metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,2-Bis(diphenylphosphanyl)ethane- $\kappa^2 P.P'$]{2-[(4-nitrobenzovlmethyl)diphenylphosphanyl]phenyl- $\kappa^2 C, C'$ }palladium(II) trifluoromethanesulfonatedichloromethane-*n*-hexane (1/1/0.5)

Corrado Rizzoli.^a* Kazem Karami^b and Farzaneh **Borzooie**^b

^aDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy, and ^bDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156/83111, Iran

Correspondence e-mail: corrado.rizzoli@unipr.it

Received 25 February 2011; accepted 3 March 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.029; wR factor = 0.076; data-toparameter ratio = 15.2.

In the cation of the title compound, $[Pd(C_{26}H_{19}NO_{3}P) (C_{26}H_{24}P_2)$]CF₃O₃S·CH₂Cl₂·0.5C₆H₁₄, the Pd^{II} atom has a slightly tetrahedrally distorted square-planar coordination geometry. The PdC_3P and PdC_2P_2 five-membered metallacycles adopt envelope and twist conformations, respectively. In the crystal, intermolecular $C-H \cdots O$ hydrogen bonds link cations and anions into a three-dimensional network. The dichloromethane solvent molecule is disordered over three orientations with a site-occupancy ratio of 0.5/0.3/0.2. The *n*hexane solvent molecule has a crystallographically imposed centre of symmetry.

Related literature

For the synthesis and applications as catalysts of cyclopalladated metal complexes, see: Rietling et al. (2002); Aguilar et al. (2008); Dupont et al. (2001); Chen et al. (2009). For orthopalladated α -ketophosphorus ylides complexes reported by our group, see: Karami et al. (2010); Karami, Rizzoli & Salah (2011); Karami, Rizzoli & Borzooie (2011). For related structures, see: Falvello et al. (1998, 1999); Shao et al. (1982).

Experimental

Crystal data

 $[Pd(C_{26}H_{19}NO_{3}P)(C_{26}H_{24}P_{2})]$ -CF₃O₃S·CH₂Cl₂·0.5C₆H₁₄ $M_r = 1206.27$ Monoclinic, $P2_1/n$ a = 12.4063 (7) Åb = 14.2445 (8) Å c = 31.3633 (17) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.872, T_{\max} = 0.955$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.0410529 reflections 691 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C19−H19····O1 ⁱ	0.93	2.54	3.284 (3)	138
C30−H30···O6 ⁱⁱ	0.93	2.55	3.372 (4)	148
$C39-H39B\cdots O6^{iii}$	0.97	2.59	3.309 (4)	131
Symmetry codes: (i) $-x$	+1, -y, -z; (i	i) $x, y - 1, z;$ (i	ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -\frac{1}{2}$	$-z + \frac{1}{2}$.

 $\beta = 91.6675 \ (9)^{\circ}$

Z = 4

V = 5540.2 (5) Å³

Mo $K\alpha$ radiation

 $0.19 \times 0.16 \times 0.10 \ \mathrm{mm}$

62924 measured reflections

10529 independent reflections

8106 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.62 \text{ mm}^{-1}$

T = 294 K

 $R_{\rm int} = 0.036$

14 restraints

 $\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2004).

References

- Aguilar, D., Aragues, M. A., Bielsa, R., Serrano, E., Soler, T., Navarro, R. & Urriolabeitia, E. P. (2008). J. Organomet. Chem. 693, 417-424.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. (2009). Angew. Chem. Int. Ed. 48 5094-5115
- Dupont, J., Pfeffer, M. & Spencer, J. (2001). Eur. J. Inorg. Chem. pp. 1917-1927.
- Falvello, L. R., Fernandez, S., Navarro, R., Rueda, A. & Urriolabeitia, E. P. (1998). Organometallics, 17, 5887-5900.
- Falvello, L. R., Fernandez, S., Navarro, R. & Urriolabeitia, E. P. (1999). Inorg. Chem. 38, 2455-2463.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Karami, K., Büyükgüngör, O. & Dalvand, H. (2010). Transition Met. Chem. 35, 621-626.
- Karami, K., Rizzoli, C. & Borzooie, F. (2011). *Polyhedron*, **30**, 778–784. Karami, K., Rizzoli, C. & Salah, M. M. (2011). *J. Organomet. Chem.* **696**, 940– 945.
- Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Rietling, V., Sirlin, C. & Pfeffer, M. (2002). Chem. Rev. 102, 1731–1770.
- Shao, M., Jin, X., Tang, Y., Huang, Q. & Huang, Y. (1982). Tetrahedron Lett. 23, 5343-5346.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m416-m417 [doi:10.1107/S1600536811008075]

[1,2-Bis(diphenylphosphanyl)ethane- $\kappa^2 P$,P']{2-[(4-nitrobenzoylmethyl)diphenyl-phosphanyl]phenyl- $\kappa^2 C$,C'}palladium(II) trifluoromethanesulfonate-dichloro-methane-*n*-hexane (1/1/0.5)

Corrado Rizzoli, Kazem Karami and Farzaneh Borzooie

S1. Comment

The synthesis and characterization of cyclopalladated metal complexes (Rietling *et al.*, 2002) has attracted considerable attention due to their potential applications in organic synthesis and homogenous catalysis (Aguilar *et al.*, 2008; Dupont *et al.*, 2001; Chen *et al.*, 2009). As a continuation of our ongoing project devoted to the development of new catalysts based on *ortho*-palladated α -ketophosphorus ylides complexes (Karami *et al.*, 2010; Karami, Rizzoli & Salah, 2011; Karami, Rizzoli & Borzooie, 2011), we report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) consists of one mononuclear complex cation, one trifluoromethanesulfonate anion, one disordered dichloromethane molecule and half an n-hexane lying on a centre of symmetry. In the cation (Fig. 2), the palladium(II) atom displays a slightly but not negligibly tetrahedrally distorted square planar coordination geometry, with atoms P2, P3, C1 and C9 displaced from the mean plane through the P_2C_2 core by -0.0061 (6), 0.0055 (6), -0.070 (2) and 0.069 (2) Å, respectively. The distortion from the regular square planar geometry is also indicated by the values of the cis and trans angles subtended at the metal, which range from 83.17 (8) to 100.49 (5)°, and from 175.31 (5) to 175.68 (5)°, respectively. The Pd-C bond lengths involving the aromatic and ylidic carbon atoms (Pd1–C9 = 2.0783 (19) Å; Pd–C1 = 2.1711 (19) Å) are in agreement with those observed in related cyclopalladated complexes (Falvello et al., 1998; Falvello et al., 1999; Karami et al., 2010; Karami, Rizzoli & Salah, 2011; Karami, Rizzoli & Borzooie, 2011). The P1–C1 bond length (1.768 (2) Å) is significantly longer than that observed in the related free ylide (1.711 Å) of formula PPh₃C(H)COPh (Shao et al., 1982). The Pd1...P1 separation is 3.0241 (9) Å. The PdC_3P five-membered metallacycle (Pd1/C9/C14/P1/C1) assumes an envelope conformation, with atom C1 displaced by 1.006 (2) Å from the mean planes of the remaining four atoms, whereas the PdC_2P_2 metallacycle (Pd1/P2/C39/C40/P3) adopts a twist conformation with the local twofold axis passing through the C39-C40 bond and the Pd atom. In the crystal structure (Fig. 3), cations and anions are linked into a three-dimensional network by intermolecular C-H···O hydrogen bonds (Table 1).

S2. Experimental

The title compound was obtained according to the procedure recently reported elsewhere (Karami, Rizzoli & Borzooie, 2011). Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane/*n*-hexane (1:1 v/v) solution at room temperature.

S3. Refinement

All H atoms were placed in calculated positions and refined using a riding model, with C-H = 0.93-0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. The dichloromethane solvent molecule was found to be disordered over three orientations (called *A*, *B*, and *C*) with site-occupancy factors of 1/2, 0.3 and 1/5, respectively. During the refinement, the C–Cl and Cl···Cl distances were constrained to 1.75 (1) and 2.75 (2) Å, respectively, and only the major component of disorder was refined anisotropically. The *n*-hexane molecule, which has crystallographically imposed centre of symmetry, showed rather high displacement ellipsoids, suggesting the presence of disorder. Attempts to model the molecule in terms of disordered contributors were unsuccessful, however. The molecule was therefore anisotropically refined by constraining the C–C bond lengths to 1.54 (1) Å, and the 1–3 C···C separations to 2.52 (2) Å.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only the major component of the disordered dichloromethane molecule is shown. Symmetry code: (i) -x, 1 - y, -z.

Figure 2

The cation of the title compound, showing the labelling scheme adopted. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Figure 3

Crystal packing of the title compound approximately viewed along the *a* axis. Only the major component of the disordered dichloromethane molecule is shown. Hydrogen atoms not involved in intermolecular C—H···O hydrogen bonds (dashed lines) are omitted for clarity.

[1,2-Bis(diphenylphosphanyl)ethane- $\kappa^2 P, P'$]{2-[(4- nitrobenzoylmethyl)diphenylphosphanyl]phenyl- $\kappa^2 C, C'$ }palladium(II) trifluoromethanesulfonate-dichloromethane-*n*-hexane (1/1/0.5)

Crystal data	
$[Pd(C_{26}H_{19}NO_{3}P)]$	Z = 4
$(C_{26}H_{24}P_2)$]CF ₃ O ₃ S·CH ₂ Cl ₂ ·0.5C ₆ H ₁₄	F(000) = 2468
$M_r = 1206.27$	$D_{\rm x} = 1.446 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1226 reflections
a = 12.4063 (7) Å	$\theta = 6.3 - 23.4^{\circ}$
b = 14.2445 (8) Å	$\mu = 0.62 \text{ mm}^{-1}$
c = 31.3633 (17) Å	T = 294 K
$\beta = 91.6675(9)^{\circ}$	Irregular block, yellow
V = 5540.2 (5) Å ³	$0.19 \times 0.16 \times 0.10$ mm
Data collection	
Bruker APEXII CCD	62924 measured reflections
diffractometer	10529 independent reflections
Radiation source: fine-focus sealed tube	8106 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
() scans	$\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADARS: Bruker 2008)	$k = -17 \rightarrow 17$
T = 0.872 T = 0.055	1 - 28 + 28
$I_{\rm min} = 0.072, I_{\rm max} = 0.955$	<i>i</i> - 50-50

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.04 10529 reflections	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.038P)^2]$
691 parameters	where $P = (F_o^2 + 2F_c^2)/3$
14 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pd1	0.756229 (11)	0.147230 (10)	0.131977 (5)	0.03814 (6)	
S1	0.90642 (7)	0.50943 (6)	0.15555 (3)	0.0883 (2)	
P1	0.81951 (4)	0.14269 (4)	0.039724 (17)	0.04289 (13)	
P3	0.57524 (4)	0.14972 (4)	0.152637 (18)	0.04526 (13)	
P2	0.78566 (4)	0.07474 (4)	0.196011 (17)	0.04514 (14)	
01	0.57447 (13)	0.19304 (12)	0.03587 (6)	0.0709 (5)	
O2	0.5578 (3)	0.68752 (18)	0.07768 (10)	0.1340 (10)	
O3	0.4015 (3)	0.6445 (2)	0.06026 (13)	0.1685 (14)	
O4	0.8765 (2)	0.57210 (17)	0.12237 (9)	0.1226 (8)	
O5	0.82523 (18)	0.44856 (18)	0.17003 (8)	0.1183 (8)	
O6	0.9700 (3)	0.5548 (2)	0.18984 (9)	0.1499 (11)	
F1	0.9555 (2)	0.3873 (2)	0.09940 (9)	0.1675 (11)	
F2	1.0418 (2)	0.37281 (17)	0.16085 (10)	0.1651 (11)	
F3	1.08767 (16)	0.47955 (15)	0.11854 (7)	0.1293 (7)	
N1	0.4919 (3)	0.6307 (2)	0.06826 (9)	0.0947 (9)	
C1	0.74213 (16)	0.21915 (14)	0.07104 (6)	0.0428 (5)	
H1	0.7844	0.2770	0.0742	0.051*	
C2	0.63523 (17)	0.24779 (16)	0.05422 (7)	0.0487 (5)	
C3	0.60121 (18)	0.34836 (15)	0.05941 (7)	0.0524 (5)	
C4	0.6672 (2)	0.41801 (17)	0.07639 (9)	0.0697 (7)	
H4	0.7363	0.4030	0.0865	0.084*	
C5	0.6311 (3)	0.51037 (18)	0.07854 (10)	0.0794 (8)	
Н5	0.6762	0.5574	0.0893	0.095*	
C6	0.5308 (3)	0.53044 (19)	0.06495 (9)	0.0731 (7)	
C7	0.4620 (2)	0.4644 (2)	0.04858 (9)	0.0828 (9)	
H7	0.3923	0.4807	0.0397	0.099*	
C8	0.4971 (2)	0.37316 (19)	0.04537 (8)	0.0694 (7)	
H8	0.4513	0.3276	0.0338	0.083*	

C9	0.91717 (15)	0.13543 (13)	0.11614 (6)	0.0398 (5)
C10	1.00786 (17)	0.12915 (15)	0.14348 (7)	0.0502 (5)
H10	0.9988	0.1295	0.1728	0.060*
C11	1.11043 (17)	0.12245 (18)	0.12802 (8)	0.0608 (6)
H11	1.1689	0.1186	0.1472	0.073*
C12	1.12825 (18)	0.12141 (18)	0.08535 (8)	0.0641 (7)
H12	1.1981	0.1167	0.0755	0.077*
C13	1.04155 (18)	0.12737 (16)	0.05688 (7)	0.0545 (6)
H13	1.0521	0.1268	0.0276	0.065*
C14	0.93907 (16)	0.13423 (14)	0.07244 (6)	0.0424 (5)
C15	0.76628 (17)	0.02642 (16)	0.03113 (6)	0.0490 (5)
C16	0.8100 (2)	-0.04862(17)	0.05335 (8)	0.0621 (6)
H16	0.8659	-0.0395	0.0733	0.074*
C17	0.7694 (3)	-0.13839(18)	0.04549(10)	0.0845 (9)
H17	0.7980	-0.1894	0.0604	0.101*
C18	0.6875 (3)	-0.1518(2)	0.01586 (11)	0.0873 (10)
H18	0.6610	-0.2120	0.0108	0.105*
C19	0.6445(2)	-0.0779(2)	-0.00625(9)	0.0789 (8)
H19	0.5893	-0.0877	-0.0264	0.095*
C20	0.68299 (19)	0.0077 (19)	0.00130(7)	0.0618 (6)
H20	0.6531	0.0623	-0.0136	0.074*
C21	0.84920 (18)	0.18697 (18)	-0.01227(7)	0.0545 (6)
C21	0.8883(2)	0.1285(2)	-0.04356(8)	0.0313(0)
С22 H22	0.8063 (2)	0.0643	-0.0384	0.085*
C23	0.0942 0.9187 (2)	0.0045 0.1647 (3)	-0.08236(9)	0.0815 (9)
H23	0.9486	0.1252	-0.1025	0.098*
C24	0.9057 (3)	0.1252 0.2541 (3)	-0.09099(11)	0.090
H24	0.9286	0.2781	-0.1168	0.134*
C25	0.8589(3)	0.3115 (3)	-0.06240(12)	0.1215 (13)
H25	0.8428	0.3732	-0.0699	0.146*
C26	0.8347(3)	0.3732 0.2789(2)	-0.02164(10)	0.1082(12)
H26	0.8090	0.3199	-0.0013	0.130*
C27	0.85865 (19)	-0.03586(15)	0.19613 (7)	0.0533 (6)
C28	0.8165(2)	-0.10762(19)	0.17098(9)	0.0555(0)
H28	0.7543	-0.0974	0.1544	0.086*
C29	0.8663 (3)	-0.1941(2)	0.17036 (11)	0.0857 (9)
H29	0.8370	-0.2422	0.1537	0.103*
C30	0.9574(3)	-0.2089(2)	0 19399 (11)	0.0962 (11)
H30	0.9903	-0.2675	0 1937	0.115*
C31	1.0012 (3)	-0.1393(3)	0.21797(11)	0.1123 (13)
H31	1.0649	-0.1501	0.2336	0.135*
C32	0.9523 (2)	-0.0517(2)	0.21953 (9)	0.0830 (8)
H32	0.9827	-0.0042	0.2363	0.100*
C33	0.84562(17)	0.15069(15)	0.23661(7)	0.0498 (5)
C34	0.8534 (2)	0.1220 (2)	0.27935 (8)	0.0698 (7)
H34	0.8303	0.0625	0.2871	0.084*
C35	0.8953 (2)	0.1821(3)	0.30950 (9)	0.0839 (9)
H35	0.8999	0.1634	0 3379	0.101*
	0.0///	0.100 1	0.0077	0.101

C36	0.9302 (2)	0.2687 (3)	0.29844 (10)	0.0884 (9)	
H36	0.9601	0.3082	0.3192	0.106*	
C37	0.9221 (2)	0.2985 (2)	0.25752 (10)	0.0777 (8)	
H37	0.9457	0.3583	0.2504	0.093*	
C38	0.87898 (18)	0.24007 (17)	0.22645 (8)	0.0581 (6)	
H38	0.8723	0.2611	0.1984	0.070*	
C39	0.65511 (18)	0.04531 (17)	0.21851 (7)	0.0572 (6)	
H39A	0.6257	-0.0108	0.2050	0.069*	
H39B	0.6635	0.0338	0.2489	0.069*	
C40	0.58024 (18)	0.12801 (17)	0.21030 (7)	0.0556 (6)	
H40A	0.6071	0.1831	0.2254	0.067*	
H40B	0.5087	0.1138	0.2202	0.067*	
C41	0.48826(17)	0 25194 (16)	0.14711(7)	0.0513(5)	
C42	0.5253(2)	0.33604 (18)	0.16386(9)	0.0213(2) 0.0713(7)	
H42	0.5942	0 3398	0.1762	0.086*	
C43	0.4591(3)	0.4154(2)	0.16227 (9)	0.0848(9)	
H43	0.4840	0.4720	0.1736	0.102*	
C44	0.3585 (3)	0.4720 0.4099(2)	0.1750 0.14422(11)	0.102 0.0940 (10)	
H44	0.3141	0.4625	0.1439	0.113*	
C45	0.3215(2)	0.4023 0.3273 (2)	0.1459 0.12634(12)	0.0943(10)	
С 1 5 Н45	0.2533	0.3243	0.1203+(12)	0.113*	
C46	0.2555	0.3243 0.24915 (19)	0.1135	0.0733(7)	
U40 H46	0.3620	0.1932	0.12600 ())	0.0755(7)	
C47	0.3020	0.1752 0.04970 (15)	0.13374(7)	0.0484 (5)	
C47	0.49023(10) 0.40033(18)	0.04970(13) 0.02404(18)	0.13374(7) 0.15241(9)	0.0464(3)	
U-10 H/18	0.40035 (10)	0.0610	0.15241(5) 0.1741	0.0009(7)	
C40	0.3752 0.3453(2)	-0.05461(10)	0.1741 0.13046 (0)	0.080	
U49	0.3433 (2)	-0.0603	0.15940 (9)	0.0732 (7)	
C50	0.2799 0.3860 (2)	-0.11248(18)	0.1310	0.088	
C30	0.3800 (2)	-0.11246 (16)	0.10640 (9)	0.0001 (7)	
П30 С51	0.3497 0.4707(2)	-0.1009	0.1001 0.00027 (8)	0.079°	
US1	0.4797 (2)	-0.08830 (18)	0.09037 (8)	0.0002 (7)	
ПЭТ С52	0.5077	-0.1209	0.0094	0.079°	
U52	0.53408 (18)	-0.00800 (10)	0.10223(7)	0.0554 (0)	
H52	0.5985	0.0074	0.0889	0.007^{*}	
C53	1.0025(3)	0.4339(3)	0.13228 (13)	0.1008 (10)	0.50
C54A	0.3163 (9)	0.6/81 (8)	0.2291 (3)	0.194 (5)	0.50
H54A	0.2741	0.7264	0.2427	0.232*	0.50
H54B	0.3922	0.6927	0.2334	0.232*	0.50
CIIA	0.2831(3)	0.6/13(2)	0.1/539(14)	0.1998 (15)	0.50
CI2A	0.28/5 (4)	0.5690 (5)	0.25025 (15)	0.288(3)	0.50
C54B	0.2090 (16)	0.6089 (8)	0.2196 (4)	0.141 (6)*	0.30
H54C	0.2623	0.6138	0.19//	0.170*	0.30
H54D	0.1382	0.6202	0.2067	0.170*	0.30
CIIB	0.2144 (9)	0.4956 (6)	0.2440 (3)	0.295 (5)*	0.30
CI2B	0.2361 (6)	0.6898 (5)	0.2604 (2)	0.198 (2)*	0.30
C54C	0.2675 (17)	0.7357 (9)	0.2117 (4)	0.107 (6)*	0.20
H54E	0.3340	0.7619	0.2013	0.129*	0.20
H54F	0.2060	0.7657	0.1976	0.129*	0.20

Cl1C	0.2632 (13)	0.6113 (9)	0.2074 (5)	0.245 (6)*	0.20
Cl2C	0.2614 (9)	0.7397 (8)	0.2671 (3)	0.207 (4)*	0.20
C55	0.1874 (6)	0.3580 (5)	0.0169 (3)	0.281 (5)	
H55A	0.2628	0.3594	0.0248	0.421*	
H55B	0.1753	0.3134	-0.0057	0.421*	
H55C	0.1467	0.3400	0.0412	0.421*	
C56	0.1529 (5)	0.4517 (5)	0.0023 (2)	0.220 (3)	
H56A	0.1877	0.4664	-0.0241	0.265*	
H56B	0.1758	0.4980	0.0234	0.265*	
C57	0.0311 (5)	0.4582 (4)	-0.0047 (3)	0.221 (4)	
H57A	0.0165	0.4437	-0.0345	0.265*	
H57B	0.0003	0.4074	0.0116	0.265*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.03380 (9)	0.04284 (10)	0.03775 (9)	-0.00153 (7)	0.00029 (6)	-0.00164 (7)
S1	0.0898 (6)	0.0880 (5)	0.0879 (6)	0.0087 (5)	0.0177 (5)	0.0037 (5)
P1	0.0401 (3)	0.0506 (3)	0.0378 (3)	-0.0059(2)	0.0005 (2)	0.0001 (2)
P3	0.0354 (3)	0.0529 (3)	0.0476 (3)	-0.0014 (2)	0.0040 (2)	-0.0047 (3)
P2	0.0459 (3)	0.0482 (3)	0.0414 (3)	-0.0009(2)	0.0010 (2)	0.0032 (2)
01	0.0542 (10)	0.0624 (10)	0.0944 (13)	-0.0030(8)	-0.0271 (9)	-0.0110 (10)
O2	0.193 (3)	0.0650 (16)	0.145 (2)	0.0284 (18)	0.019 (2)	0.0046 (16)
O3	0.173 (3)	0.112 (2)	0.220 (4)	0.076 (2)	-0.017 (3)	-0.022 (2)
O4	0.1203 (19)	0.1035 (18)	0.144 (2)	0.0192 (15)	0.0099 (16)	0.0336 (16)
O5	0.0866 (15)	0.135 (2)	0.135 (2)	-0.0087 (15)	0.0315 (14)	0.0224 (16)
O6	0.186 (3)	0.153 (2)	0.111 (2)	-0.027(2)	0.0091 (19)	-0.0592 (18)
F1	0.154 (2)	0.170 (2)	0.178 (3)	-0.0203 (18)	0.0109 (19)	-0.098(2)
F2	0.143 (2)	0.1191 (17)	0.236 (3)	0.0479 (15)	0.049 (2)	0.0631 (19)
F3	0.0921 (13)	0.1338 (17)	0.165 (2)	-0.0059 (12)	0.0491 (13)	0.0272 (15)
N1	0.120 (3)	0.079 (2)	0.0850 (19)	0.0314 (19)	0.0008 (18)	0.0077 (16)
C1	0.0426 (11)	0.0408 (11)	0.0448 (12)	-0.0048 (9)	-0.0013 (9)	0.0020 (9)
C2	0.0447 (12)	0.0530 (13)	0.0482 (12)	-0.0034 (10)	-0.0035 (10)	0.0043 (10)
C3	0.0539 (13)	0.0559 (14)	0.0472 (13)	0.0003 (11)	-0.0010 (10)	0.0044 (11)
C4	0.0569 (15)	0.0557 (16)	0.096 (2)	0.0003 (12)	-0.0026 (14)	-0.0078 (14)
C5	0.089 (2)	0.0500 (16)	0.099 (2)	0.0038 (15)	0.0033 (17)	-0.0065 (14)
C6	0.099 (2)	0.0605 (17)	0.0601 (16)	0.0193 (16)	0.0048 (15)	0.0053 (13)
C7	0.084 (2)	0.088 (2)	0.0758 (19)	0.0364 (18)	-0.0124 (16)	0.0035 (16)
C8	0.0663 (17)	0.0726 (18)	0.0681 (17)	0.0130 (13)	-0.0174 (13)	-0.0053 (13)
C9	0.0360 (10)	0.0371 (11)	0.0462 (12)	-0.0018 (8)	-0.0006 (9)	-0.0015 (9)
C10	0.0427 (12)	0.0605 (14)	0.0470 (13)	-0.0016 (10)	-0.0025 (10)	-0.0043 (10)
C11	0.0347 (12)	0.0830 (17)	0.0642 (16)	0.0008 (11)	-0.0079 (11)	-0.0086 (13)
C12	0.0335 (12)	0.0918 (19)	0.0674 (17)	-0.0053 (12)	0.0092 (11)	-0.0139 (14)
C13	0.0476 (13)	0.0662 (15)	0.0500 (13)	-0.0069 (11)	0.0083 (11)	-0.0080 (11)
C14	0.0360 (11)	0.0476 (12)	0.0435 (12)	-0.0046 (9)	0.0004 (9)	-0.0022 (9)
C15	0.0489 (12)	0.0590 (14)	0.0394 (12)	-0.0133 (11)	0.0069 (10)	-0.0066 (10)
C16	0.0681 (16)	0.0558 (15)	0.0622 (15)	-0.0101 (12)	0.0007 (12)	-0.0043 (12)
C17	0.113 (3)	0.0540 (17)	0.086 (2)	-0.0182 (16)	0.0076 (19)	-0.0043 (14)

C18	0.092 (2)	0.083 (2)	0.088 (2)	-0.0443 (18)	0.0201 (18)	-0.0323 (18)
C19	0.0768 (19)	0.097 (2)	0.0630 (17)	-0.0370 (17)	0.0086 (14)	-0.0254 (16)
C20	0.0581 (14)	0.0802 (17)	0.0471 (13)	-0.0148 (13)	0.0009 (11)	-0.0107 (12)
C21	0.0491 (13)	0.0673 (15)	0.0473 (13)	-0.0062(12)	0.0043 (10)	0.0060 (12)
C22	0.0755 (18)	0.091 (2)	0.0469 (15)	-0.0106 (15)	0.0085 (13)	-0.0012 (13)
C23	0.0714 (18)	0.123 (3)	0.0512 (16)	-0.0050 (18)	0.0115 (13)	0.0022 (17)
C24	0.114 (3)	0.154 (4)	0.067 (2)	0.022 (3)	0.0348 (19)	0.042 (2)
C25	0.161 (4)	0.100 (3)	0.105 (3)	0.024 (3)	0.047 (3)	0.047 (2)
C26	0.150 (3)	0.088 (2)	0.090 (2)	0.019 (2)	0.061 (2)	0.0298 (18)
C27	0.0638 (15)	0.0481 (13)	0.0483 (13)	0.0064 (11)	0.0064 (11)	0.0051 (10)
C28	0.0780 (18)	0.0604 (16)	0.0767 (18)	-0.0021 (14)	0.0118 (14)	-0.0049 (14)
C29	0.111 (3)	0.0569 (18)	0.090 (2)	-0.0035 (18)	0.029 (2)	-0.0093 (16)
C30	0.145 (3)	0.069 (2)	0.076 (2)	0.039 (2)	0.041 (2)	0.0141 (17)
C31	0.138 (3)	0.115 (3)	0.084 (2)	0.073 (3)	-0.012 (2)	0.006 (2)
C32	0.104 (2)	0.0723 (18)	0.0711 (18)	0.0271 (17)	-0.0163 (17)	-0.0026 (14)
C33	0.0479 (12)	0.0562 (14)	0.0450 (12)	0.0088 (11)	-0.0031 (10)	-0.0020 (10)
C34	0.0757 (18)	0.0842 (19)	0.0491 (15)	0.0040 (14)	-0.0061 (13)	0.0033 (13)
C35	0.094 (2)	0.111 (3)	0.0451 (15)	0.014 (2)	-0.0128 (14)	-0.0116 (16)
C36	0.092 (2)	0.097 (2)	0.075 (2)	0.0012 (19)	-0.0113 (17)	-0.0382 (18)
C37	0.091 (2)	0.0646 (17)	0.077 (2)	-0.0046 (15)	0.0014 (16)	-0.0201 (15)
C38	0.0625 (15)	0.0575 (15)	0.0546 (14)	0.0037 (12)	0.0040 (11)	-0.0075 (12)
C39	0.0560 (14)	0.0681 (16)	0.0477 (13)	-0.0055 (12)	0.0069 (11)	0.0069 (11)
C40	0.0454 (13)	0.0728 (16)	0.0492 (13)	-0.0041 (11)	0.0100 (10)	-0.0038 (11)
C41	0.0444 (12)	0.0579 (14)	0.0522 (13)	0.0032 (11)	0.0103 (10)	-0.0022 (11)
C42	0.0787 (18)	0.0628 (17)	0.0718 (18)	-0.0018 (14)	-0.0072 (14)	-0.0117 (13)
C43	0.115 (3)	0.0577 (17)	0.082 (2)	0.0130 (17)	0.0013 (18)	-0.0129 (14)
C44	0.091 (2)	0.083 (2)	0.108 (3)	0.0334 (19)	0.018 (2)	0.0008 (19)
C45	0.0572 (18)	0.085 (2)	0.141 (3)	0.0117 (16)	0.0014 (18)	0.010 (2)
C46	0.0510 (15)	0.0648 (17)	0.104 (2)	0.0061 (13)	-0.0028 (14)	-0.0014 (15)
C47	0.0409 (12)	0.0489 (12)	0.0554 (13)	-0.0004 (10)	0.0021 (10)	-0.0018 (10)
C48	0.0484 (14)	0.0686 (17)	0.0848 (18)	-0.0083 (12)	0.0186 (13)	-0.0168 (14)
C49	0.0475 (14)	0.0739 (18)	0.099 (2)	-0.0160 (13)	0.0126 (14)	0.0011 (16)
C50	0.0646 (16)	0.0532 (14)	0.0797 (18)	-0.0089 (13)	-0.0098 (14)	-0.0012 (13)
C51	0.0692 (17)	0.0595 (16)	0.0702 (17)	-0.0003 (13)	0.0050 (14)	-0.0128 (13)
C52	0.0503 (13)	0.0614 (15)	0.0548 (14)	-0.0054 (11)	0.0053 (11)	-0.0049 (11)
C53	0.095 (2)	0.085 (2)	0.124 (3)	-0.002 (2)	0.023 (2)	0.008 (2)
C54A	0.122 (9)	0.263 (15)	0.195 (13)	-0.032 (9)	-0.013 (8)	0.081 (13)
Cl1A	0.159 (3)	0.172 (3)	0.267 (4)	-0.043 (2)	-0.016 (3)	0.060 (3)
Cl2A	0.207 (4)	0.462 (9)	0.195 (4)	0.047 (6)	0.012 (3)	0.067 (5)
C55	0.230 (9)	0.196 (8)	0.416 (15)	0.034 (6)	0.002 (9)	-0.029 (8)
C56	0.175 (6)	0.245 (8)	0.241 (8)	-0.032 (6)	-0.006 (5)	-0.001 (6)
C57	0.217 (10)	0.264 (11)	0.179 (6)	-0.084 (8)	-0.020 (6)	0.001 (8)

Geometric parameters (Å, °)

Pd1—C9	2.0783 (19)	C27—C28	1.384 (3)
Pd1—C1	2.1711 (19)	C28—C29	1.378 (4)
Pd1—P2	2.2783 (6)	C28—H28	0.9300

Pd1—P3	2.3554 (6)	C29—C30	1.351 (4)
S1—O4	1.413 (2)	С29—Н29	0.9300
S1—O5	1.414 (2)	C30—C31	1.348 (5)
S1—O6	1.466 (3)	С30—Н30	0.9300
S1—C53	1.777 (4)	C31—C32	1.389 (4)
P1	1.768 (2)	C31—H31	0.9300
P1	1 783 (2)	C32—H32	0.9300
P1C21	1 797 (2)	C_{33} $-C_{38}$	1 379 (3)
P1 C15	1.797(2) 1.800(2)	C_{33} C_{34}	1.377(3)
$P_{1} = C_{13}$	1.000(2) 1.818(2)	C_{33}	1.402(3)
13-041	1.010(2)	C_{24} U_{24}	1.307 (4)
P3	1.819(2)	C34—II34	0.9300
P3-C40	1.834 (2)		1.356 (4)
P2—C33	1.814 (2)	С35—Н35	0.9300
P2-C27	1.817 (2)	C36—C37	1.352 (4)
P2—C39	1.834 (2)	С36—Н36	0.9300
O1—C2	1.218 (2)	C37—C38	1.378 (3)
O2—N1	1.182 (4)	С37—Н37	0.9300
O3—N1	1.159 (4)	С38—Н38	0.9300
F1—C53	1.346 (4)	C39—C40	1.517 (3)
F2—C53	1.332 (4)	С39—Н39А	0.9700
F3—C53	1.324 (4)	С39—Н39В	0.9700
N1—C6	1.512 (4)	C40—H40A	0.9700
C1—C2	1.471 (3)	C40—H40B	0.9700
C1—H1	0.9800	C41—C46	1.378 (3)
C2—C3	1.504 (3)	C41—C42	1.381 (3)
C3—C4	1.383 (3)	C42—C43	1.397 (4)
C3—C8	1 397 (3)	C42—H42	0.9300
C4-C5	1 392 (3)	C43 - C44	1 358 (4)
C4—H4	0.9300	C43 - H43	0.9300
C5C6	1 334 (4)	C44— $C45$	1.376(4)
C5_U5	0.0300	$C_{44} = C_{43}$	0.0300
C6_C7	1.361(A)	C_{44}	1.377(4)
$C_0 = C_1$	1.301(4) 1.275(4)	$C_{45} = C_{40}$	1.377(4)
$C_{1} = C_{0}$	1.575 (4)	C45-H45	0.9300
	0.9300	C46—H46	0.9300
C8—H8	0.9300	C47 - C52	1.381 (3)
C9—C10	1.397 (3)	C47—C48	1.390 (3)
C9—C14	1.405 (3)	C48—C49	1.368 (3)
C10—C11	1.378 (3)	C48—H48	0.9300
C10—H10	0.9300	C49—C50	1.383 (4)
C11—C12	1.363 (3)	C49—H49	0.9300
C11—H11	0.9300	C50—C51	1.352 (3)
C12—C13	1.380 (3)	С50—Н50	0.9300
C12—H12	0.9300	C51—C52	1.378 (3)
C13—C14	1.378 (3)	C51—H51	0.9300
С13—Н13	0.9300	С52—Н52	0.9300
C15—C16	1.379 (3)	C54A—Cl1A	1.726 (8)
C15—C20	1.389 (3)	C54A—Cl2A	1.730 (8)
C16—C17	1.394 (3)	С54А—Н54А	0.9700

C16—H16	0.9300	C54A—H54B	0.9700
C17—C18	1.370 (4)	C54B—Cl2B	1.746 (9)
С17—Н17	0.9300	C54B—Cl1B	1.787 (9)
C18—C19	1.361 (4)	C54B—H54C	0.9700
C18—H18	0.9300	C54B—H54D	0.9700
C19—C20	1.381 (3)	C54C—Cl2C	1.744 (10)
С19—Н19	0.9300	C54C—C11C	1.778 (10)
С20—Н20	0.9300	С54С—Н54Е	0.9700
C21—C26	1.352 (4)	C54C—H54F	0.9700
C21—C22	1.386 (3)	C55—C56	1.472 (6)
C22—C23	1.384 (4)	С55—Н55А	0.9600
С22—Н22	0.9300	С55—Н55В	0.9600
C23—C24	1.310 (4)	С55—Н55С	0.9600
C23—H23	0.9300	C56—C57	1.523 (7)
C24—C25	1.357 (5)	C56—H56A	0.9700
C24—H24	0.9300	C56—H56B	0.9700
$C_{25} = C_{26}$	1 401 (4)	$C57 - C57^{i}$	1 455 (8)
C25—H25	0.9300	C57—H57A	0.9700
C26—H26	0.9300	C57—H57B	0.9700
$C_{27} - C_{32}$	1 375 (3)		0.9700
027 002	1.5 / 5 (5)		
C9—Pd1—C1	83.17 (8)	C30—C29—C28	120.0 (3)
C9—Pd1—P2	92.50 (6)	С30—С29—Н29	120.0
C1—Pd1—P2	175.31 (5)	С28—С29—Н29	120.0
C9—Pd1—P3	175.68 (5)	C31—C30—C29	120.6 (3)
C1—Pd1—P3	100.49 (5)	С31—С30—Н30	119.7
P2—Pd1—P3	83.91 (2)	С29—С30—Н30	119.7
O4—S1—O5	116.71 (16)	C30—C31—C32	120.7 (3)
O4—S1—O6	112.71 (18)	С30—С31—Н31	119.7
O5—S1—O6	114.10 (17)	С32—С31—Н31	119.7
O4—S1—C53	104.18 (18)	C27—C32—C31	119.5 (3)
O5—S1—C53	104.67 (17)	С27—С32—Н32	120.3
O6—S1—C53	102.43 (19)	С31—С32—Н32	120.3
C1—P1—C14	100.26 (9)	C38—C33—C34	118.5 (2)
C1—P1—C21	114.63 (11)	C38—C33—P2	120.54 (17)
C14—P1—C21	110.91 (10)	C34—C33—P2	120.85 (19)
C1—P1—C15	116.56 (10)	C35—C34—C33	119.5 (3)
C14—P1—C15	108.63 (10)	С35—С34—Н34	120.2
C21—P1—C15	105.72 (10)	С33—С34—Н34	120.2
C41—P3—C47	106.47 (10)	C36—C35—C34	120.7 (3)
C41—P3—C40	103.43 (10)	С36—С35—Н35	119.6
C47—P3—C40	101.05 (10)	С34—С35—Н35	119.6
C41—P3—Pd1	123.64 (7)	C37—C36—C35	120.8 (3)
C47—P3—Pd1	114.05 (7)	С37—С36—Н36	119.6
C40—P3—Pd1	105.28 (7)	С35—С36—Н36	119.6
C33—P2—C27	108.75 (10)	C36—C37—C38	119.9 (3)
C33—P2—C39	102.42 (11)	С36—С37—Н37	120.0
C27—P2—C39	104.28 (11)	С38—С37—Н37	120.0

C33—P2—Pd1	113.60(7)	C37—C38—C33	120.5 (2)
C27—P2—Pd1	117.51 (7)	С37—С38—Н38	119.8
C39—P2—Pd1	108.79 (8)	С33—С38—Н38	119.8
O3—N1—O2	126.6 (4)	C40—C39—P2	107.48 (15)
O3—N1—C6	117.0 (4)	С40—С39—Н39А	110.2
02—N1—C6	116.4 (3)	P2-C39-H39A	110.2
C2-C1-P1	118.04 (15)	C40—C39—H39B	110.2
$C_2 - C_1 - Pd_1$	119 69 (14)	P2-C39-H39B	110.2
P1 - C1 - Pd1	99.62 (9)	H39A - C39 - H39B	108.5
C2-C1-H1	106.1	C39—C40—P3	107.53 (15)
P1-C1-H1	106.1	C39—C40—H40A	110.2
Pd1 - C1 - H1	106.1	$P_3 - C_4 - H_4 0 A$	110.2
01-02-01	1221(2)	C_{39} C_{40} H_{40B}	110.2
01 - 02 - 03	122.1(2) 119 31 (19)	P3_C40_H40B	110.2
C1 - C2 - C3	119.51 (19)	H40A - C40 - H40B	108.5
$C_1 = C_2 = C_3$	118.57(17) 118.1(2)	$C_{A6} C_{A1} C_{A2}$	108.5 118.7 (2)
$C_{4} = C_{3} = C_{3}$	110.1(2) 1241(2)	$C_{40} = C_{41} = C_{42}$	110.7(2) 123.30(10)
$C_{4} = C_{3} = C_{2}$	124.1(2) 1178(2)	$C_{40} = C_{41} = 1.5$	123.39(19) 117.04(18)
$C_3 = C_4 = C_5$	117.0(2) 120.6(2)	$C_{42} = C_{41} = 13$	117.94(10)
$C_3 = C_4 = C_3$	120.0 (2)	$C_{41} = C_{42} = C_{43}$	120.0 (3)
$C_5 = C_4 = H_4$	119.7	$C_{41} = C_{42} = H_{42}$	120.0
$C_{5} - C_{4} - 114$	119.7	$C_{43} = C_{42} = C_{42}$	120.0
C6 C5 H5	119.0 (5)	$C_{44} = C_{43} = C_{42}$	120.0(3)
	120.5	$C_{44} = C_{43} = H_{43}$	120.0
C4—C5—H3	120.5	C42 - C43 - H43	120.0
C_{2}	122.8 (3)	C43 - C44 - C43	120.7 (3)
C_{3}	118.5 (3)	C45 C44 H44	119.6
C = C = N I	118.7 (3)	C45-C44-H44	119.6
$C_{0} - C_{1} - C_{8}$	119.0 (3)	C44 - C45 - C46	119.1 (3)
C6-C/-H/	120.5	C44—C45—H45	120.4
C8—C/—H/	120.5	C46—C45—H45	120.4
C7—C8—C3	120.5 (3)	C45-C46-C41	121.5 (3)
C/C8H8	119.7	C45—C46—H46	119.3
C3—C8—H8	119.7	C41—C46—H46	119.3
C10-C9-C14	115.00 (18)	C52—C47—C48	117.5 (2)
C10—C9—Pd1	128.35 (16)	C52—C47—P3	120.37 (16)
C14—C9—Pd1	116.65 (14)	C48—C47—P3	121.90 (17)
C11—C10—C9	121.6 (2)	C49—C48—C47	121.1 (2)
C11—C10—H10	119.2	C49—C48—H48	119.4
C9—C10—H10	119.2	C47—C48—H48	119.4
C12—C11—C10	121.6 (2)	C48—C49—C50	120.5 (2)
C12—C11—H11	119.2	C48—C49—H49	119.8
C10—C11—H11	119.2	С50—С49—Н49	119.8
C11—C12—C13	119.3 (2)	C51—C50—C49	118.7 (2)
C11—C12—H12	120.4	C51—C50—H50	120.7
C13—C12—H12	120.4	C49—C50—H50	120.7
C14—C13—C12	119.0 (2)	C50—C51—C52	121.5 (2)
C14—C13—H13	120.5	C50—C51—H51	119.2
C12—C13—H13	120.5	C52—C51—H51	119.2

C13—C14—C9	123.56 (19)	C51—C52—C47	120.6 (2)
C13—C14—P1	124.16 (16)	С51—С52—Н52	119.7
C9—C14—P1	112.28 (14)	С47—С52—Н52	119.7
C16—C15—C20	119.9 (2)	F3—C53—F2	105.1 (3)
C16—C15—P1	120.01 (17)	F3—C53—F1	109.0 (3)
C20—C15—P1	120.12 (19)	F2—C53—F1	109.5 (3)
C15—C16—C17	119.1 (2)	F3—C53—S1	112.8 (3)
C15—C16—H16	120.4	F2—C53—S1	110.9 (3)
C17—C16—H16	120.4	F1—C53—S1	109.4 (3)
C18—C17—C16	120.3 (3)	Cl1A—C54A—Cl2A	106.1 (6)
C18—C17—H17	119.8	Cl1A—C54A—H54A	110.5
C16—C17—H17	119.8	Cl2A—C54A—H54A	110.5
C19—C18—C17	120.6 (3)	Cl1A—C54A—H54B	110.5
C19—C18—H18	119.7	Cl2A—C54A—H54B	110.5
C17—C18—H18	119.7	H54A—C54A—H54B	108.7
C18—C19—C20	120.0 (3)	Cl2B—C54B—Cl1B	106.2 (8)
C18—C19—H19	120.0	Cl2B—C54B—H54C	110.5
С20—С19—Н19	120.0	Cl1B—C54B—H54C	110.5
C19—C20—C15	120.1 (3)	Cl2B—C54B—H54D	110.5
C19—C20—H20	120.0	Cl1B—C54B—H54D	110.5
C15—C20—H20	120.0	H54C—C54B—H54D	108.7
C26—C21—C22	118.4 (2)	Cl2C—C54C—Cl1C	96.1 (7)
C26—C21—P1	120.5 (2)	Cl2C—C54C—H54E	112.5
C22—C21—P1	121.1 (2)	Cl1C—C54C—H54E	112.5
C23—C22—C21	120.6 (3)	Cl2C—C54C—H54F	112.5
C23—C22—H22	119.7	Cl1C—C54C—H54F	112.5
C21—C22—H22	119.7	H54E—C54C—H54F	110.1
C24—C23—C22	120.6 (3)	С56—С55—Н55А	109.5
С24—С23—Н23	119.7	С56—С55—Н55В	109.5
С22—С23—Н23	119.7	H55A—C55—H55B	109.5
C23—C24—C25	120.1 (3)	С56—С55—Н55С	109.5
C23—C24—H24	119.9	H55A—C55—H55C	109.5
C25—C24—H24	119.9	H55B—C55—H55C	109.5
C24—C25—C26	120.6 (3)	C55—C56—C57	112.2 (6)
С24—С25—Н25	119.7	С55—С56—Н56А	109.2
С26—С25—Н25	119.7	С57—С56—Н56А	109.2
C21—C26—C25	119.3 (3)	С55—С56—Н56В	109.2
С21—С26—Н26	120.3	С57—С56—Н56В	109.2
С25—С26—Н26	120.3	H56A—C56—H56B	107.9
C32—C27—C28	118.8 (2)	C57 ⁱ —C57—C56	123.4 (9)
C32—C27—P2	123.8 (2)	C57 ⁱ —C57—H57A	106.5
C28—C27—P2	117.34 (19)	С56—С57—Н57А	106.5
C29—C28—C27	120.4 (3)	C57 ⁱ —C57—H57B	106.5
C29—C28—H28	119.8	С56—С57—Н57В	106.5
С27—С28—Н28	119.8	H57A—C57—H57B	106.5

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С19—Н19…О1 ^{іі}	0.93	2.54	3.284 (3)	138
С30—Н30…Об ^{ііі}	0.93	2.55	3.372 (4)	148
C39—H39 <i>B</i> ···O6 ^{iv}	0.97	2.59	3.309 (4)	131

Symmetry codes: (ii) -*x*+1, -*y*, -*z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+3/2, *y*-1/2, -*z*+1/2.