metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Oxido-1-naphthaldehyde benzoyl­hydrazonato-κ3N,N′,O)pyridine­copper(II)

aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
*Correspondence e-mail: liyh@cust.edu.cn

(Received 18 March 2011; accepted 25 March 2011; online 31 March 2011)

In the mononuclear title compound, [CuII(C18H12N2O2)(C5H5N)], the CuII ion is coordinated by two O atoms and one N atom from the dianionic tridentate L2− ligand (H2L is 2-hy­droxy-1-naphthaldehyde benzoyl­hydrazide) and one N atom from a pyridine mol­ecule in a CuN2O2 distorted square-planar coordination environment.

Related literature

For the preparation of the Schiff base, see: Qiao et al. (2010[Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.]). For chemically related applications arising from Schiff base compounds, see: Ando et al. (2004[Ando, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237-2244.]); Anford et al. (1998[Anford, J.-D., Vittal, J.-J. & Wang, Y.-M. (1998). Inorg. Chem. 37, 1226-1231.]); Guo et al. (2010[Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.]). For related structures, see: Ali et al. (2004[Ali, H., Khamis, N. A., Basirun, W. J. & Yamin, B. M. (2004). Acta Cryst. E60, m982-m983.]); Sun et al. (2011[Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 746-748.]); Xu et al. (2006[Xu, D.-Y., Liu, Y., Liu, M.-L., Wei, J.-F. & Dou, J.-M. (2006). Acta Cryst. E62, m671-m673.]); Yu et al. (2010[Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139-144.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H12N2O2)(C5H5N)]

  • Mr = 430.94

  • Monoclinic, P 21 /c

  • a = 11.6196 (6) Å

  • b = 8.4254 (4) Å

  • c = 19.6194 (10) Å

  • β = 106.247 (1)°

  • V = 1844.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 185 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.889

  • 8559 measured reflections

  • 3619 independent reflections

  • 2860 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.03

  • 3619 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.8853 (17)
Cu1—N1 1.902 (2)
Cu1—O2 1.9243 (17)
Cu1—N3 2.001 (2)
O1—Cu1—N1 93.17 (8)
O1—Cu1—O2 172.59 (7)
N1—Cu1—O2 81.30 (8)
O1—Cu1—N3 93.65 (8)
N1—Cu1—N3 171.07 (8)
O2—Cu1—N3 92.37 (8)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the chemistry of Schiff base arises from their ability to bind to metal ions (Yu et al., 2010) as well as their antitumor activities and magnetochemistry (Ando et al., 2004; Guo et al., 2010). In fact, with some acylhydrazone ligands, their metal compounds are endowed with significantly improved industrial processes (Anford et al., 1998). We selected the 2-hydroxy-1-naphthaldehyde benzoylhydrazide (H2L) Schiff base ligand to construct coordination polymers with defined geometry, due to its combination of nitrogen and oxygen donor atoms. We report here the preparation and crystal structure of the Schiff base CuII title compound.

The present compound, [CuII(C18H12N2O2)(C5H5N)], together with the atom-numbering scheme, is illustrated in Fig. 1. Selected bond lengths and angles are given in Table 1. The CuII ion is coordinated by two O atoms and one N atom from the dianionic tridentate ligand L2- ligand (H2L is 2-hydroxy-1-naphthaldehyde benzoylhydrazide), and one N atom from a pyridine molecule. The CuII ion adopts a CuN2O2 distorted square-planar coordination environment. The Cu—O and Cu—N bond distances are similar to the corresponding bond distances observed in related compounds (Ali et al., 2004; Xu et al., 2006; Sun et al., 2011). There is no significant deviation of the metal centre from the N2O2 equatorial plane. The maximum displacements from the least-squares plane through N1, N3, O1, and O2 (rms deviation = 0.0895 Å) are 0.096 (1) and -0.094 (1) Å for atoms N1 and O2; Cu1 is -0.013 (1) Å below the mean plane. The coordinated pyridine molecule is almost coplanar with the previous N2O2 plane, the dihedral angle between the mean planes is 7.2 (1)°.

Related literature top

For the preparation of the Schiff base, see: Qiao et al. (2010). For chemically related applications arising from Schiff base compounds, see: Ando et al. (2004); Anford et al. (1998); Guo et al. (2010). For related structures, see: Ali et al. (2004); Sun et al. (2011); Xu et al. (2006); Yu et al. (2010).

Experimental top

The 2-hydroxy-1-naphthaldehyde benzoylhydrazide ligand (H2L) was prepared in a similar manner to the reported procedures (Qiao et al., 2010). The title compound was synthesized by adding pyridine (0.2 mL) to a solution of H2L (0.1 mmol) and Cu(OAc)2 (0.1 mmol) in methanol/dichloromethane (1:1, 20 mL), and the resulting mixture was stirred for about 6 h to afford a green solution. A week later, brown crystals of the title compound were isolated from the solution.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model [C–H = 0.95 Å and Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(2-Oxido-1-naphthaldehyde benzoylhydrazonato-κ3N,N', O)pyridinecopper(II) top
Crystal data top
[Cu(C18H12N2O2)(C5H5N)]F(000) = 884
Mr = 430.94Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9033 reflections
a = 11.6196 (6) Åθ = 4.8–51.9°
b = 8.4254 (4) ŵ = 1.21 mm1
c = 19.6194 (10) ÅT = 185 K
β = 106.247 (1)°Block, brown
V = 1844.03 (16) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
3619 independent reflections
Radiation source: fine-focus sealed tube2860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.849, Tmax = 0.889k = 610
8559 measured reflectionsl = 1824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.0945P]
where P = (Fo2 + 2Fc2)/3
3619 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C18H12N2O2)(C5H5N)]V = 1844.03 (16) Å3
Mr = 430.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6196 (6) ŵ = 1.21 mm1
b = 8.4254 (4) ÅT = 185 K
c = 19.6194 (10) Å0.14 × 0.12 × 0.10 mm
β = 106.247 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
3619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2860 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.889Rint = 0.031
8559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
3619 reflectionsΔρmin = 0.29 e Å3
262 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.86976 (3)0.13588 (4)0.539632 (16)0.02191 (11)
N10.89789 (18)0.1188 (2)0.44895 (11)0.0200 (5)
N20.99966 (18)0.1976 (3)0.44156 (11)0.0216 (5)
N30.86766 (19)0.1483 (2)0.64115 (11)0.0226 (5)
O10.72604 (15)0.0186 (2)0.51138 (9)0.0247 (4)
O21.00963 (15)0.2688 (2)0.55668 (9)0.0238 (4)
C10.7084 (2)0.1291 (3)0.26471 (14)0.0265 (6)
H10.78070.07550.26550.032*
C20.6465 (3)0.2069 (3)0.20399 (14)0.0300 (6)
H20.67620.20460.16350.036*
C30.5411 (3)0.2891 (3)0.20059 (15)0.0306 (6)
H30.49970.34400.15860.037*
C40.4982 (3)0.2894 (3)0.25876 (15)0.0313 (7)
H40.42590.34440.25670.038*
C50.5588 (2)0.2100 (3)0.32154 (14)0.0261 (6)
C60.5135 (2)0.2110 (3)0.38178 (15)0.0295 (6)
H60.44160.26720.37940.035*
C70.5702 (2)0.1339 (3)0.44258 (14)0.0267 (6)
H70.53660.13660.48150.032*
C80.6791 (2)0.0489 (3)0.44957 (13)0.0221 (6)
C90.7276 (2)0.0447 (3)0.39116 (13)0.0205 (5)
C100.6671 (2)0.1266 (3)0.32608 (13)0.0225 (6)
C110.8363 (2)0.0379 (3)0.39455 (13)0.0216 (6)
H110.86580.03330.35410.026*
C121.0481 (2)0.2750 (3)0.50057 (13)0.0213 (6)
C131.1522 (2)0.3790 (3)0.50397 (14)0.0219 (6)
C141.1922 (3)0.4090 (3)0.44463 (15)0.0329 (7)
H141.15370.35970.40060.039*
C151.2877 (3)0.5103 (4)0.44947 (16)0.0385 (7)
H151.31420.53010.40860.046*
C161.3449 (3)0.5828 (3)0.51292 (17)0.0361 (7)
H161.41050.65220.51580.043*
C171.3063 (2)0.5537 (3)0.57197 (16)0.0328 (7)
H171.34550.60320.61580.039*
C181.2107 (2)0.4527 (3)0.56769 (14)0.0262 (6)
H181.18470.43340.60870.031*
C190.9510 (2)0.2352 (3)0.68806 (15)0.0323 (7)
H191.00710.29460.67140.039*
C200.9577 (3)0.2408 (4)0.75936 (15)0.0350 (7)
H201.01760.30270.79110.042*
C210.8762 (3)0.1554 (3)0.78380 (14)0.0313 (7)
H210.87950.15640.83270.038*
C220.7900 (3)0.0686 (4)0.73614 (15)0.0332 (7)
H220.73190.01010.75150.040*
C230.7889 (2)0.0676 (3)0.66537 (14)0.0275 (6)
H230.72940.00670.63280.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02087 (18)0.02664 (19)0.01893 (17)0.00342 (14)0.00672 (13)0.00051 (14)
N10.0180 (11)0.0199 (11)0.0215 (11)0.0023 (9)0.0045 (9)0.0025 (9)
N20.0180 (11)0.0242 (11)0.0227 (11)0.0027 (9)0.0062 (9)0.0032 (9)
N30.0222 (11)0.0258 (12)0.0204 (11)0.0017 (10)0.0069 (9)0.0012 (9)
O10.0248 (10)0.0274 (10)0.0233 (10)0.0047 (8)0.0092 (8)0.0023 (8)
O20.0240 (10)0.0289 (10)0.0201 (9)0.0047 (8)0.0085 (8)0.0025 (8)
C10.0250 (14)0.0242 (14)0.0281 (14)0.0001 (12)0.0037 (12)0.0004 (12)
C20.0352 (16)0.0268 (15)0.0262 (15)0.0026 (13)0.0053 (13)0.0006 (12)
C30.0333 (16)0.0248 (15)0.0277 (15)0.0017 (13)0.0016 (13)0.0075 (12)
C40.0269 (15)0.0256 (15)0.0353 (16)0.0040 (12)0.0011 (13)0.0040 (13)
C50.0266 (15)0.0196 (14)0.0296 (15)0.0009 (11)0.0038 (12)0.0018 (12)
C60.0249 (15)0.0262 (15)0.0367 (17)0.0071 (12)0.0073 (13)0.0012 (13)
C70.0243 (14)0.0267 (15)0.0298 (15)0.0027 (12)0.0086 (12)0.0036 (12)
C80.0223 (13)0.0189 (13)0.0235 (14)0.0012 (11)0.0039 (11)0.0027 (11)
C90.0202 (13)0.0175 (13)0.0217 (13)0.0002 (10)0.0025 (11)0.0018 (10)
C100.0219 (13)0.0178 (13)0.0249 (14)0.0031 (11)0.0018 (11)0.0029 (11)
C110.0248 (14)0.0208 (13)0.0201 (13)0.0033 (11)0.0076 (11)0.0037 (11)
C120.0221 (14)0.0214 (14)0.0208 (13)0.0040 (11)0.0067 (11)0.0038 (11)
C130.0199 (13)0.0195 (13)0.0261 (14)0.0014 (11)0.0061 (11)0.0034 (11)
C140.0372 (17)0.0342 (16)0.0293 (16)0.0103 (13)0.0127 (13)0.0024 (13)
C150.0434 (19)0.0386 (18)0.0400 (18)0.0107 (15)0.0222 (15)0.0020 (14)
C160.0311 (16)0.0264 (15)0.054 (2)0.0115 (13)0.0172 (15)0.0010 (14)
C170.0294 (16)0.0286 (16)0.0384 (17)0.0077 (13)0.0063 (13)0.0087 (13)
C180.0271 (15)0.0243 (14)0.0284 (15)0.0013 (12)0.0096 (12)0.0040 (12)
C190.0306 (16)0.0393 (17)0.0291 (15)0.0132 (14)0.0119 (13)0.0048 (13)
C200.0385 (17)0.0398 (18)0.0264 (15)0.0112 (14)0.0087 (13)0.0066 (13)
C210.0429 (17)0.0316 (16)0.0214 (14)0.0048 (13)0.0120 (13)0.0026 (12)
C220.0374 (17)0.0374 (17)0.0287 (15)0.0117 (14)0.0156 (13)0.0043 (13)
C230.0268 (15)0.0327 (15)0.0235 (14)0.0072 (12)0.0075 (12)0.0031 (12)
Geometric parameters (Å, º) top
Cu1—O11.8853 (17)C8—C91.412 (3)
Cu1—N11.902 (2)C9—C111.428 (3)
Cu1—O21.9243 (17)C9—C101.449 (3)
Cu1—N32.001 (2)C11—H110.9500
N1—C111.300 (3)C12—C131.480 (3)
N1—N21.398 (3)C13—C181.391 (4)
N2—C121.311 (3)C13—C141.392 (4)
N3—C231.331 (3)C14—C151.381 (4)
N3—C191.349 (3)C14—H140.9500
O1—C81.312 (3)C15—C161.379 (4)
O2—C121.300 (3)C15—H150.9500
C1—C21.374 (4)C16—C171.376 (4)
C1—C101.415 (4)C16—H160.9500
C1—H10.9500C17—C181.384 (4)
C2—C31.392 (4)C17—H170.9500
C2—H20.9500C18—H180.9500
C3—C41.367 (4)C19—C201.380 (4)
C3—H30.9500C19—H190.9500
C4—C51.405 (4)C20—C211.378 (4)
C4—H40.9500C20—H200.9500
C5—C61.422 (4)C21—C221.374 (4)
C5—C101.423 (4)C21—H210.9500
C6—C71.356 (4)C22—C231.385 (4)
C6—H60.9500C22—H220.9500
C7—C81.427 (4)C23—H230.9500
C7—H70.9500
O1—Cu1—N193.17 (8)C1—C10—C5116.4 (2)
O1—Cu1—O2172.59 (7)C1—C10—C9124.1 (2)
N1—Cu1—O281.30 (8)C5—C10—C9119.6 (2)
O1—Cu1—N393.65 (8)N1—C11—C9124.8 (2)
N1—Cu1—N3171.07 (8)N1—C11—H11117.6
O2—Cu1—N392.37 (8)C9—C11—H11117.6
C11—N1—N2116.8 (2)O2—C12—N2124.3 (2)
C11—N1—Cu1127.48 (17)O2—C12—C13117.2 (2)
N2—N1—Cu1115.64 (15)N2—C12—C13118.6 (2)
C12—N2—N1108.15 (19)C18—C13—C14118.5 (2)
C23—N3—C19117.9 (2)C18—C13—C12119.5 (2)
C23—N3—Cu1121.99 (18)C14—C13—C12122.0 (2)
C19—N3—Cu1120.08 (17)C15—C14—C13120.3 (3)
C8—O1—Cu1127.16 (16)C15—C14—H14119.9
C12—O2—Cu1110.51 (16)C13—C14—H14119.9
C2—C1—C10121.7 (3)C16—C15—C14120.7 (3)
C2—C1—H1119.2C16—C15—H15119.6
C10—C1—H1119.2C14—C15—H15119.6
C1—C2—C3121.3 (3)C17—C16—C15119.5 (3)
C1—C2—H2119.4C17—C16—H16120.2
C3—C2—H2119.4C15—C16—H16120.2
C4—C3—C2118.8 (3)C16—C17—C18120.2 (3)
C4—C3—H3120.6C16—C17—H17119.9
C2—C3—H3120.6C18—C17—H17119.9
C3—C4—C5121.4 (3)C17—C18—C13120.7 (3)
C3—C4—H4119.3C17—C18—H18119.6
C5—C4—H4119.3C13—C18—H18119.6
C4—C5—C6121.0 (3)N3—C19—C20122.5 (3)
C4—C5—C10120.5 (3)N3—C19—H19118.8
C6—C5—C10118.5 (2)C20—C19—H19118.8
C7—C6—C5121.8 (2)C21—C20—C19119.0 (3)
C7—C6—H6119.1C21—C20—H20120.5
C5—C6—H6119.1C19—C20—H20120.5
C6—C7—C8121.7 (2)C22—C21—C20118.8 (3)
C6—C7—H7119.2C22—C21—H21120.6
C8—C7—H7119.2C20—C21—H21120.6
O1—C8—C9125.6 (2)C21—C22—C23119.1 (3)
O1—C8—C7115.8 (2)C21—C22—H22120.4
C9—C8—C7118.6 (2)C23—C22—H22120.4
C8—C9—C11121.6 (2)N3—C23—C22122.7 (3)
C8—C9—C10119.9 (2)N3—C23—H23118.6
C11—C9—C10118.6 (2)C22—C23—H23118.6

Experimental details

Crystal data
Chemical formula[Cu(C18H12N2O2)(C5H5N)]
Mr430.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)11.6196 (6), 8.4254 (4), 19.6194 (10)
β (°) 106.247 (1)
V3)1844.03 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.849, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
8559, 3619, 2860
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.03
No. of reflections3619
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O11.8853 (17)Cu1—O21.9243 (17)
Cu1—N11.902 (2)Cu1—N32.001 (2)
O1—Cu1—N193.17 (8)O1—Cu1—N393.65 (8)
O1—Cu1—O2172.59 (7)N1—Cu1—N3171.07 (8)
N1—Cu1—O281.30 (8)O2—Cu1—N392.37 (8)
 

Acknowledgements

We thank the project supported by Jilin Provincial Science & Technology Department (20090535) and Changchun University of Science and Technology for financial support.

References

First citationAli, H., Khamis, N. A., Basirun, W. J. & Yamin, B. M. (2004). Acta Cryst. E60, m982–m983.  CSD CrossRef IUCr Journals Google Scholar
First citationAndo, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237–2244.  Web of Science CrossRef CAS Google Scholar
First citationAnford, J.-D., Vittal, J.-J. & Wang, Y.-M. (1998). Inorg. Chem. 37, 1226–1231.  PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationQiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. 47, 746–748.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D.-Y., Liu, Y., Liu, M.-L., Wei, J.-F. & Dou, J.-M. (2006). Acta Cryst. E62, m671–m673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139–144.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds