organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1046

5-(2-Meth­­oxy­phen­yl)-1,3,4-thia­diazol-2-yl 2-meth­­oxy­benzoate hemihydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guanjn@sina.com

(Received 24 February 2011; accepted 19 March 2011; online 7 April 2011)

In the title compound, C17H14N2O4S·0.5H2O, the mol­ecule, with the exception of the two meth­oxy­phenyl groups, is nearly planar with an r.m.s. deviation of 0.0305 Å. The two 2-meth­oxy­phenyl rings make dihedral angles of 4.1 (3) and 2.3 (3)° with the thia­diazole ring. In the crystal, inter­molecular C—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background to 1,3,4-thia­diazole derivatives, see: Matysiak & Opolski (2006[Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483-4489.]). Alireza et al. (2005[Alireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. & Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488-S4492.]). Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903-S1905.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Kurzer (1971[Kurzer, F. (1971). J. Chem. Soc. C, 17, 2927-2931.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O4S·0.5H2O

  • Mr = 356.37

  • Monoclinic, C 2/c

  • a = 29.858 (6) Å

  • b = 14.542 (3) Å

  • c = 7.6710 (15) Å

  • β = 95.19 (3)°

  • V = 3317.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.936, Tmax = 0.978

  • 3108 measured reflections

  • 3050 independent reflections

  • 1881 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.176

  • S = 1.00

  • 3050 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N2i 1.05 (9) 1.81 (9) 2.821 (4) 159 (7)
C11—H11⋯O3ii 0.93 2.50 3.324 (4) 148
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+3].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]; cell refinement: CAD-4 EXPRESS[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives are of great interest because of their chemical and pharmaceutical properties. Some derivatives play a key role in preparing intermediate for anticarcinogen. Recently new derivatives with 1,3,4-thiadiazole nucleus have been synthesized and evaluated for their antiproliferative effect in vitro against the cells of various human tumor cell lines (Matysiak & Opolski, 2006). Some derivatives have effective antibacterial activity. They are of great potential value for killing bacteria (Alireza et al. 2005). In addition, this kind of compounds are known to exhibit diverse biological effects, such as insecticidal activity (Wang et al. 1999).

Herein we report on the crystal structure of the titled compound, (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al. 1987) and angles are within normal ranges. In this structure, there are three rings, ring A (C1/C2/C3/C4/C5/C6), ring B (N1/C7/S/C8/N2) and ring C (C10/C11/C12/C13/C14/C15), all of which are almost planar. Ring B(N1/C7/S/C8/N2) is a planar five-membered ring and the mean deviation from plane is 0.0020 Å. The dihedral angle between ring A and ring B is 4.1 (3)°, ring B and ring C is 2.3 (3)°. In the crystal structure, intermolecular C11—H11···O3 and O1W—H1W···N2 hydrogen bonds (Table 1.) link the molecules to form network structure (Fig. 2), in which they may be effective for the stabilization of the structure.

Related literature top

For general background to 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006). Alireza et al. (2005). Wang et al. (1999). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Kurzer (1971).

Experimental top

3-Methoxy-phthalic anhydride(8 mmol) and 2-(2-methoxyphenyl)-5-hydroxy-1,3,4-thiadiazol(8 mmol) were added in ethanol(50 ml) (Kurzer, 1971). The mixture was refluxed for 5 h. Reactions were monitored by thin-layer chromatography (TLC) with visualization by ultraviolet light and then the solvent was totally evaporated. Then the white power was obtained. The solid was recrystallized from tetrahydrofuran to give the compound (I) (m.p. 520 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a mixed solution of chloroform and tetrahydrofuran.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x =1. 2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate intermolecular C—H···O and O—H···N hydrogen bonds.
5-(2-Methoxyphenyl)-1,3,4-thiadiazol-2-yl 2-methoxybenzoate hemihydrate top
Crystal data top
C17H14N2O4S·0.5H2OF(000) = 1464
Mr = 356.37Dx = 1.407 Mg m3
Monoclinic, C2/cMelting point: 520 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.858 (6) ÅCell parameters from 25 reflections
b = 14.542 (3) Åθ = 9–13°
c = 7.6710 (15) ŵ = 0.22 mm1
β = 95.19 (3)°T = 293 K
V = 3317.1 (12) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1881 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 035
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.936, Tmax = 0.978l = 99
3108 measured reflections3 standard reflections every 200 reflections
3050 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
3050 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H14N2O4S·0.5H2OV = 3317.1 (12) Å3
Mr = 356.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.858 (6) ŵ = 0.22 mm1
b = 14.542 (3) ÅT = 293 K
c = 7.6710 (15) Å0.30 × 0.20 × 0.10 mm
β = 95.19 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1881 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.936, Tmax = 0.9783 standard reflections every 200 reflections
3108 measured reflections intensity decay: 1%
3050 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.41 e Å3
3050 reflectionsΔρmin = 0.28 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05152 (13)0.3419 (3)0.6081 (4)0.0711 (11)
H10.02700.31100.64710.085*
C20.04737 (17)0.3882 (4)0.4474 (5)0.0932 (16)
H20.01950.39070.38270.112*
C30.08311 (19)0.4293 (3)0.3852 (5)0.0898 (14)
H30.08000.45700.27550.108*
C40.12303 (15)0.4305 (3)0.4795 (4)0.0698 (11)
H40.14720.46070.43630.084*
C50.12879 (12)0.3875 (2)0.6401 (4)0.0525 (9)
C60.09271 (11)0.3426 (2)0.7089 (4)0.0490 (8)
C70.09536 (10)0.2968 (2)0.8806 (4)0.0441 (7)
C80.10712 (11)0.2309 (3)1.1613 (5)0.0540 (9)
C90.16054 (10)0.2020 (2)1.4126 (4)0.0438 (7)
C100.16644 (9)0.1570 (2)1.5889 (3)0.0385 (7)
C110.20815 (11)0.1655 (2)1.6793 (4)0.0527 (8)
H110.23020.19891.62880.063*
C120.21841 (13)0.1272 (3)1.8389 (5)0.0630 (10)
H120.24690.13501.89660.076*
C130.18718 (14)0.0778 (3)1.9137 (5)0.0707 (11)
H130.19450.05032.02200.085*
C140.14490 (13)0.0674 (2)1.8324 (4)0.0597 (10)
H140.12350.03361.88610.072*
C150.13365 (10)0.1075 (2)1.6690 (4)0.0419 (7)
C160.20649 (14)0.4248 (3)0.6754 (6)0.1006 (16)
H16A0.21140.39350.56870.151*
H16B0.23230.41730.75820.151*
H16C0.20170.48910.65170.151*
C170.05776 (12)0.0530 (3)1.6602 (5)0.0806 (13)
H17A0.06730.00861.68950.121*
H17B0.03100.05101.58110.121*
H17C0.05170.08511.76490.121*
N10.06100 (9)0.2548 (2)0.9303 (3)0.0558 (8)
N20.06703 (10)0.2169 (2)1.0882 (4)0.0720 (9)
O10.16829 (8)0.38751 (17)0.7453 (3)0.0615 (7)
O20.11766 (6)0.19761 (15)1.3039 (3)0.0518 (6)
O30.19112 (7)0.24147 (19)1.3498 (3)0.0691 (8)
O40.09264 (7)0.10003 (17)1.5783 (3)0.0561 (6)
S0.14064 (3)0.29401 (7)1.03358 (11)0.0554 (3)
O1W0.00000.1206 (3)0.25000.1159 (19)
H1W0.019 (3)0.159 (6)0.167 (12)0.40 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (3)0.091 (3)0.048 (2)0.003 (2)0.0013 (19)0.009 (2)
C20.102 (4)0.126 (4)0.048 (2)0.029 (3)0.017 (2)0.006 (3)
C30.134 (4)0.093 (4)0.043 (2)0.019 (3)0.009 (3)0.021 (2)
C40.120 (3)0.055 (2)0.0386 (19)0.004 (2)0.028 (2)0.0050 (17)
C50.077 (2)0.045 (2)0.0388 (17)0.0061 (17)0.0212 (17)0.0022 (15)
C60.058 (2)0.058 (2)0.0316 (15)0.0035 (16)0.0110 (14)0.0026 (15)
C70.0462 (17)0.0501 (19)0.0380 (16)0.0056 (15)0.0142 (13)0.0003 (14)
C80.0469 (19)0.061 (2)0.056 (2)0.0099 (17)0.0134 (16)0.0026 (18)
C90.0421 (16)0.0516 (19)0.0399 (16)0.0055 (15)0.0158 (13)0.0057 (15)
C100.0419 (16)0.0449 (18)0.0302 (14)0.0043 (14)0.0117 (12)0.0022 (13)
C110.0518 (19)0.063 (2)0.0444 (18)0.0056 (17)0.0107 (15)0.0064 (16)
C120.060 (2)0.075 (3)0.053 (2)0.014 (2)0.0012 (18)0.0072 (19)
C130.094 (3)0.069 (3)0.048 (2)0.013 (2)0.001 (2)0.0129 (19)
C140.087 (3)0.052 (2)0.0433 (18)0.007 (2)0.0264 (19)0.0063 (16)
C150.0541 (17)0.0398 (17)0.0337 (15)0.0006 (15)0.0149 (14)0.0012 (13)
C160.099 (3)0.110 (4)0.100 (3)0.052 (3)0.049 (3)0.003 (3)
C170.071 (2)0.099 (3)0.077 (3)0.038 (2)0.031 (2)0.006 (2)
N10.0557 (17)0.074 (2)0.0391 (15)0.0111 (15)0.0085 (13)0.0099 (14)
N20.068 (2)0.090 (3)0.0583 (19)0.0133 (19)0.0061 (16)0.0060 (18)
O10.0687 (16)0.0657 (17)0.0538 (14)0.0200 (13)0.0250 (13)0.0021 (12)
O20.0355 (11)0.0463 (13)0.0756 (16)0.0102 (10)0.0167 (11)0.0032 (12)
O30.0611 (15)0.100 (2)0.0479 (14)0.0212 (14)0.0167 (11)0.0271 (13)
O40.0523 (13)0.0682 (16)0.0502 (13)0.0190 (12)0.0183 (11)0.0020 (11)
S0.0537 (5)0.0621 (6)0.0523 (5)0.0108 (4)0.0158 (4)0.0026 (4)
O1W0.083 (3)0.086 (3)0.187 (6)0.0000.060 (3)0.000
Geometric parameters (Å, º) top
C1—C61.392 (5)C10—C151.401 (4)
C1—C21.401 (5)C11—C121.355 (4)
C1—H10.9300C11—H110.9300
C2—C31.347 (6)C12—C131.346 (5)
C2—H20.9300C12—H120.9300
C3—C41.338 (5)C13—C141.365 (5)
C3—H30.9300C13—H130.9300
C4—C51.378 (5)C14—C151.396 (4)
C4—H40.9300C14—H140.9300
C5—O11.367 (4)C15—O41.357 (4)
C5—C61.403 (4)C16—O11.412 (4)
C6—C71.472 (4)C16—H16A0.9600
C7—N11.282 (4)C16—H16B0.9600
C7—S1.709 (3)C16—H16C0.9600
C8—O21.212 (4)C17—O41.437 (4)
C8—N21.291 (4)C17—H17A0.9600
C8—S1.726 (4)C17—H17B0.9600
C9—O31.214 (3)C17—H17C0.9600
C9—O21.465 (4)N1—N21.328 (4)
C9—C101.499 (4)O1W—H1W1.05 (8)
C10—C111.375 (4)
C6—C1—C2119.2 (4)C10—C11—H11118.7
C6—C1—H1120.4C13—C12—C11119.7 (4)
C2—C1—H1120.4C13—C12—H12120.1
C3—C2—C1121.0 (4)C11—C12—H12120.1
C3—C2—H2119.5C12—C13—C14120.8 (3)
C1—C2—H2119.5C12—C13—H13119.6
C4—C3—C2120.7 (4)C14—C13—H13119.6
C4—C3—H3119.7C13—C14—C15120.1 (3)
C2—C3—H3119.7C13—C14—H14119.9
C3—C4—C5120.7 (4)C15—C14—H14119.9
C3—C4—H4119.6O4—C15—C14124.1 (3)
C5—C4—H4119.6O4—C15—C10116.8 (3)
O1—C5—C4124.0 (3)C14—C15—C10119.2 (3)
O1—C5—C6115.4 (3)O1—C16—H16A109.5
C4—C5—C6120.6 (4)O1—C16—H16B109.5
C1—C6—C5117.7 (3)H16A—C16—H16B109.5
C1—C6—C7117.8 (3)O1—C16—H16C109.5
C5—C6—C7124.5 (3)H16A—C16—H16C109.5
N1—C7—C6120.2 (3)H16B—C16—H16C109.5
N1—C7—S112.9 (2)O4—C17—H17A109.5
C6—C7—S126.9 (2)O4—C17—H17B109.5
O2—C8—N2118.9 (3)H17A—C17—H17B109.5
O2—C8—S127.5 (3)O4—C17—H17C109.5
N2—C8—S113.6 (3)H17A—C17—H17C109.5
O3—C9—O2116.4 (3)H17B—C17—H17C109.5
O3—C9—C10122.2 (3)C7—N1—N2115.0 (3)
O2—C9—C10121.3 (2)C8—N2—N1112.0 (3)
C11—C10—C15117.5 (3)C5—O1—C16117.3 (3)
C11—C10—C9116.3 (3)C8—O2—C9129.7 (3)
C15—C10—C9126.2 (3)C15—O4—C17118.0 (3)
C12—C11—C10122.6 (3)C7—S—C886.50 (16)
C12—C11—H11118.7
C6—C1—C2—C33.4 (7)C13—C14—C15—O4179.4 (3)
C1—C2—C3—C43.2 (8)C13—C14—C15—C100.9 (5)
C2—C3—C4—C51.9 (7)C11—C10—C15—O4179.8 (3)
C3—C4—C5—O1178.6 (4)C9—C10—C15—O40.4 (4)
C3—C4—C5—C60.8 (6)C11—C10—C15—C141.6 (4)
C2—C1—C6—C52.3 (5)C9—C10—C15—C14178.2 (3)
C2—C1—C6—C7177.3 (3)C6—C7—N1—N2179.3 (3)
O1—C5—C6—C1179.0 (3)S—C7—N1—N20.5 (4)
C4—C5—C6—C11.0 (5)O2—C8—N2—N1177.8 (3)
O1—C5—C6—C70.5 (5)S—C8—N2—N10.1 (4)
C4—C5—C6—C7178.4 (3)C7—N1—N2—C80.4 (5)
C1—C6—C7—N12.8 (5)C4—C5—O1—C167.5 (5)
C5—C6—C7—N1177.7 (3)C6—C5—O1—C16174.6 (3)
C1—C6—C7—S175.8 (3)N2—C8—O2—C9179.1 (3)
C5—C6—C7—S3.7 (5)S—C8—O2—C91.8 (5)
O3—C9—C10—C112.2 (5)O3—C9—O2—C83.4 (5)
O2—C9—C10—C11179.9 (3)C10—C9—O2—C8178.8 (3)
O3—C9—C10—C15177.7 (3)C14—C15—O4—C174.1 (5)
O2—C9—C10—C150.1 (5)C10—C15—O4—C17177.4 (3)
C15—C10—C11—C120.9 (5)N1—C7—S—C80.4 (3)
C9—C10—C11—C12179.0 (3)C6—C7—S—C8179.1 (3)
C10—C11—C12—C130.7 (6)O2—C8—S—C7177.3 (4)
C11—C12—C13—C141.4 (6)N2—C8—S—C70.2 (3)
C12—C13—C14—C150.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N2i1.05 (9)1.81 (9)2.821 (4)159 (7)
C11—H11···O3ii0.932.503.324 (4)148
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+3.

Experimental details

Crystal data
Chemical formulaC17H14N2O4S·0.5H2O
Mr356.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)29.858 (6), 14.542 (3), 7.6710 (15)
β (°) 95.19 (3)
V3)3317.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.936, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
3108, 3050, 1881
Rint0.025
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.176, 1.00
No. of reflections3050
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N2i1.05 (9)1.81 (9)2.821 (4)159 (7)
C11—H11···O3ii0.932.503.324 (4)148
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+3.
 

Acknowledgements

The authors would like to thank Professor Hua-qin Wang of Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationAlireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. & Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488–S4492.
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationKurzer, F. (1971). J. Chem. Soc. C, 17, 2927–2931.  CrossRef
First citationMatysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483–4489.  Web of Science CrossRef PubMed CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903–S1905.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1046
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds