organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1238-o1239

N-[Bis(di­methyl­amino)­methyl­­idene]-2-[(tri­phenyl­meth­yl)sulfan­yl]ethanaminium hexa­fluoro­phosphate

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 30 March 2011; accepted 20 April 2011; online 29 April 2011)

The mol­ecular structure of the title compound, C26H32N3S+·PF6, shows a protonated guanidyl group bridged by an ethyl­ene linker with a tritylsulfanyl unit. The guanidinium (gua) unit displays charge delocalization over the three N—Cgua bonds. The N—C—C—S group shows a folded nonplanar conformation with a torsion angle of 158.4 (1)°. In the crystal, the cation and anion are linked by an N—H⋯F inter­action.

Related literature

For the synthesis, see: Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.]). For related structures, see: Flörke et al. (2006[Flörke, U., Herres-Pawlis, S., Heuwing, A., Neuba, A., Seewald, O. & Henkel, G. (2006). Acta Cryst. C62, m234-m237.]); Neuba et al. (2007c[Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.]); Pruszynski et al. (1992[Pruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst. C48, 1638-1641.]). For related chemistry literature, see: Börner et al. (2007[Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645-5651.], 2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]); Galezowski et al. (1994[Galezowski, W., Bakshi, P. K., Leffek, K. T. & Cameron, T. S. (1994). Can. J. Chem. 72, 352-356.]); Harmjanz (1997[Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.]); Herres et al. (2005[Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089-1095.]); Herres-Pawlis et al. (2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Neuba (2009[Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.]); Neuba et al. (2007a[Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476-o3477.],b[Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.], 2008a[Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771-777.],b[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.], 2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press.]); Peters et al. (2008[Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813-7821.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Raab et al. (2003[Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.]); Schneider (2000[Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.]); Waden (1999[Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.]); Wittman (1999[Wittman, H. (1999). PhD thesis, University of Marburg, Germany.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32N3S+·PF6

  • Mr = 563.58

  • Triclinic, [P \overline 1]

  • a = 9.0111 (14) Å

  • b = 9.1376 (15) Å

  • c = 17.564 (3) Å

  • α = 96.532 (3)°

  • β = 100.225 (4)°

  • γ = 108.053 (3)°

  • V = 1331.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.33 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.939

  • 11922 measured reflections

  • 6281 independent reflections

  • 4547 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.104

  • S = 0.96

  • 6281 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F6i 0.88 2.13 2.949 (2) 155
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b, 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase (Neuba et al., 2011). The title compound (I) is the protonated variant of 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine (C26H31N3) (Neuba et al., 2007c). Both compounds possess a folded non-planar conformation with torsion angles of the S—C—C—N group of 66.04 (15) in C26H31N3 and 158.36 (13)° in I. Compared to C26H32N3 with localized NCgua double bond (NCgua: 1.281 (2), N—Cgua: 1.399 (2) and 1.292 (2) Å) the respective double bond in I is clearly delocalized over the guanidine unit (NCgua: 1.341 (2), N—Cgua: 1.3938 (2) and 1.333 (2) Å). Several variants of protonated bis(tetramethyl-guanidino)propylene (Flörke et al., 2006) show similar N—C (1.326 (7)–1.341 (6) Å) and N—Cgua bond lengths (1.331 (2)–1.343 (3) Å). In bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), with a protonated imine N atom, strong delocalization is also observed among the three C—N bonds, which are in the range of 1.31 (1)-1.34 (1) Å. Further protonated guanidine units show comparable N—Cgua– and NCgua geometries (Herres-Pawlis et al., 2005; Herres et al., 2005; Wittman, 1999; Peters et al., 2008, Galezowski et al., 1994, Raab et al., 2003).

The crystal packing exhibits N1—H···F6(-x + 1, -y + 1, -z + 1) intermolecular interaction from cation to anion with H···F = 2.127 Å.

Related literature top

For synthesis, see: Herres-Pawlis et al. (2005). For related structures, see: Flörke et al. (2006); Neuba et al. (2007c); Pruszynski et al. (1992). For related literature, see: Börner et al. (2007, 2009); Galezowski et al. (1994); Harmjanz (1997); Herres et al. (2005); Herres-Pawlis et al. (2009); Neuba (2009); Neuba et al. (2007a,b, 2008a,b, 2010, 2011); Peters et al. (2008); Pohl et al. (2000); Raab et al. (2003); Schneider (2000); Waden (1999); Wittman (1999); Wittmann et al. (2001).

Experimental top

Preparation of the title compound: 1,1,3,3-Tetramethyl-2-[2-(tritylsulfanyl)-ethyl]guanidine (C26H31N3) (417 mg, 1 mmol) was added to a solution of [Cu(MeCN)4]PF6 (373 mg, 1 mmol) in acetonitrile (aqueous, 15 ml); the mixture was stirred for 15 min at room temperature and then refluxed for further 15 min and filtered off. Colourless crystals were obtained using the vapour pressure equalization method with this solution in the presence of diethylether.

Refinement top

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C or N atoms with C—H = 0.95 (aromatic), 0.98 (methyl) and N—H 0.88 Å, and with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq) or 1.5U(–CH3 H atoms). All CH3 H atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms omitted for clarity.
N-[Bis(dimethylamino)methylidene]- 2-[(triphenylmethyl)sulfanyl]ethanaminium hexafluorophosphate top
Crystal data top
C26H32N3S+·PF6Z = 2
Mr = 563.58F(000) = 588
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0111 (14) ÅCell parameters from 786 reflections
b = 9.1376 (15) Åθ = 2.4–27.9°
c = 17.564 (3) ŵ = 0.25 mm1
α = 96.532 (3)°T = 120 K
β = 100.225 (4)°Block, colourless
γ = 108.053 (3)°0.33 × 0.30 × 0.26 mm
V = 1331.0 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
6281 independent reflections
Radiation source: sealed tube4547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1110
Tmin = 0.924, Tmax = 0.939k = 1211
11922 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
6281 reflections(Δ/σ)max < 0.001
338 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C26H32N3S+·PF6γ = 108.053 (3)°
Mr = 563.58V = 1331.0 (4) Å3
Triclinic, P1Z = 2
a = 9.0111 (14) ÅMo Kα radiation
b = 9.1376 (15) ŵ = 0.25 mm1
c = 17.564 (3) ÅT = 120 K
α = 96.532 (3)°0.33 × 0.30 × 0.26 mm
β = 100.225 (4)°
Data collection top
Bruker SMART APEX
diffractometer
6281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4547 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.939Rint = 0.060
11922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.96Δρmax = 0.38 e Å3
6281 reflectionsΔρmin = 0.42 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77994 (6)0.61888 (5)0.29140 (3)0.02002 (12)
N10.6327 (2)0.89606 (18)0.43688 (9)0.0242 (4)
H1A0.62890.88500.48570.029*
N20.7383 (2)1.16512 (18)0.47245 (9)0.0253 (4)
N30.5695 (2)1.05179 (18)0.34970 (9)0.0252 (4)
C10.6470 (2)1.0380 (2)0.41911 (10)0.0211 (4)
C20.7029 (3)1.3121 (2)0.47981 (13)0.0378 (6)
H2A0.78401.39220.46250.057*
H2B0.70421.34710.53480.057*
H2C0.59691.29480.44700.057*
C30.8710 (3)1.1626 (3)0.53285 (12)0.0338 (5)
H3A0.83411.14320.58120.051*
H3B0.95781.26360.54340.051*
H3C0.91021.07920.51450.051*
C40.6343 (3)1.1837 (3)0.31065 (13)0.0407 (6)
H4A0.57371.25560.31450.061*
H4B0.62521.14430.25510.061*
H4C0.74731.23900.33620.061*
C50.4191 (3)0.9342 (3)0.30549 (12)0.0350 (5)
H5A0.43960.87170.26190.052*
H5B0.34470.98620.28450.052*
H5C0.37200.86570.34030.052*
C60.6227 (2)0.7568 (2)0.38190 (11)0.0245 (4)
H6A0.51290.71090.34850.029*
H6B0.64300.67750.41240.029*
C70.7419 (2)0.7943 (2)0.32952 (11)0.0207 (4)
H7A0.84370.87380.36010.025*
H7B0.69890.83840.28520.025*
C80.7037 (2)0.5855 (2)0.18294 (10)0.0173 (4)
C110.6980 (2)0.4160 (2)0.15696 (10)0.0177 (4)
C120.8390 (2)0.3816 (2)0.17641 (11)0.0226 (4)
H12A0.93330.46110.20680.027*
C130.8442 (2)0.2340 (2)0.15229 (12)0.0269 (4)
H13A0.94120.21270.16640.032*
C140.7079 (3)0.1177 (2)0.10767 (11)0.0270 (5)
H14A0.71090.01640.09060.032*
C150.5672 (3)0.1497 (2)0.08807 (11)0.0266 (4)
H15A0.47320.06970.05780.032*
C160.5622 (2)0.2984 (2)0.11234 (11)0.0220 (4)
H16A0.46490.31920.09820.026*
C210.5359 (2)0.5994 (2)0.16573 (10)0.0172 (4)
C220.4204 (2)0.5180 (2)0.20308 (10)0.0206 (4)
H22A0.44750.45670.23990.025*
C230.2669 (2)0.5248 (2)0.18760 (11)0.0230 (4)
H23A0.19000.46850.21380.028*
C240.2246 (2)0.6135 (2)0.13396 (11)0.0237 (4)
H24A0.11920.61810.12330.028*
C250.3372 (2)0.6948 (2)0.09638 (11)0.0235 (4)
H25A0.30920.75580.05960.028*
C260.4920 (2)0.6881 (2)0.11204 (11)0.0208 (4)
H26A0.56860.74480.08580.025*
C310.8208 (2)0.6940 (2)0.14281 (10)0.0183 (4)
C320.8071 (2)0.6503 (2)0.06202 (11)0.0231 (4)
H32A0.72570.55650.03380.028*
C330.9100 (2)0.7415 (2)0.02285 (11)0.0268 (4)
H33A0.89890.71000.03190.032*
C341.0294 (2)0.8785 (2)0.06290 (12)0.0259 (4)
H34A1.10110.94060.03610.031*
C351.0432 (2)0.9240 (2)0.14238 (12)0.0252 (4)
H35A1.12401.01850.17010.030*
C360.9401 (2)0.8329 (2)0.18186 (11)0.0216 (4)
H36A0.95120.86580.23650.026*
P10.19146 (7)0.27386 (6)0.37421 (3)0.02543 (13)
F10.02793 (18)0.13314 (18)0.35865 (10)0.0699 (5)
F20.20703 (19)0.22909 (16)0.28687 (7)0.0526 (4)
F30.35707 (17)0.41217 (16)0.39103 (9)0.0547 (4)
F40.10033 (18)0.38923 (16)0.34893 (8)0.0531 (4)
F50.18070 (19)0.31694 (17)0.46304 (8)0.0524 (4)
F60.28644 (18)0.15713 (16)0.40077 (7)0.0472 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0229 (3)0.0197 (2)0.0182 (2)0.0101 (2)0.00173 (19)0.00234 (17)
N10.0361 (10)0.0218 (8)0.0170 (8)0.0095 (8)0.0118 (7)0.0047 (6)
N20.0275 (10)0.0227 (8)0.0245 (9)0.0083 (7)0.0052 (7)0.0003 (7)
N30.0312 (10)0.0246 (9)0.0219 (8)0.0126 (8)0.0058 (7)0.0043 (7)
C10.0222 (11)0.0251 (10)0.0198 (9)0.0107 (8)0.0100 (8)0.0032 (8)
C20.0447 (15)0.0216 (11)0.0446 (14)0.0110 (10)0.0088 (11)0.0019 (9)
C30.0299 (12)0.0375 (12)0.0279 (11)0.0083 (10)0.0006 (10)0.0007 (9)
C40.0584 (17)0.0377 (13)0.0347 (12)0.0214 (12)0.0157 (12)0.0186 (10)
C50.0346 (13)0.0395 (13)0.0291 (11)0.0195 (11)0.0029 (10)0.0047 (9)
C60.0339 (12)0.0191 (9)0.0225 (10)0.0103 (9)0.0093 (9)0.0031 (7)
C70.0222 (10)0.0161 (9)0.0232 (10)0.0066 (8)0.0045 (8)0.0026 (7)
C80.0179 (10)0.0160 (9)0.0159 (9)0.0045 (8)0.0018 (7)0.0019 (7)
C110.0207 (10)0.0170 (9)0.0168 (9)0.0068 (8)0.0064 (8)0.0045 (7)
C120.0195 (10)0.0198 (9)0.0273 (10)0.0057 (8)0.0054 (8)0.0022 (8)
C130.0281 (12)0.0250 (10)0.0328 (11)0.0137 (9)0.0100 (9)0.0067 (8)
C140.0374 (13)0.0169 (9)0.0292 (11)0.0108 (9)0.0122 (10)0.0018 (8)
C150.0295 (12)0.0208 (10)0.0234 (10)0.0012 (9)0.0066 (9)0.0008 (8)
C160.0215 (11)0.0224 (10)0.0204 (9)0.0069 (8)0.0026 (8)0.0020 (7)
C210.0168 (10)0.0149 (8)0.0173 (9)0.0054 (7)0.0001 (7)0.0014 (7)
C220.0227 (11)0.0200 (9)0.0211 (10)0.0091 (8)0.0044 (8)0.0065 (7)
C230.0192 (10)0.0227 (10)0.0270 (10)0.0055 (8)0.0068 (8)0.0061 (8)
C240.0173 (10)0.0258 (10)0.0287 (11)0.0100 (8)0.0033 (8)0.0033 (8)
C250.0248 (11)0.0229 (10)0.0250 (10)0.0115 (9)0.0029 (9)0.0077 (8)
C260.0210 (10)0.0191 (9)0.0230 (10)0.0070 (8)0.0052 (8)0.0057 (7)
C310.0173 (10)0.0179 (9)0.0228 (9)0.0094 (8)0.0046 (8)0.0052 (7)
C320.0210 (10)0.0216 (9)0.0246 (10)0.0057 (8)0.0023 (8)0.0044 (8)
C330.0290 (12)0.0313 (11)0.0226 (10)0.0114 (10)0.0068 (9)0.0098 (8)
C340.0246 (11)0.0262 (10)0.0336 (11)0.0122 (9)0.0110 (9)0.0155 (9)
C350.0190 (10)0.0175 (9)0.0375 (12)0.0047 (8)0.0041 (9)0.0061 (8)
C360.0197 (10)0.0200 (9)0.0253 (10)0.0078 (8)0.0044 (8)0.0033 (8)
P10.0307 (3)0.0207 (3)0.0231 (3)0.0066 (2)0.0047 (2)0.0047 (2)
F10.0451 (10)0.0428 (9)0.0994 (13)0.0102 (7)0.0113 (9)0.0027 (9)
F20.0916 (12)0.0495 (9)0.0248 (7)0.0340 (9)0.0148 (7)0.0079 (6)
F30.0403 (9)0.0380 (8)0.0720 (10)0.0026 (7)0.0121 (8)0.0015 (7)
F40.0661 (11)0.0509 (9)0.0512 (9)0.0377 (8)0.0019 (8)0.0112 (7)
F50.0803 (11)0.0580 (9)0.0337 (7)0.0362 (9)0.0256 (7)0.0098 (6)
F60.0765 (11)0.0483 (8)0.0350 (7)0.0411 (8)0.0162 (7)0.0173 (6)
Geometric parameters (Å, º) top
S1—C71.8202 (17)C13—C141.383 (3)
S1—C81.8620 (18)C13—H13A0.9500
N1—C11.341 (2)C14—C151.381 (3)
N1—C61.476 (2)C14—H14A0.9500
N1—H1A0.8800C15—C161.394 (2)
N2—C11.338 (2)C15—H15A0.9500
N2—C31.459 (3)C16—H16A0.9500
N2—C21.470 (2)C21—C221.393 (3)
N3—C11.333 (2)C21—C261.394 (2)
N3—C51.459 (3)C22—C231.384 (3)
N3—C41.469 (3)C22—H22A0.9500
C2—H2A0.9800C23—C241.388 (3)
C2—H2B0.9800C23—H23A0.9500
C2—H2C0.9800C24—C251.378 (3)
C3—H3A0.9800C24—H24A0.9500
C3—H3B0.9800C25—C261.395 (3)
C3—H3C0.9800C25—H25A0.9500
C4—H4A0.9800C26—H26A0.9500
C4—H4B0.9800C31—C361.390 (2)
C4—H4C0.9800C31—C321.402 (2)
C5—H5A0.9800C32—C331.381 (3)
C5—H5B0.9800C32—H32A0.9500
C5—H5C0.9800C33—C341.384 (3)
C6—C71.521 (3)C33—H33A0.9500
C6—H6A0.9900C34—C351.383 (3)
C6—H6B0.9900C34—H34A0.9500
C7—H7A0.9900C35—C361.385 (3)
C7—H7B0.9900C35—H35A0.9500
C8—C211.537 (2)C36—H36A0.9500
C8—C311.538 (2)P1—F41.5801 (13)
C8—C111.546 (2)P1—F31.5814 (14)
C11—C161.386 (3)P1—F11.5819 (15)
C11—C121.396 (3)P1—F21.5842 (13)
C12—C131.385 (2)P1—F51.5924 (13)
C12—H12A0.9500P1—F61.6202 (13)
C7—S1—C8105.13 (8)C14—C13—H13A120.1
C1—N1—C6125.84 (15)C12—C13—H13A120.1
C1—N1—H1A117.1C15—C14—C13119.59 (17)
C6—N1—H1A117.1C15—C14—H14A120.2
C1—N2—C3122.00 (16)C13—C14—H14A120.2
C1—N2—C2122.76 (17)C14—C15—C16120.53 (18)
C3—N2—C2114.95 (16)C14—C15—H15A119.7
C1—N3—C5122.70 (17)C16—C15—H15A119.7
C1—N3—C4121.96 (18)C11—C16—C15120.46 (18)
C5—N3—C4115.28 (17)C11—C16—H16A119.8
N3—C1—N2120.65 (17)C15—C16—H16A119.8
N3—C1—N1120.34 (17)C22—C21—C26117.89 (17)
N2—C1—N1119.01 (17)C22—C21—C8119.67 (15)
N2—C2—H2A109.5C26—C21—C8122.42 (17)
N2—C2—H2B109.5C23—C22—C21121.25 (17)
H2A—C2—H2B109.5C23—C22—H22A119.4
N2—C2—H2C109.5C21—C22—H22A119.4
H2A—C2—H2C109.5C22—C23—C24120.33 (18)
H2B—C2—H2C109.5C22—C23—H23A119.8
N2—C3—H3A109.5C24—C23—H23A119.8
N2—C3—H3B109.5C25—C24—C23119.29 (18)
H3A—C3—H3B109.5C25—C24—H24A120.4
N2—C3—H3C109.5C23—C24—H24A120.4
H3A—C3—H3C109.5C24—C25—C26120.40 (17)
H3B—C3—H3C109.5C24—C25—H25A119.8
N3—C4—H4A109.5C26—C25—H25A119.8
N3—C4—H4B109.5C21—C26—C25120.84 (18)
H4A—C4—H4B109.5C21—C26—H26A119.6
N3—C4—H4C109.5C25—C26—H26A119.6
H4A—C4—H4C109.5C36—C31—C32117.81 (17)
H4B—C4—H4C109.5C36—C31—C8123.97 (16)
N3—C5—H5A109.5C32—C31—C8118.22 (16)
N3—C5—H5B109.5C33—C32—C31121.00 (18)
H5A—C5—H5B109.5C33—C32—H32A119.5
N3—C5—H5C109.5C31—C32—H32A119.5
H5A—C5—H5C109.5C32—C33—C34120.39 (18)
H5B—C5—H5C109.5C32—C33—H33A119.8
N1—C6—C7112.59 (15)C34—C33—H33A119.8
N1—C6—H6A109.1C35—C34—C33119.25 (18)
C7—C6—H6A109.1C35—C34—H34A120.4
N1—C6—H6B109.1C33—C34—H34A120.4
C7—C6—H6B109.1C34—C35—C36120.53 (18)
H6A—C6—H6B107.8C34—C35—H35A119.7
C6—C7—S1110.58 (12)C36—C35—H35A119.7
C6—C7—H7A109.5C35—C36—C31121.02 (18)
S1—C7—H7A109.5C35—C36—H36A119.5
C6—C7—H7B109.5C31—C36—H36A119.5
S1—C7—H7B109.5F4—P1—F390.03 (8)
H7A—C7—H7B108.1F4—P1—F191.33 (9)
C21—C8—C31112.93 (14)F3—P1—F1178.58 (9)
C21—C8—C11111.65 (14)F4—P1—F291.47 (8)
C31—C8—C11108.14 (14)F3—P1—F289.85 (8)
C21—C8—S1108.93 (12)F1—P1—F290.54 (9)
C31—C8—S1112.31 (12)F4—P1—F590.31 (8)
C11—C8—S1102.41 (11)F3—P1—F589.46 (8)
C16—C11—C12118.30 (16)F1—P1—F590.11 (9)
C16—C11—C8123.45 (16)F2—P1—F5178.08 (8)
C12—C11—C8118.19 (16)F4—P1—F6179.38 (9)
C13—C12—C11121.31 (18)F3—P1—F689.43 (8)
C13—C12—H12A119.3F1—P1—F689.21 (9)
C11—C12—H12A119.3F2—P1—F688.82 (7)
C14—C13—C12119.82 (18)F5—P1—F689.39 (7)
C5—N3—C1—N2150.95 (18)C14—C15—C16—C110.4 (3)
C4—N3—C1—N232.1 (3)C31—C8—C21—C22174.76 (15)
C5—N3—C1—N128.1 (3)C11—C8—C21—C2263.1 (2)
C4—N3—C1—N1148.85 (18)S1—C8—C21—C2249.25 (19)
C3—N2—C1—N3154.99 (18)C31—C8—C21—C266.9 (2)
C2—N2—C1—N331.5 (3)C11—C8—C21—C26115.21 (18)
C3—N2—C1—N125.9 (3)S1—C8—C21—C26132.42 (15)
C2—N2—C1—N1147.63 (19)C26—C21—C22—C230.0 (3)
C6—N1—C1—N337.8 (3)C8—C21—C22—C23178.44 (16)
C6—N1—C1—N2143.12 (19)C21—C22—C23—C240.1 (3)
C1—N1—C6—C743.2 (3)C22—C23—C24—C250.1 (3)
N1—C6—C7—S1158.36 (13)C23—C24—C25—C260.0 (3)
C8—S1—C7—C6115.92 (14)C22—C21—C26—C250.0 (3)
C7—S1—C8—C2147.42 (14)C8—C21—C26—C25178.32 (16)
C7—S1—C8—C3178.45 (13)C24—C25—C26—C210.1 (3)
C7—S1—C8—C11165.77 (12)C21—C8—C31—C36103.47 (19)
C21—C8—C11—C169.8 (2)C11—C8—C31—C36132.46 (17)
C31—C8—C11—C16115.03 (19)S1—C8—C31—C3620.2 (2)
S1—C8—C11—C16126.21 (16)C21—C8—C31—C3276.83 (19)
C21—C8—C11—C12173.28 (15)C11—C8—C31—C3247.2 (2)
C31—C8—C11—C1261.9 (2)S1—C8—C31—C32159.51 (14)
S1—C8—C11—C1256.87 (18)C36—C31—C32—C330.7 (3)
C16—C11—C12—C130.3 (3)C8—C31—C32—C33179.02 (16)
C8—C11—C12—C13177.34 (17)C31—C32—C33—C340.1 (3)
C11—C12—C13—C140.4 (3)C32—C33—C34—C350.8 (3)
C12—C13—C14—C150.5 (3)C33—C34—C35—C360.8 (3)
C13—C14—C15—C160.5 (3)C34—C35—C36—C310.0 (3)
C12—C11—C16—C150.3 (3)C32—C31—C36—C350.7 (3)
C8—C11—C16—C15177.21 (17)C8—C31—C36—C35178.97 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F6i0.882.132.949 (2)155
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H32N3S+·PF6
Mr563.58
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.0111 (14), 9.1376 (15), 17.564 (3)
α, β, γ (°)96.532 (3), 100.225 (4), 108.053 (3)
V3)1331.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.33 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.924, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
11922, 6281, 4547
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 0.96
No. of reflections6281
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F6i0.88002.13002.949 (2)155.00
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBörner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.  Web of Science PubMed Google Scholar
First citationBörner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlörke, U., Herres-Pawlis, S., Heuwing, A., Neuba, A., Seewald, O. & Henkel, G. (2006). Acta Cryst. C62, m234–m237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalezowski, W., Bakshi, P. K., Leffek, K. T. & Cameron, T. S. (1994). Can. J. Chem. 72, 352–356.  CrossRef CAS Google Scholar
First citationHarmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.  Google Scholar
First citationHerres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationHerres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169.  Web of Science PubMed CAS Google Scholar
First citationNeuba, A. (2009). PhD thesis, University of Paderborn, Germany.  Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press.  Google Scholar
First citationNeuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517.  CrossRef CAS Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.  CrossRef CAS Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821.  CrossRef PubMed CAS Google Scholar
First citationPohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  Web of Science CrossRef Google Scholar
First citationPruszynski, P., Leffek, K. T., Borecka, B. & Cameron, T. S. (1992). Acta Cryst. C48, 1638–1641.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchneider, J. (2000). PhD thesis, University of Duisburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaden, H. (1999). PhD thesis, University of Oldenburg, Germany.  Google Scholar
First citationWittman, H. (1999). PhD thesis, University of Marburg, Germany.  Google Scholar
First citationWittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1238-o1239
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds