Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[aquabis $\left(\mu\right.$-formato- $\left.\kappa^{2} O: O^{\prime}\right)(\mu$-pyra-zine- $\left.\kappa^{2} N: N^{\prime}\right)$ nickel(II)]

Susanne Wöhlert, ${ }^{\text {a* }}$ Mario Wriedt, ${ }^{\text {b }}$ Inke Jess ${ }^{\text {a }}$ and Christian Näther ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany, and ${ }^{\text {b }}$ Departement of Chemistry, Texas A\&M University, College Station, Texas 77843, USA
Correspondence e-mail: swoehlert@ac.uni-kiel.de
Received 23 March 2011; accepted 30 March 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.025 ; w R$ factor $=0.059$; data-to-parameter ratio $=17.9$.

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the nickel(II) cations are coordinated by three O-bonded-formato anions, two N-bonded-pyrazine ligands and one water molecule in an octahedral coordination mode. The nickel(II) cations are connected by μ-1,3-bridging formato anions and N, N^{\prime}-bridging pyrazine ligands into a three dimensional coordination network. The asymmetric unit consists of one nickel(II) cation, one water molecule and two crystallographically independent formato anions in general positions as well as two crystallographically independent pyrazine ligands, which are located on centers of inversion.

Related literature

For background of this work, see: Boeckmann \& Näther (2010), Wriedt et al. (2009); Boeckmann et al. (2010). For a related structure, see: Manson et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=246.85$
Monoclinic, $P 2_{1} / c$
$a=7.8169$ (4) A
$b=7.0077$ (3) \AA
$c=15.6586$ (7) \AA
$\beta=98.971$ (4) ${ }^{\circ}$

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32;
Stoe, 2008)
$T_{\text {min }}=0.658, T_{\text {max }}=0.770$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=1.10$
2291 reflections

$$
V=847.26(7) \AA^{3}
$$

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=2.29 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.19 \times 0.15 \times 0.12 \mathrm{~mm}$

15596 measured reflections 2291 independent reflections 2091 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

$$
\begin{aligned}
& 128 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL and DIAMOND (Brandenburg, 2011).

We gratefully acknowledge financial support by the DFG (project number NA 720/3-1) and the State of SchleswigHolstein. We thank Professor Dr Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5501).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Boeckmann, J. \& Näther, C. (2010). Dalton Trans. 39, 1119-1126.
Boeckmann, J., Wriedt, M. \& Näther, C. (2010). Eur. J. Inorg. Chem. pp. 18201828.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Manson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X., Schultz, A. J., Koo, H.-J. \& Whangbo, M.-H. (2003). Dalton Trans. pp. 2905-2911.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wriedt, M., Jess, I. \& Näther, C. (2009). Eur. J. Inorg. Chem. pp. 1406-1413.

supporting information

Poly[aquabis (μ-formato- $\left.\kappa^{2} O: O^{\prime}\right)\left(\mu\right.$-pyrazine $\left.-\kappa^{2} N: N^{\prime}\right)$ nickel(II)]

Susanne Wöhlert, Mario Wriedt, Inke Jess and Christian Näther

S1. Comment

In our recent work on the synthesis, structures and properties of new coordination polymers based on paramagnetic transition metal, small-sized anions and N-donor ligands, we have shown that new ligand-deficient coordination polymers based on transition metal thiocyanates and selenocyanates can be prepared by thermal decomposition reactions (Wriedt, Jess \& Näther, 2009 and Boeckmann \& Näther, 2010). Later we have shown that also metal formates can be prepared by this route (Boeckmann, Wriedt \& Näther, 2010). Within this project we tried to prepare new ligand-rich precursor compounds based on nickel(II) formate and pyrazine which resulted in the formation of the title compound that were identified by single crystal X-ray diffraction.
In the crystal structure of the title compound, each nickel(II) cation is coordinated by three bridging formato anions, two bridging pyrazine ligands and one water molecule (Fig. 1). The $\mathrm{NiO}_{4} \mathrm{~N}_{2}$ octahedron is slightly distorted with $\mathrm{Ni}-\mathrm{OCHO}$ distances between 2.0378 (11) \AA and 2.0643 (12) \AA and one $\mathrm{Ni}-\mathrm{OH}_{2}$ distance of 2.0420 (11) \AA as well as two long Ni N distances of 2.1066 (13) \AA and 2.1171 (12) \AA. The angles around the metal atoms range from $84.14(5)^{\circ}$ to 95.94 (5) ${ }^{\circ}$ and from $173.18(5)^{\circ}$ to $179.19(5)^{\circ}$. The nickel(II) cations are connected via $\mu-1,3$ bridging formato anions into two dimensional $\mathrm{Ni}\left(\mathrm{O}_{2} \mathrm{CHO}\right)_{2}$ layers that are further linked by the pyrazine ligands into a 3D coordination network (Fig. 2). The $\mathrm{Ni}-\mathrm{Ni}$ distances between next neighboured Ni atoms ranges from 6.9770 (4) \AA to 7.0689 (4) \AA.

It must be noted that according to a search in the CCDC database (ConQuest Ver.1.12.) (Allen, 2002) compounds based on nickel(II) formate and pyrazine are unknown but with copper(II) formate one strcuture is reported (Manson et al., 2003).

S2. Experimental

Nickel formate dihydrate $\left[\mathrm{Ni}\left(\mathrm{CHO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ and pyrazine were obtained from Alfa Aesar. All chemicals were used without further purification. $0.25 \mathrm{mmol}(46 \mathrm{mg}) \mathrm{Ni}\left(\mathrm{CHO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $0.5 \mathrm{mmol}(40 \mathrm{mg})$ pyrazine were reacted in 2 ml water. Light blue block-shaped single crystals of the title compound were obtained after a few days at room temperature.

S3. Refinement

The C-H H atoms were positioned with idealized geometry and were refined isotropic with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ using a riding model. The O-H H atoms were located in difference map, their bond lengths were set to $0.82 \AA$ and afterwards they were refined isotropic with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$ using a riding model.

Figure 1
Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: $\mathrm{i}=-\mathrm{x}+1, \mathrm{y}+1 / 2 \mathrm{i}=-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2 ; \mathrm{ii}=-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1 ; \mathrm{iii}=-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$.

Figure 2
Crystal structure of the title compound with view along the crystallographic a-axis.

Poly[aquabis(μ-formato- $\left.\kappa^{2} O: O^{\prime}\right)\left(\mu\right.$ - pyrazine- $\left.\kappa^{2} N: N^{\prime}\right)$ nickel(II)]

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{CHO}_{2}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=246.85$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.8169$ (4) Å
$b=7.0077$ (3) \AA
$c=15.6586$ (7) \AA
$\beta=98.971$ (4) ${ }^{\circ}$
$V=847.26(7) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
$T_{\text {min }}=0.658, T_{\text {max }}=0.770$
$F(000)=504$
$D_{\mathrm{x}}=1.935 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 15596 reflections
$\theta=2.6-29.3^{\circ}$
$\mu=2.29 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, light blue
$0.19 \times 0.15 \times 0.12 \mathrm{~mm}$

15596 measured reflections
2291 independent reflections
2091 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=29.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.059$
$S=1.10$
2291 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.025 P)^{2}+0.4622 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.30 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L$, $\quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0158(13)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\text {eq }}$
Ni1	$0.30005(2)$	$0.25657(3)$	$0.649349(11)$	$0.01731(8)$
N1	$0.41659(17)$	$0.10169(18)$	$0.55756(8)$	$0.0205(2)$
C1	$0.3337(2)$	$0.0453(2)$	$0.48084(10)$	$0.0250(3)$
H1	0.2169	0.0747	0.4654	0.030^{*}
C2	$0.5831(2)$	$0.0558(2)$	$0.57642(10)$	$0.0257(3)$
H2	0.6452	0.0925	0.6294	0.031^{*}
N11	$0.12229(17)$	$0.39364(18)$	$0.55394(8)$	$0.0209(2)$
C11	$-0.0463(2)$	$0.3831(2)$	$0.55924(11)$	$0.0241(3)$
H11	-0.0827	0.3027	0.6001	0.029^{*}
C12	$0.1684(2)$	$0.5112(2)$	$0.49450(10)$	$0.0234(3)$
H12	0.2847	0.5224	0.4891	0.028^{*}
O21	$0.11734(15)$	$0.04433(16)$	$0.65066(8)$	$0.0275(3)$
O22	$0.0548(2)$	$-0.25397(17)$	$0.67969(12)$	$0.0434(4)$
C21	$0.1545(2)$	$-0.1280(2)$	$0.66185(12)$	$0.0279(3)$
H21	0.2693	-0.1604	0.6602	0.042^{*}
O31	$0.46637(15)$	$0.11818(18)$	$0.74213(8)$	$0.0282(3)$
O32	$0.51992(15)$	$-0.03704(17)$	$0.86756(7)$	$0.0260(2)$
C31	$0.4364(2)$	$0.0746(2)$	$0.81445(11)$	$0.0258(3)$
H31	0.3479	0.1347	0.8375	0.039^{*}
O41	$0.18980(15)$	$0.40396(16)$	$0.73925(7)$	$0.0241(2)$
H1O	0.1126	0.3547	0.7617	0.036^{*}
H2O	0.1500	0.5093	0.036^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.01857(11)$	$0.01683(11)$	$0.01653(11)$	$0.00177(7)$	$0.00272(7)$	$0.00092(7)$
N1	$0.0220(6)$	$0.0203(6)$	$0.0198(6)$	$0.0012(5)$	$0.0049(5)$	$-0.0023(5)$
C1	$0.0200(7)$	$0.0306(8)$	$0.0238(7)$	$0.0045(6)$	$0.0020(6)$	$-0.0043(6)$
C2	$0.0230(7)$	$0.0321(8)$	$0.0212(7)$	$0.0019(6)$	$0.0007(6)$	$-0.0070(6)$
N11	$0.0214(6)$	$0.0199(6)$	$0.0206(6)$	$0.0019(5)$	$0.0007(5)$	$0.0018(5)$
C11	$0.0233(7)$	$0.0245(7)$	$0.0243(7)$	$0.0000(6)$	$0.0030(6)$	$0.0059(6)$
C12	$0.0194(7)$	$0.0258(7)$	$0.0248(7)$	$0.0013(6)$	$0.0029(6)$	$0.0035(6)$
O21	$0.0261(6)$	$0.0184(5)$	$0.0390(7)$	$-0.0001(4)$	$0.0077(5)$	$0.0045(5)$
O22	$0.0477(8)$	$0.0184(6)$	$0.0720(11)$	$0.0009(5)$	$0.0340(8)$	$0.0041(6)$
C21	$0.0283(8)$	$0.0206(7)$	$0.0372(9)$	$0.0027(6)$	$0.0128(7)$	$0.0011(6)$
O31	$0.0273(6)$	$0.0356(6)$	$0.0218(5)$	$0.0097(5)$	$0.0043(5)$	$0.0080(5)$
O32	$0.0296(6)$	$0.0276(6)$	$0.0208(5)$	$0.0089(5)$	$0.0039(4)$	$0.0040(4)$
C31	$0.0286(8)$	$0.0266(8)$	$0.0227(7)$	$0.0087(6)$	$0.0054(6)$	$0.0020(6)$
O41	$0.0264(6)$	$0.0208(5)$	$0.0271(6)$	$0.0015(4)$	$0.0101(4)$	$-0.0002(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

Ni1-O31	2.0378 (11)	$\mathrm{C} 11-\mathrm{C} 12^{\text {iii }}$	1.385 (2)
Ni1-O41	2.0420 (11)	C11-H11	0.9300
Ni1-O32 ${ }^{\text {i }}$	2.0636 (11)	$\mathrm{C} 12-\mathrm{C} 1{ }^{\text {iii }}$	1.385 (2)
Ni1-O21	2.0643 (12)	C12-H12	0.9300
Ni1-N11	2.1066 (13)	O21-C21	1.2479 (19)
Ni1-N1	2.1171 (12)	O22-C21	1.238 (2)
N1-C2	1.328 (2)	C21-H21	0.9300
N1-C1	1.333 (2)	O31-C31	1.230 (2)
$\mathrm{C} 1-\mathrm{C} 2{ }^{\text {ii }}$	1.382 (2)	O32-C31	1.2492 (19)
C1-H1	0.9300	O32-Ni1 ${ }^{\text {iv }}$	2.0636 (11)
$\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	1.382 (2)	C31-H31	0.9299
C2-H2	0.9300	O41-H1O	0.8200
N11-C12	1.334 (2)	O41-H2O	0.8200
N11-C11	1.335 (2)		
O31-Ni1-O41	92.30 (5)	$\mathrm{C} 1{ }^{\text {iii }}$ - $\mathrm{C} 2-\mathrm{H} 2$	119.2
$\mathrm{O} 31-\mathrm{Ni} 1-\mathrm{O} 32^{\text {i }}$	93.04 (5)	C12-N11-C11	117.00 (13)
$\mathrm{O} 41-\mathrm{Ni} 1-\mathrm{O} 32{ }^{\text {i }}$	95.94 (5)	C12-N11-Ni1	123.80 (11)
O31-Ni1-O21	90.89 (5)	C11-N11-Ni1	118.62 (10)
O41-Ni1-O21	89.46 (5)	N11-C11-C12 ${ }^{\text {iii }}$	121.75 (14)
$\mathrm{O} 32 \mathrm{i}-\mathrm{Ni} 1-\mathrm{O} 21$	173.18 (5)	N11-C11-H11	119.1
O31-Ni1-N11	178.28 (5)	C12 ${ }^{\text {iii }}$ - $\mathrm{C} 11-\mathrm{H} 11$	119.1
O41-Ni1-N11	87.46 (5)	N11-C12-C11iii	121.25 (14)
$\mathrm{O} 32 \mathrm{i}-\mathrm{Ni} 1-\mathrm{N} 11$	88.68 (5)	N11-C12-H12	119.4
$\mathrm{O} 21-\mathrm{Ni} 1-\mathrm{N} 11$	87.40 (5)	C11iii-C12-H12	119.4
O31-Ni1-N1	86.89 (5)	C21-O21-Ni1	123.54 (11)
O41-Ni1-N1	179.19 (5)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{O} 21$	125.53 (16)
$\mathrm{O} 32-\mathrm{Ni} 1-\mathrm{N} 1$	84.14 (5)	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{H} 21$	118.4

$\mathrm{O} 21-\mathrm{Ni} 1-\mathrm{N} 1$	$90.52(5)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{H} 21$	115.9
$\mathrm{~N} 11-\mathrm{Ni} 1-\mathrm{N} 1$	$93.35(5)$	$\mathrm{C} 31-\mathrm{O} 31-\mathrm{Ni} 1$	$125.64(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$116.76(13)$	$\mathrm{C} 31-\mathrm{O} 32-\mathrm{Ni} 1^{\mathrm{iv}}$	$130.50(10)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Ni} 1$	$118.93(11)$	$\mathrm{O} 31-\mathrm{C} 31-\mathrm{O} 32$	$127.86(15)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ni} 1$	$124.31(10)$	$\mathrm{O} 31-\mathrm{C} 31-\mathrm{H} 31$	120.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{ii}}$	$111.65(14)$	$\mathrm{O} 32-\mathrm{C} 31-\mathrm{H} 31$	111.6
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.2	$\mathrm{Ni} 1-\mathrm{O} 41-\mathrm{H} 1 \mathrm{O}$	120.0
$\mathrm{C} 2^{\mathrm{ii}}-\mathrm{C} 1-\mathrm{H} 1$	$\mathrm{Ni} 1-\mathrm{O} 41-\mathrm{H} 2 \mathrm{O}$	116.4	
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{ii}}$	$121.59(15)$	$\mathrm{H} 1 \mathrm{O}-\mathrm{O} 41-\mathrm{H} 2 \mathrm{O}$	103.1
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2$			

Symmetry codes: (i) $-x+1, y+1 / 2,-z+3 / 2$; (ii) $-x+1,-y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $-x+1, y-1 / 2,-z+3 / 2$.

