3)0.50697 (12)0.0521 (6)
H50.00010.30120.47890.063*
C100.00213 (12)0.2963 (2)0.19252 (11)0.0420 (5)
C110.07990 (13)0.2364 (2)0.21440 (11)0.0459 (5)
H11A0.11250.32160.22560.055*
H11B0.11320.17760.17390.055*
C40.10401 (13)0.4086 (2)0.47049 (11)0.0451 (5)
C170.25566 (14)0.1306 (3)0.33291 (13)0.0570 (6)
C250.10489 (14)0.4406 (2)0.08703 (11)0.0475 (5)
C280.26410 (16)0.5504 (3)0.03646 (13)0.0592 (6)
C240.01808 (13)0.3837 (3)0.11635 (11)0.0487 (5)
H240.01750.47460.12410.058*
C140.05642 (13)0.1582 (2)0.18243 (11)0.0464 (5)
C160.19562 (13)0.2034 (3)0.28079 (12)0.0503 (5)
H160.20020.30680.26960.060*
C260.12471 (17)0.5925 (3)0.09730 (13)0.0588 (6)
H260.08360.65900.12140.071*
C10.13761 (16)0.3869 (3)0.62522 (12)0.0577 (6)
C30.17622 (15)0.4682 (3)0.51528 (13)0.0566 (6)
H30.21380.51690.49290.068*
C70.09049 (13)0.4260 (3)0.38996 (12)0.0468 (5)
H70.12370.49930.37470.056*
C210.01022 (16)0.0003 (3)0.16971 (14)0.0549 (6)
C180.25207 (16)0.0208 (3)0.35107 (13)0.0630 (7)
H180.29420.06490.38680.076*
C60.06523 (15)0.3289 (3)0.58344 (12)0.0562 (6)
H60.02740.28230.60640.067*
C230.01550 (14)0.2770 (3)0.06552 (12)0.0587 (6)
H23A0.02510.20100.04290.070*
H23B0.03300.33370.02670.070*
C190.18501 (16)0.1081 (3)0.31565 (13)0.0611 (6)
H190.18090.21130.32730.073*
C300.16798 (15)0.3466 (3)0.04937 (13)0.0584 (6)
H300.15660.24440.04100.070*
C290.24709 (15)0.4006 (3)0.02398 (14)0.0625 (7)
H290.28840.33580.00140.075*
C270.20378 (18)0.6475 (3)0.07271 (14)0.0682 (7)
H270.21590.74950.08070.082*
C20.19346 (16)0.4570 (3)0.59173 (14)0.0636 (7)
H20.24230.49640.62030.076*
C130.11773 (16)0.0373 (3)0.29201 (14)0.0723 (8)
H13A0.09630.02710.33420.087*
H13B0.13680.02550.24880.087*
H13C0.16270.09700.30120.087*
C220.12756 (17)0.0882 (3)0.08263 (14)0.0740 (8)
H22A0.09020.00550.06470.089*
H22B0.17370.04970.11910.089*
H22C0.14650.13220.04190.089*
H1N0.0456 (17)0.198 (3)0.2158 (15)0.082 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1218 (6)0.0714 (4)0.0461 (3)0.0034 (4)0.0010 (4)0.0014 (3)
Cl20.0795 (5)0.1069 (6)0.0911 (5)0.0369 (5)0.0232 (4)0.0095 (5)
N10.0503 (10)0.0402 (10)0.0473 (10)0.0088 (8)0.0085 (8)0.0028 (8)
O10.0828 (12)0.0474 (9)0.0543 (10)0.0240 (9)0.0167 (8)0.0025 (8)
C80.0432 (11)0.0390 (11)0.0447 (11)0.0002 (10)0.0124 (9)0.0023 (10)
F10.0623 (9)0.0975 (12)0.0743 (9)0.0097 (9)0.0015 (7)0.0029 (9)
N30.0734 (15)0.0359 (11)0.0717 (14)0.0051 (11)0.0170 (11)0.0048 (11)
C120.0506 (12)0.0472 (13)0.0442 (12)0.0026 (11)0.0113 (10)0.0036 (10)
C90.0455 (12)0.0373 (12)0.0486 (12)0.0024 (10)0.0127 (10)0.0008 (10)
O20.0784 (12)0.0592 (11)0.0723 (11)0.0169 (10)0.0025 (10)0.0181 (9)
N20.0589 (11)0.0572 (12)0.0434 (10)0.0002 (10)0.0162 (9)0.0012 (9)
C200.0606 (15)0.0426 (12)0.0537 (13)0.0031 (12)0.0205 (12)0.0020 (11)
C150.0500 (12)0.0434 (12)0.0432 (11)0.0005 (11)0.0154 (10)0.0017 (10)
C50.0487 (13)0.0594 (15)0.0467 (13)0.0006 (11)0.0077 (10)0.0037 (11)
C100.0478 (12)0.0371 (11)0.0413 (11)0.0046 (10)0.0104 (9)0.0008 (9)
C110.0487 (12)0.0422 (12)0.0459 (12)0.0047 (10)0.0086 (10)0.0018 (10)
C40.0475 (12)0.0403 (12)0.0463 (12)0.0032 (10)0.0082 (10)0.0038 (10)
C170.0491 (14)0.0706 (17)0.0517 (13)0.0016 (13)0.0125 (11)0.0044 (13)
C250.0652 (14)0.0380 (12)0.0396 (11)0.0039 (11)0.0125 (11)0.0057 (9)
C280.0681 (16)0.0607 (16)0.0515 (14)0.0134 (14)0.0193 (12)0.0090 (12)
C240.0575 (13)0.0437 (12)0.0442 (12)0.0103 (11)0.0101 (10)0.0011 (10)
C140.0555 (13)0.0399 (12)0.0442 (12)0.0048 (10)0.0124 (10)0.0037 (10)
C160.0539 (13)0.0502 (13)0.0493 (12)0.0017 (12)0.0173 (11)0.0004 (11)
C260.0792 (17)0.0440 (13)0.0509 (13)0.0030 (13)0.0103 (12)0.0024 (11)
C10.0786 (17)0.0429 (13)0.0457 (12)0.0062 (13)0.0019 (12)0.0018 (11)
C30.0594 (15)0.0506 (13)0.0575 (15)0.0081 (12)0.0087 (12)0.0037 (12)
C70.0472 (12)0.0440 (12)0.0508 (13)0.0016 (10)0.0142 (10)0.0016 (10)
C210.0652 (16)0.0441 (14)0.0570 (14)0.0068 (12)0.0172 (13)0.0107 (12)
C180.0652 (16)0.0706 (18)0.0539 (14)0.0174 (14)0.0151 (12)0.0086 (13)
C60.0616 (15)0.0574 (15)0.0500 (13)0.0031 (12)0.0137 (12)0.0013 (12)
C230.0654 (15)0.0668 (16)0.0437 (12)0.0009 (13)0.0123 (11)0.0007 (12)
C190.0769 (17)0.0476 (14)0.0632 (15)0.0096 (14)0.0250 (13)0.0059 (13)
C300.0679 (16)0.0395 (13)0.0615 (14)0.0006 (12)0.0015 (12)0.0005 (11)
C290.0621 (16)0.0540 (15)0.0657 (15)0.0020 (13)0.0029 (13)0.0061 (13)
C270.095 (2)0.0495 (15)0.0602 (15)0.0153 (15)0.0188 (15)0.0031 (13)
C20.0702 (16)0.0525 (14)0.0582 (15)0.0077 (13)0.0056 (13)0.0046 (12)
C130.0798 (18)0.0659 (17)0.0662 (16)0.0311 (15)0.0068 (14)0.0128 (14)
C220.0839 (19)0.0835 (19)0.0605 (15)0.0118 (16)0.0286 (14)0.0052 (14)
Geometric parameters (Å, °) top
Cl1—C11.739 (2)C17—C161.375 (3)
Cl2—C281.746 (3)C25—C261.386 (3)
N1—C121.450 (3)C25—C301.388 (3)
N1—C111.454 (3)C25—C241.510 (3)
N1—C131.456 (3)C28—C291.366 (3)
O1—C91.218 (2)C28—C271.367 (4)
C8—C71.345 (3)C24—C231.517 (3)
C8—C91.494 (3)C24—H240.9800
C8—C121.502 (3)C14—C211.572 (3)
F1—C171.365 (3)C16—H160.9300
N3—C211.358 (3)C26—C271.379 (3)
N3—C201.397 (3)C26—H260.9300
N3—H1N0.84 (3)C1—C61.372 (3)
C12—H12A0.9700C1—C21.374 (4)
C12—H12B0.9700C3—C21.379 (3)
C9—C101.542 (3)C3—H30.9300
O2—C211.219 (3)C7—H70.9300
N2—C231.457 (3)C18—C191.387 (3)
N2—C221.461 (3)C18—H180.9300
N2—C141.469 (3)C6—H60.9300
C20—C191.371 (3)C23—H23A0.9700
C20—C151.393 (3)C23—H23B0.9700
C15—C161.380 (3)C19—H190.9300
C15—C141.513 (3)C30—C291.379 (3)
C5—C61.380 (3)C30—H300.9300
C5—C41.387 (3)C29—H290.9300
C5—H50.9300C27—H270.9300
C10—C111.537 (3)C2—H20.9300
C10—C241.568 (3)C13—H13A0.9600
C10—C141.587 (3)C13—H13B0.9600
C11—H11A0.9700C13—H13C0.9600
C11—H11B0.9700C22—H22A0.9600
C4—C31.396 (3)C22—H22B0.9600
C4—C71.461 (3)C22—H22C0.9600
C17—C181.364 (4)
C12—N1—C11111.05 (16)C15—C14—C21100.68 (17)
C12—N1—C13110.34 (18)N2—C14—C10102.30 (16)
C11—N1—C13112.83 (17)C15—C14—C10119.19 (17)
C7—C8—C9116.53 (19)C21—C14—C10112.84 (17)
C7—C8—C12124.05 (19)C17—C16—C15117.6 (2)
C9—C8—C12119.41 (17)C17—C16—H16121.2
C21—N3—C20112.2 (2)C15—C16—H16121.2
C21—N3—H1N123.9 (19)C27—C26—C25121.8 (2)
C20—N3—H1N123.5 (19)C27—C26—H26119.1
N1—C12—C8113.68 (17)C25—C26—H26119.1
N1—C12—H12A108.8C6—C1—C2120.7 (2)
C8—C12—H12A108.8C6—C1—Cl1119.1 (2)
N1—C12—H12B108.8C2—C1—Cl1120.16 (19)
C8—C12—H12B108.8C2—C3—C4122.0 (2)
H12A—C12—H12B107.7C2—C3—H3119.0
O1—C9—C8120.96 (19)C4—C3—H3119.0
O1—C9—C10121.42 (19)C8—C7—C4130.8 (2)
C8—C9—C10117.59 (18)C8—C7—H7114.6
C23—N2—C22114.55 (18)C4—C7—H7114.6
C23—N2—C14106.82 (16)O2—C21—N3125.6 (2)
C22—N2—C14116.15 (19)O2—C21—C14126.4 (2)
C19—C20—C15122.4 (2)N3—C21—C14107.9 (2)
C19—C20—N3128.1 (2)C17—C18—C19119.3 (2)
C15—C20—N3109.5 (2)C17—C18—H18120.3
C16—C15—C20119.3 (2)C19—C18—H18120.3
C16—C15—C14130.7 (2)C1—C6—C5119.1 (2)
C20—C15—C14109.71 (19)C1—C6—H6120.4
C6—C5—C4122.3 (2)C5—C6—H6120.4
C6—C5—H5118.8N2—C23—C24102.47 (17)
C4—C5—H5118.8N2—C23—H23A111.3
C11—C10—C9105.19 (16)C24—C23—H23A111.3
C11—C10—C24114.90 (17)N2—C23—H23B111.3
C9—C10—C24110.89 (17)C24—C23—H23B111.3
C11—C10—C14110.74 (16)H23A—C23—H23B109.2
C9—C10—C14111.11 (16)C20—C19—C18118.0 (2)
C24—C10—C14104.14 (16)C20—C19—H19121.0
N1—C11—C10107.35 (16)C18—C19—H19121.0
N1—C11—H11A110.2C29—C30—C25121.8 (2)
C10—C11—H11A110.2C29—C30—H30119.1
N1—C11—H11B110.2C25—C30—H30119.1
C10—C11—H11B110.2C28—C29—C30119.2 (2)
H11A—C11—H11B108.5C28—C29—H29120.4
C5—C4—C3116.5 (2)C30—C29—H29120.4
C5—C4—C7125.05 (19)C28—C27—C26119.2 (2)
C3—C4—C7118.4 (2)C28—C27—H27120.4
C18—C17—F1118.6 (2)C26—C27—H27120.4
C18—C17—C16123.5 (2)C1—C2—C3119.3 (2)
F1—C17—C16118.0 (2)C1—C2—H2120.4
C26—C25—C30117.0 (2)C3—C2—H2120.4
C26—C25—C24120.2 (2)N1—C13—H13A109.5
C30—C25—C24122.8 (2)N1—C13—H13B109.5
C29—C28—C27121.0 (2)H13A—C13—H13B109.5
C29—C28—Cl2118.6 (2)N1—C13—H13C109.5
C27—C28—Cl2120.4 (2)H13A—C13—H13C109.5
C25—C24—C23116.08 (18)H13B—C13—H13C109.5
C25—C24—C10115.64 (17)N2—C22—H22A109.5
C23—C24—C10104.34 (17)N2—C22—H22B109.5
C25—C24—H24106.7H22A—C22—H22B109.5
C23—C24—H24106.7N2—C22—H22C109.5
C10—C24—H24106.7H22A—C22—H22C109.5
N2—C14—C15110.68 (17)H22B—C22—H22C109.5
N2—C14—C21111.43 (17)
C11—N1—C12—C846.9 (2)C24—C10—C14—N215.56 (19)
C13—N1—C12—C8172.82 (19)C11—C10—C14—C1598.0 (2)
C7—C8—C12—N1162.6 (2)C9—C10—C14—C1518.5 (2)
C9—C8—C12—N118.2 (3)C24—C10—C14—C15137.96 (18)
C7—C8—C9—O117.5 (3)C11—C10—C14—C2119.7 (2)
C12—C8—C9—O1161.9 (2)C9—C10—C14—C21136.27 (18)
C7—C8—C9—C10164.77 (18)C24—C10—C14—C21104.29 (19)
C12—C8—C9—C1015.9 (3)C18—C17—C16—C150.3 (3)
C21—N3—C20—C19178.2 (2)F1—C17—C16—C15179.82 (18)
C21—N3—C20—C150.7 (3)C20—C15—C16—C171.4 (3)
C19—C20—C15—C162.2 (3)C14—C15—C16—C17174.3 (2)
N3—C20—C15—C16175.45 (19)C30—C25—C26—C271.3 (3)
C19—C20—C15—C14176.5 (2)C24—C25—C26—C27178.5 (2)
N3—C20—C15—C141.1 (2)C5—C4—C3—C21.5 (3)
O1—C9—C10—C11139.5 (2)C7—C4—C3—C2179.8 (2)
C8—C9—C10—C1138.2 (2)C9—C8—C7—C4179.3 (2)
O1—C9—C10—C2414.7 (3)C12—C8—C7—C40.0 (4)
C8—C9—C10—C24163.01 (17)C5—C4—C7—C818.4 (4)
O1—C9—C10—C14100.6 (2)C3—C4—C7—C8163.5 (2)
C8—C9—C10—C1481.7 (2)C20—N3—C21—O2177.5 (2)
C12—N1—C11—C1074.2 (2)C20—N3—C21—C142.2 (3)
C13—N1—C11—C10161.35 (19)N2—C14—C21—O260.5 (3)
C9—C10—C11—N166.3 (2)C15—C14—C21—O2177.9 (2)
C24—C10—C11—N1171.46 (16)C10—C14—C21—O254.0 (3)
C14—C10—C11—N153.8 (2)N2—C14—C21—N3114.7 (2)
C6—C5—C4—C31.2 (3)C15—C14—C21—N32.7 (2)
C6—C5—C4—C7179.3 (2)C10—C14—C21—N3130.82 (19)
C26—C25—C24—C23138.5 (2)F1—C17—C18—C19179.7 (2)
C30—C25—C24—C2341.7 (3)C16—C17—C18—C190.2 (4)
C26—C25—C24—C1098.8 (2)C2—C1—C6—C50.5 (4)
C30—C25—C24—C1081.1 (3)Cl1—C1—C6—C5178.68 (18)
C11—C10—C24—C2518.4 (3)C4—C5—C6—C10.2 (4)
C9—C10—C24—C25100.7 (2)C22—N2—C23—C24176.68 (19)
C14—C10—C24—C25139.74 (18)C14—N2—C23—C2446.6 (2)
C11—C10—C24—C23110.3 (2)C25—C24—C23—N2162.38 (18)
C9—C10—C24—C23130.57 (18)C10—C24—C23—N233.9 (2)
C14—C10—C24—C2311.0 (2)C15—C20—C19—C181.7 (3)
C23—N2—C14—C15166.58 (18)N3—C20—C19—C18175.5 (2)
C22—N2—C14—C1564.2 (2)C17—C18—C19—C200.5 (3)
C23—N2—C14—C2182.3 (2)C26—C25—C30—C290.8 (3)
C22—N2—C14—C2146.9 (3)C24—C25—C30—C29179.1 (2)
C23—N2—C14—C1038.6 (2)C27—C28—C29—C300.9 (4)
C22—N2—C14—C10167.77 (18)Cl2—C28—C29—C30179.04 (18)
C16—C15—C14—N257.8 (3)C25—C30—C29—C280.3 (4)
C20—C15—C14—N2115.70 (19)C29—C28—C27—C260.4 (4)
C16—C15—C14—C21175.7 (2)Cl2—C28—C27—C26178.46 (18)
C20—C15—C14—C212.3 (2)C25—C26—C27—C280.8 (4)
C16—C15—C14—C1060.4 (3)C6—C1—C2—C30.2 (4)
C20—C15—C14—C10126.16 (19)Cl1—C1—C2—C3178.34 (19)
C11—C10—C14—N2139.59 (16)C4—C3—C2—C10.9 (4)
C9—C10—C14—N2103.89 (18)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O20.972.372.968 (3)119
C23—H23A···O20.972.583.162 (3)119
C24—H24···O10.982.262.787 (3)113
N3—H1N···O1i0.84 (3)2.50 (3)3.288 (3)157 (3)
Symmetry codes: (i) x, y−1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O20.972.372.968 (3)119
C23—H23A···O20.972.583.162 (3)119
C24—H24···O10.982.262.787 (3)113
N3—H1N···O1i0.84 (3)2.50 (3)3.288 (3)157 (3)
Symmetry codes: (i) x, y−1, z.
Acknowledgements top

JK thanks the UGC for an RFSMS fellowship. SN thanks the CSIR for funding under the Emeritus Scientist Scheme.

references
References top

Angle, S. R. & Breitenbucher, J. G. (1995). Studies in Natural Products Chemistry; Stereoselective Synthesis, edited by Atta-ur-Rahman, Vol. 16, Part J, pp. 453–502. New York: Elsevier.

El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.

Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.

Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.

Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proc. Int. 24, 585–621.