organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1191

3,3′-Di­nitro-4,4′-bi­pyridine

aDepartment of Chemical Engineering, Henan Polytechnic Institute, Nanyang 473009, People's Republic of China, bPingdingshan Research Institute of Functional Materials, Pingdingshan 467000, People's Republic of China, and cDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: shiluslu@sina.com

(Received 7 April 2011; accepted 15 April 2011; online 22 April 2011)

In the title compound, C10H6N4O4, the pyridine rings are oriented at a dihedral angle of 67.8 (1)°. The O-atom pairs are trans, each displaced by a similar distance [average = 0.2331 (2) Å] out of the attached pyridine ring plane. In the crystal, inter­molecular C—H⋯O and C—H⋯N inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For applications of the title compound, see: Katritzky et al. (2006[Katritzky, A. R., Akhmedov, N. G., Güven, A., Doskocz, J., Akhmedova, R. G., Majumder, S. & Hall, C. D. (2006). J. Mol. Struct. 787, 131-147.]). For the synthesis, see: Kaczmarek et al. (1980[Kaczmarek, L., Becalski, A. & Nantka-Namirski, P. (1980). Pol. J. Chem. 54, 1585-1590.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N4O4

  • Mr = 246.19

  • Orthorhombic, P n a 21

  • a = 9.3580 (19) Å

  • b = 17.815 (4) Å

  • c = 6.3870 (13) Å

  • V = 1064.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.988

  • 2089 measured reflections

  • 1071 independent reflections

  • 679 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 1.00

  • 1071 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.93 2.40 3.234 (8) 149
C3—H3A⋯N2ii 0.93 2.62 3.440 (8) 147
C10—H10A⋯O2iii 0.93 2.57 3.392 (6) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, 3,3'-dinitro-4,4'-bipyridine is an important intermediate (Katritzky et al., 2006) and we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, and the intermolecular C—H···O and C—H···N hydrogen bonds (Table 1) result in the molecular packing in three dimension (Fig. 2.). The bond lengths and angles are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the dihedral angle of the pyridine rings [(C1-C5/N1) and (C6-C10/N2)] is 67.8 (1)°.

In the crystal structure, intermolecular C—H···O and C—H···N interactions link the molecules.

Related literature top

For applications of the title compound, see: Katritzky et al. (2006). For the synthesis, see: Kaczmarek et al. (1980). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by the method of Ullmann reaction reported in literature (Kaczmarek et al. (1980). The crystals were obtained by dissolving (I) (0.2 g, 0.81 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down c-axis. Hydrogen bonds are shown as dashed lines.
3,3'-dinitro-4,4'-bipyridine top
Crystal data top
C10H6N4O4F(000) = 504
Mr = 246.19Dx = 1.536 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 9.3580 (19) Åθ = 9–13°
b = 17.815 (4) ŵ = 0.12 mm1
c = 6.3870 (13) ÅT = 293 K
V = 1064.8 (4) Å3Block, yellow
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
679 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 2121
Tmin = 0.976, Tmax = 0.988l = 70
2089 measured reflections3 standard reflections every 200 reflections
1071 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
1071 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C10H6N4O4V = 1064.8 (4) Å3
Mr = 246.19Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.3580 (19) ŵ = 0.12 mm1
b = 17.815 (4) ÅT = 293 K
c = 6.3870 (13) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
679 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.976, Tmax = 0.9883 standard reflections every 200 reflections
2089 measured reflections intensity decay: 1%
1071 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1071 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6207 (7)0.3139 (2)0.2435 (8)0.0921 (18)
C10.6194 (6)0.1867 (3)0.3674 (10)0.0729 (17)
H1B0.58900.15320.46990.088*
O10.8746 (5)0.2549 (2)0.2244 (9)0.1052 (17)
N20.8363 (5)0.0689 (2)0.2211 (10)0.0747 (15)
O20.8568 (5)0.1406 (2)0.1756 (6)0.0897 (15)
C20.5853 (7)0.2620 (3)0.3771 (10)0.093 (2)
H2B0.53110.27720.49160.111*
N30.8294 (4)0.2037 (2)0.1255 (7)0.0600 (12)
O30.5400 (5)0.1011 (2)0.1225 (8)0.0950 (16)
C30.7017 (6)0.2911 (3)0.0879 (10)0.0721 (18)
H3A0.73330.32690.00750.087*
N40.6084 (5)0.0441 (3)0.1202 (8)0.0665 (12)
O40.5987 (6)0.0001 (3)0.2657 (8)0.1145 (18)
C40.7423 (5)0.2184 (2)0.0572 (8)0.0491 (12)
C50.7021 (5)0.1625 (2)0.1959 (8)0.0461 (11)
C60.7473 (5)0.0821 (2)0.1935 (8)0.0504 (13)
C70.7029 (5)0.0261 (3)0.0504 (9)0.0518 (13)
C80.7463 (6)0.0465 (3)0.0707 (11)0.0690 (16)
H8A0.71210.08190.02380.083*
C90.8758 (6)0.0164 (3)0.3553 (9)0.0685 (15)
H9A0.93540.03100.46450.082*
C100.8368 (5)0.0574 (3)0.3476 (8)0.0545 (13)
H10A0.87120.09080.44750.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.150 (5)0.066 (3)0.060 (3)0.037 (3)0.023 (4)0.003 (3)
C10.097 (4)0.061 (3)0.061 (4)0.012 (3)0.036 (4)0.018 (3)
O10.108 (4)0.090 (3)0.118 (4)0.002 (3)0.039 (3)0.016 (3)
N20.077 (3)0.052 (3)0.094 (4)0.004 (2)0.006 (3)0.025 (3)
O20.123 (4)0.074 (3)0.073 (3)0.015 (2)0.055 (3)0.002 (2)
C20.141 (6)0.090 (4)0.046 (3)0.039 (4)0.054 (4)0.007 (4)
N30.077 (3)0.047 (2)0.056 (3)0.005 (2)0.030 (3)0.003 (2)
O30.104 (3)0.071 (2)0.109 (4)0.009 (2)0.049 (4)0.010 (3)
C30.101 (5)0.048 (3)0.067 (4)0.014 (3)0.023 (4)0.015 (3)
N40.062 (3)0.071 (3)0.066 (3)0.009 (2)0.013 (3)0.009 (3)
O40.115 (4)0.133 (4)0.095 (3)0.016 (3)0.050 (3)0.038 (4)
C40.057 (3)0.049 (2)0.041 (3)0.011 (2)0.006 (2)0.004 (2)
C50.043 (2)0.056 (3)0.039 (3)0.005 (2)0.007 (3)0.001 (2)
C60.058 (3)0.043 (2)0.050 (3)0.006 (2)0.004 (3)0.011 (2)
C70.047 (3)0.049 (3)0.060 (3)0.004 (2)0.003 (3)0.000 (3)
C80.078 (4)0.054 (3)0.074 (4)0.006 (3)0.012 (4)0.011 (3)
C90.085 (4)0.056 (3)0.065 (4)0.005 (3)0.016 (4)0.015 (3)
C100.067 (3)0.056 (3)0.040 (3)0.001 (2)0.002 (3)0.006 (2)
Geometric parameters (Å, º) top
N1—C21.302 (7)C3—H3A0.9300
N1—C31.314 (7)N4—O41.219 (6)
C1—C21.380 (7)N4—C71.440 (7)
C1—C51.409 (8)C4—C51.385 (6)
C1—H1B0.9300C5—C61.494 (6)
O1—N31.188 (5)C6—C101.366 (7)
N2—C91.321 (7)C6—C71.415 (6)
N2—C81.338 (8)C7—C81.362 (6)
O2—N31.198 (5)C8—H8A0.9300
C2—H2B0.9300C9—C101.365 (7)
N3—C41.447 (6)C9—H9A0.9300
O3—N41.201 (5)C10—H10A0.9300
C3—C41.364 (6)
C2—N1—C3115.0 (4)C5—C4—N3122.6 (4)
C2—C1—C5117.3 (5)C4—C5—C1115.3 (4)
C2—C1—H1B121.3C4—C5—C6127.3 (4)
C5—C1—H1B121.3C1—C5—C6117.2 (4)
C9—N2—C8115.5 (4)C10—C6—C7114.7 (4)
N1—C2—C1127.0 (5)C10—C6—C5118.4 (5)
N1—C2—H2B116.5C7—C6—C5126.8 (5)
C1—C2—H2B116.5C8—C7—C6121.4 (5)
O1—N3—O2120.2 (5)C8—C7—N4117.8 (5)
O1—N3—C4119.4 (4)C6—C7—N4120.8 (4)
O2—N3—C4120.4 (4)N2—C8—C7122.6 (5)
N1—C3—C4124.3 (5)N2—C8—H8A118.7
N1—C3—H3A117.9C7—C8—H8A118.7
C4—C3—H3A117.9N2—C9—C10125.7 (5)
O3—N4—O4119.7 (6)N2—C9—H9A117.2
O3—N4—C7121.7 (5)C10—C9—H9A117.2
O4—N4—C7118.7 (5)C9—C10—C6120.1 (5)
C3—C4—C5121.0 (5)C9—C10—H10A120.0
C3—C4—N3116.4 (5)C6—C10—H10A120.0
C3—N1—C2—C12.5 (12)C4—C5—C6—C772.7 (7)
C5—C1—C2—N10.4 (12)C1—C5—C6—C7113.3 (7)
C2—N1—C3—C43.1 (10)C10—C6—C7—C80.8 (7)
N1—C3—C4—C51.6 (10)C5—C6—C7—C8176.7 (5)
N1—C3—C4—N3178.8 (6)C10—C6—C7—N4180.0 (4)
O1—N3—C4—C38.6 (7)C5—C6—C7—N42.5 (8)
O2—N3—C4—C3172.1 (6)O3—N4—C7—C8162.7 (5)
O1—N3—C4—C5171.0 (5)O4—N4—C7—C817.6 (8)
O2—N3—C4—C58.3 (7)O3—N4—C7—C616.5 (7)
C3—C4—C5—C10.6 (8)O4—N4—C7—C6163.2 (5)
N3—C4—C5—C1179.0 (5)C9—N2—C8—C72.9 (9)
C3—C4—C5—C6174.7 (5)C6—C7—C8—N22.2 (9)
N3—C4—C5—C64.9 (8)N4—C7—C8—N2178.6 (5)
C2—C1—C5—C41.2 (9)C8—N2—C9—C102.4 (10)
C2—C1—C5—C6175.9 (6)N2—C9—C10—C61.2 (10)
C4—C5—C6—C10109.9 (6)C7—C6—C10—C90.3 (7)
C1—C5—C6—C1064.1 (6)C5—C6—C10—C9177.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.932.403.234 (8)149
C3—H3A···N2ii0.932.623.440 (8)147
C10—H10A···O2iii0.932.573.392 (6)148
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H6N4O4
Mr246.19
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.3580 (19), 17.815 (4), 6.3870 (13)
V3)1064.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
2089, 1071, 679
Rint0.042
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.00
No. of reflections1071
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.932.403.234 (8)149
C3—H3A···N2ii0.932.623.440 (8)147
C10—H10A···O2iii0.932.573.392 (6)148
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaczmarek, L., Becalski, A. & Nantka-Namirski, P. (1980). Pol. J. Chem. 54, 1585–1590.  CAS Google Scholar
First citationKatritzky, A. R., Akhmedov, N. G., Güven, A., Doskocz, J., Akhmedova, R. G., Majumder, S. & Hall, C. D. (2006). J. Mol. Struct. 787, 131–147.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1191
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds