

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1,4-Bis(diphenylphosphanyl)butane- $\kappa^2 P_{,P'}$]chlorido(η^5 -indenyl)ruthenium(II)

Hui-Ling Sung,^a* Tze-Min Her,^b Wen-Hsien Su^b and Chin-Pao Cheng^c

^aDepartment of Mathematics and Science (Pre-college), National Taiwan Normal University, Taiwan, ^bDepartment of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, and ^cDepartment of Mechatronic Technology, National Taiwan Normal University, Taiwan Correspondence e-mail: hlsung@ntnu.edu.tw

Received 6 February 2011; accepted 21 April 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.102; data-to-parameter ratio = 14.7.

Facile ligand substitution is observed when the ruthenium chloride complex $[Ru(\eta^5-C_9H_7)Cl(PPh_3)_2]$ is treated with 1,4bis(diphenylphosphanyl)butane in refluxing toluene yielding the title compound, $[Ru(C_9H_7)Cl(C_{28}H_{28}P_2)]$. The Ru^{II} atom has a typical piano-stool coordination, defined by the indenyl ligand, one Cl atom and two phosphanyl P atoms. The Ru-P bond lengths are 2.2502 (9) and 2.2968 (8) Å.

Related literature

For general background to the title compound and other [Ru(η^5 -C₉H₇)Cl(diphos)] compounds, see: Oro *et al.* (1985); Tanase *et al.* (1994). For the chemistry of $[Ru(\eta^5-C_9H_7)Cl(di$ phos)], see: Franco (1989).

(10) $Å^3$

 \times 0.38 mm

18461 measured reflections

 $R_{\rm int} = 0.060$

5443 independent reflections

4355 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$Ru(C_9H_7)Cl(C_{28}H_{28}P_2)$]	V = 3094.42 (10)
$M_r = 678.11$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 12.6567 (2) Å	$\mu = 0.72 \text{ mm}^{-1}$
b = 15.7502 (3) Å	$T = 200 { m K}$
c = 15.9419 (3) Å	$0.55 \times 0.48 \times 0.3$
$\beta = 103.165 \ (1)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.704, \ T_{\max} = 0.821$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	370 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
5443 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to the National Science Council of the Republic of China (NSC grant No. 99-2221-E-003-003) and National Taiwan Normal University (grant No. 99031012) for financial support. The authors also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2178).

References

- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Franco, M., Giambattista, C., Angelo, S. & Massimo, M. (1989). J. Organomet. Chem. 370, 305-318.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Oro, L. A., Ciriano, M. A., Campo, M., Foces-Foces, C. & Cano, F. H. (1985). J. Organomet. Chem. 289, 117-131.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tanase, T., Mochizuki, H., Sato, R. & Yamamoto, Y. (1994). J. Organomet. Chem. 466, 233-236.

supporting information

Acta Cryst. (2011). E67, m641 [doi:10.1107/S1600536811015121]

$[1,4-Bis(diphenylphosphanyl)butane-\kappa^2 P, P']chlorido(\eta^5-indenyl)ruthenium(II)$

Hui-Ling Sung, Tze-Min Her, Wen-Hsien Su and Chin-Pao Cheng

S1. Comment

Reaction of $[Ru(\eta^5-C_9H_7)Cl(diphos)]$ with phenylacetylene in the presence of alcoholic KOH yielded ruthenium acetylide complexes $[Ru(\eta^5-C_9H_7)(\eta^1-CCPh)((diphos)]$ (diphos =1,2-bis(diphenylphosphanyl)butane (dppe), 1,2-bis(diphenylphosphanyl)butane (dppp), 1,2-bis(diphenylphosphanyl)butane (dppb)) in good yield (Tanase *et al.*, 1994). Treatment of the complex $[Ru(\eta^5-C_9H_7)Cl(PPh_3)_2]$ with 1,2-bis(diphenylphosphanyl)butane in toluene afforded the title compound $[Ru(\eta^5-C_9H_7)Cl(dppb)]$ (Figure 1). In the crystal structure of the title compound, the bidentate ligand dppb is coordinated to Ru with an P—Ru—P angle of 94.88 (3)°. The Ru—P bond lengths are 2.2502 (9) and 2.2968 (8) Å, respectively.

S2. Experimental

The title compound was prepared by a similar method used for the dppe ligand in the previous literature procedure of Oro, *et al.* (1985) The red-brown crystals of the title compound for X-ray structure analysis were obtained by slow diffusion of diethyl ether into a CH₂Cl₂ solution at room temperature for 3 days. Spectroscopic analysis: ¹H NMR (CDCl₃, 298 K, δ , p.p.m.): 7.48 — 7.13 (m, 24H, 20H of Ph and 4H of indenyl group); 4.49 (br, 1H of indenyl group); 3.82 (br, 2H of indenyl group); 3.21, 2.03, 1.80, 1.52 (m, 2H each one, CH₂ of dppb). ³¹P{¹H} NMR (CDCl₃, 298 K, δ , p.p.m.): 49.5. ¹³C{¹H} NMR (CDCl₃, 298 K, δ , p.p.m.): 137.0 — 128.4 (Ph); 122.6 (C-5, 6); 121.5 (C-4, 7); 115.7 (C-2); 99.7 (C-1, 3), 31.8 (t, two PCH₂ of dppb, J_{P-C}= 1.30 Hz); 27.4 (s, two CH₂ of dppb). HRMS (ESI, m/z): 678.2 (*M*⁺). Anal. Calcd for C₃₇H₃₅ P₂ClRu: C: 65.53, H: 5.20, Found: C: 65.58, H: 5.23.

S3. Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: C - H = 0.95 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic H atoms, and C - H = 0.99 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for methylene.

Figure 1

View of the title compound showing displacement ellipsoids at the 30% probability level. H atom are omitted for clarity.

$[1,4-Bis(diphenylphosphanyl)butane-\kappa^2 P, P']chlorido(\eta^5-indenyl)ruthenium(II)$

Crystal data

[Ru(C₉H₇)Cl(C₂₈H₂₈P₂)] $M_r = 678.11$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.6567 (2) Å b = 15.7502 (3) Å c = 15.9419 (3) Å $\beta = 103.165$ (1)° V = 3094.42 (10) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 9 pixels mm⁻¹ CCD rotation images, thick slices scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.704, T_{max} = 0.821$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.102$ S = 0.915443 reflections F(000) = 1392 $D_x = 1.456 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13485 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 200 KPrism, red-brown $0.55 \times 0.48 \times 0.38 \text{ mm}$

18461 measured reflections 5443 independent reflections 4355 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -14 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -18 \rightarrow 18$

370 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0707P)^2 + 0.5716P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.36 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.71$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.9824 (3)	0.0561 (2)	0.6534 (2)	0.0310 (7)
C2	1.0539 (3)	0.0051 (2)	0.7111 (2)	0.0416 (9)
H2	1.0262	-0.0376	0.7423	0.050*
C3	1.1652 (3)	0.0158 (3)	0.7235 (2)	0.0492 (10)
H3	1.2134	-0.0188	0.7638	0.059*
C4	1.2059 (3)	0.0773 (3)	0.6769 (3)	0.0485 (10)
H4	1.2821	0.0844	0.6849	0.058*
C5	1.1364 (3)	0.1276 (2)	0.6196 (3)	0.0457 (9)
Н5	1.1644	0.1698	0.5881	0.055*
C6	1.0246 (3)	0.1170 (2)	0.6073 (2)	0.0375 (8)
H6	0.9768	0.1518	0.5669	0.045*
C7	0.7758 (2)	0.1115 (2)	0.5546 (2)	0.0308 (7)
C8	0.7854 (3)	0.0919 (2)	0.4711 (2)	0.0367 (8)
H8	0.8231	0.0420	0.4612	0.044*
C9	0.7405 (3)	0.1445 (2)	0.4029 (2)	0.0415 (9)
Н9	0.7477	0.1309	0.3464	0.050*
C10	0.6851 (3)	0.2169 (2)	0.4166 (3)	0.0478 (9)
H10	0.6539	0.2529	0.3696	0.057*
C11	0.6753 (3)	0.2367 (2)	0.4985 (2)	0.0470 (9)
H11	0.6376	0.2866	0.5081	0.056*
C12	0.7198 (3)	0.1845 (2)	0.5667 (2)	0.0392 (8)
H12	0.7120	0.1987	0.6229	0.047*
C13	0.8163 (3)	-0.06514 (19)	0.6006 (2)	0.0344 (8)
H13A	0.8628	-0.0708	0.5587	0.041*
H13B	0.8445	-0.1055	0.6481	0.041*
C14	0.7023 (3)	-0.0944 (2)	0.5559 (2)	0.0373 (8)
H14A	0.6736	-0.0546	0.5080	0.045*
H14B	0.7084	-0.1508	0.5300	0.045*
C15	0.6194 (3)	-0.1009 (2)	0.6115 (2)	0.0387 (8)
H15A	0.6553	-0.1269	0.6673	0.046*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

111.00	0.5000	0.1000		0.0464
HI5B	0.5608	-0.1398	0.5829	0.046*
C16	0.5680 (3)	-0.0169 (2)	0.6296 (2)	0.0333 (8)
H16A	0.4890	-0.0258	0.6224	0.040*
H16B	0.5781	0.0252	0.5859	0.040*
C17	0.5251 (2)	0.1131 (2)	0.7400 (2)	0.0325 (8)
C18	0.4995 (3)	0.1697 (2)	0.6714 (3)	0.0486 (10)
H18	0.5268	0.1602	0.6214	0.058*
C19	0.4349 (3)	0.2393 (3)	0.6752 (3)	0.0653 (13)
H19	0.4189	0.2778	0.6282	0.078*
C20	0.3931 (3)	0.2536 (3)	0.7471 (3)	0.0618 (12)
H20	0.3500	0.3024	0.7499	0.074*
C21	0.4144 (3)	0.1970 (3)	0.8142 (3)	0.0505 (10)
H21	0.3844	0.2057	0.8631	0.061*
C22	0.4798 (3)	0.1269 (2)	0.8105 (2)	0.0378 (8)
H22	0.4939	0.0877	0.8569	0.045*
C23	0.5811 (3)	-0.05033(19)	0.8083 (2)	0.0288 (7)
C24	0.4915 (3)	-0.1027(2)	0.7832 (2)	0.0385 (8)
H24	0.4519	-0.1021	0.7250	0.046*
C25	0.4590 (3)	-0.1557(2)	0.8414 (3)	0.0495 (10)
H25	0 3979	-0.1917	0.8230	0.059*
C26	0.5150 (3)	-0.1566(2)	0.9261 (2)	0.0479 (10)
H26	0.4920	-0.1928	0.9662	0.058*
C27	0.6037 (3)	-0.1055(2)	0.9528 (3)	0.020
H27	0.6418	-0.1058	1 0115	0.0474 (5)
C28	0.0410 0.6382(3)	-0.0532(2)	0.8044(2)	0.037
U20	0.0382 (3)	-0.0101	0.0944(2)	0.0372 (8)
П20 С20	0.7011	-0.0191	0.9130	0.043
C29	0.7800(3)	0.1/11(2)	0.8825(2)	0.0338 (8)
C30	0.7742 (3)	0.2060 (2)	0.7974 (2)	0.03/1(8)
H30	0./118	0.2411	0.7658	0.045*
C31	0.8/50 (3)	0.1951 (2)	0.7/32 (3)	0.0432 (9)
H31	0.8948	0.2215	0.7218	0.052*
C32	0.9457 (3)	0.1465 (2)	0.8371 (2)	0.0440 (9)
H32	1.0228	0.1317	0.8380	0.053*
C33	0.8911 (3)	0.1335 (2)	0.9061 (2)	0.0368 (8)
C34	0.9246 (3)	0.0927 (2)	0.9869 (3)	0.0490 (10)
H34	0.9951	0.0686	1.0038	0.059*
C35	0.8541 (4)	0.0886 (3)	1.0400 (3)	0.0541 (11)
H35	0.8751	0.0594	1.0934	0.065*
C36	0.7508 (3)	0.1267 (3)	1.0172 (2)	0.0551 (11)
H36	0.7038	0.1234	1.0558	0.066*
C37	0.7170 (3)	0.1684 (2)	0.9408 (2)	0.0412 (9)
H37	0.6480	0.1953	0.9271	0.049*
Ru1	0.800240 (19)	0.071649 (15)	0.775247 (16)	0.02673 (11)
P1	0.83580 (7)	0.04314 (5)	0.64612 (5)	0.0283 (2)
P2	0.62274 (6)	0.02764 (5)	0.73711 (5)	0.0266 (2)
C11	0.85934 (7)	-0.07244 (5)	0.82062 (5)	0.0343 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U^{23}
C1	0.0251 (17)	0.0342 (18)	0.0342 (18)	0.0036 (14)	0.0077 (14)	-0.0051 (15)
C2	0.0318 (19)	0.052 (2)	0.042 (2)	0.0030 (17)	0.0106 (16)	0.0007 (18)
C3	0.035 (2)	0.066 (3)	0.045 (2)	0.014 (2)	0.0067 (17)	-0.005 (2)
C4	0.0260 (19)	0.061 (3)	0.061 (3)	-0.0005 (18)	0.0146 (18)	-0.021 (2)
C5	0.038 (2)	0.043 (2)	0.060 (2)	-0.0085 (18)	0.0201 (19)	-0.0107 (19)
C6	0.0314 (19)	0.0367 (19)	0.047 (2)	-0.0018 (15)	0.0137 (16)	-0.0041 (17)
C7	0.0242 (17)	0.0314 (18)	0.0376 (18)	-0.0022 (14)	0.0087 (14)	0.0053 (15)
C8	0.038 (2)	0.0350 (19)	0.037 (2)	-0.0002 (15)	0.0075 (16)	0.0020 (16)
C9	0.038 (2)	0.048 (2)	0.038 (2)	-0.0024 (17)	0.0059 (16)	0.0065 (17)
C10	0.042 (2)	0.049 (2)	0.050 (2)	0.0052 (19)	0.0044 (18)	0.0139 (19)
C11	0.041 (2)	0.045 (2)	0.058 (2)	0.0146 (17)	0.0168 (18)	0.0140 (19)
C12	0.0338 (19)	0.040 (2)	0.046 (2)	0.0034 (16)	0.0132 (16)	0.0079 (17)
C13	0.039 (2)	0.0301 (18)	0.0333 (19)	0.0057 (15)	0.0070 (15)	-0.0001 (15)
C14	0.049 (2)	0.0268 (17)	0.0370 (19)	-0.0065 (16)	0.0119 (17)	-0.0082 (15)
C15	0.048 (2)	0.0295 (17)	0.0388 (19)	-0.0092 (16)	0.0103 (17)	-0.0013 (16)
C16	0.0325 (18)	0.0366 (19)	0.0288 (17)	-0.0044 (15)	0.0024 (14)	0.0011 (15)
C17	0.0227 (17)	0.0271 (17)	0.046 (2)	-0.0022 (14)	0.0042 (15)	-0.0005 (16)
C18	0.038 (2)	0.042 (2)	0.070 (3)	0.0121 (17)	0.0211 (19)	0.020 (2)
C19	0.060 (3)	0.045 (2)	0.099 (4)	0.019 (2)	0.036 (3)	0.031 (2)
C20	0.044 (2)	0.041 (2)	0.100 (4)	0.0171 (19)	0.017 (2)	0.002 (2)
C21	0.041 (2)	0.051 (2)	0.059 (3)	0.0117 (19)	0.0079 (19)	-0.011 (2)
C22	0.0329 (19)	0.041 (2)	0.0368 (19)	0.0056 (16)	0.0019 (15)	-0.0053 (16)
C23	0.0267 (17)	0.0256 (16)	0.0351 (18)	0.0004 (13)	0.0089 (14)	0.0027 (14)
C24	0.0356 (19)	0.0381 (19)	0.042 (2)	-0.0059 (16)	0.0096 (16)	0.0016 (17)
C25	0.052 (2)	0.046 (2)	0.057 (3)	-0.0180 (19)	0.026 (2)	-0.0033 (19)
C26	0.060 (3)	0.042 (2)	0.049 (2)	-0.0032 (19)	0.028 (2)	0.0087 (18)
C27	0.054 (2)	0.049 (2)	0.042 (2)	0.004 (2)	0.0167 (19)	0.0056 (18)
C28	0.039 (2)	0.0377 (19)	0.0352 (19)	-0.0007 (16)	0.0086 (16)	0.0039 (15)
C29	0.0290 (18)	0.0273 (17)	0.043 (2)	-0.0038 (14)	0.0033 (15)	-0.0153 (15)
C30	0.0365 (19)	0.0246 (17)	0.048 (2)	0.0007 (15)	0.0049 (16)	-0.0097 (16)
C31	0.043 (2)	0.0296 (18)	0.061 (2)	-0.0099 (16)	0.0204 (19)	-0.0128 (18)
C32	0.0247 (18)	0.045 (2)	0.062 (2)	-0.0120 (16)	0.0086 (17)	-0.0266 (19)
C33	0.0263 (17)	0.0338 (18)	0.046 (2)	-0.0023 (15)	-0.0015 (15)	-0.0188 (16)
C34	0.050 (2)	0.038 (2)	0.049 (2)	0.0065 (18)	-0.0089 (19)	-0.0206 (18)
C35	0.067 (3)	0.053 (2)	0.034 (2)	0.004 (2)	-0.006 (2)	-0.0154 (18)
C36	0.058 (3)	0.068 (3)	0.040 (2)	-0.011 (2)	0.013 (2)	-0.021 (2)
C37	0.0307 (19)	0.051 (2)	0.042 (2)	-0.0026 (16)	0.0072 (16)	-0.0208 (18)
Ru1	0.02312 (16)	0.02491 (16)	0.03191 (17)	-0.00150 (10)	0.00574 (11)	-0.00442 (11)
P1	0.0259 (4)	0.0272 (4)	0.0325 (5)	0.0015 (3)	0.0077 (4)	-0.0010 (4)
P2	0.0232 (4)	0.0249 (4)	0.0310 (4)	-0.0009 (3)	0.0051 (3)	0.0006 (4)
C11	0.0347 (5)	0.0317 (4)	0.0342 (4)	0.0046 (3)	0.0031 (3)	0.0011 (3)

Geometric parameters (Å, °)

C1—C2	1.389 (5)	С19—Н19	0.9500
C1—C6	1.387 (5)	C20—C21	1.371 (6)
C1—P1	1.844 (3)	C20—H20	0.9500
С2—С3	1.388 (5)	C21—C22	1.390 (5)
С2—Н2	0.9500	C21—H21	0.9500
C3—C4	1.389 (6)	C22—H22	0.9500
С3—Н3	0.9500	C23—C24	1.385 (5)
C4—C5	1.367 (5)	C23—C28	1.399 (5)
C4—H4	0.9500	C23—P2	1.829 (3)
С5—С6	1.394 (5)	C24—C25	1.379 (5)
С5—Н5	0.9500	C24—H24	0.9500
С6—Н6	0.9500	C25—C26	1.374 (5)
C7—C12	1.387 (5)	C25—H25	0.9500
С7—С8	1.398 (5)	C26—C27	1.369 (5)
C7—P1	1.833 (3)	C26—H26	0.9500
С8—С9	1.383 (5)	C27—C28	1.384 (5)
С8—Н8	0.9500	C27—H27	0.9500
C9—C10	1.381 (5)	C28—H28	0.9500
С9—Н9	0.9500	C29—C37	1.416 (5)
C10-C11	1.376 (5)	C29—C33	1.427 (4)
C10—H10	0.9500	C29—C30	1.438 (5)
C11—C12	1.377 (5)	C29—Ru1	2.354 (3)
C11—H11	0.9500	C30—C31	1.424 (5)
C12—H12	0.9500	C30—Ru1	2.183 (3)
C13—C14	1.528 (5)	C30—H30	1.0000
C13—P1	1.848 (3)	C31—C32	1.417 (5)
C13—H13A	0.9900	C31—Ru1	2.165 (3)
C13—H13B	0.9900	C31—H31	1.0000
C14—C15	1.524 (5)	C32—C33	1.441 (5)
C14—H14A	0.9900	C32—Ru1	2.219 (3)
C14—H14B	0.9900	C32—H32	1.0000
C15—C16	1.530 (5)	C33—C34	1.414 (5)
C15—H15A	0.9900	C33—Ru1	2.352 (3)
C15—H15B	0.9900	C34—C35	1.365 (6)
C16—P2	1.836 (3)	C34—H34	0.9500
C16—H16A	0.9900	C35—C36	1.410 (6)
C16—H16B	0.9900	C35—H35	0.9500
C17—C22	1.389 (5)	C36—C37	1.363 (5)
C17—C18	1.390 (5)	C36—H36	0.9500
C17—P2	1.835 (3)	С37—Н37	0.9500
C18—C19	1.377 (5)	Ru1—P1	2.2502 (9)
C18—H18	0.9500	Ru1—P2	2.2968 (8)
C19—C20	1.386 (6)	Ru1—Cl1	2.4467 (8)
C_{1} C_{1} C_{2}	110 ((2)		110.0
$C_2 = C_1 = C_0$	118.6 (3)	$C_{25} - C_{26} - H_{26}$	119.9
$C_2 - C_1 - P_1$	118.2 (2)	C26—C27—C28	120.1 (4)

C6—C1—P1	123.1 (3)	C26—C27—H27	119.9
C3—C2—C1	120.8 (3)	C28—C27—H27	119.9
С3—С2—Н2	119.6	C27—C28—C23	120.5 (3)
C1—C2—H2	119.6	C27—C28—H28	119.7
C2-C3-C4	119.7 (4)	C23—C28—H28	119.7
C2—C3—H3	120.1	C_{37} C_{29} C_{33}	119.4(3)
C4 - C3 - H3	120.1	C_{37} C_{29} C_{30}	113.7(3)
$C_{5} C_{4} C_{3}$	120.1 120.0(3)	C_{33} C_{29} C_{30}	107.4(3)
$C_{5} = C_{4} = C_{5}$	120.0 (3)	$C_{33} = C_{23} = C_{30}$	107.4(3)
$C_3 = C_4 = H_4$	120.0	$C_{22} = C_{20} = R_{u1}$	120.2(2)
$C_3 = C_4 = H_4$	120.0	$C_{20} = C_{20} = R_{u1}$	72.20(17)
C4 - C5 - C6	120.2 (4)	C_{30} C_{29} K_{U1}	05.10(17)
C4—C5—H5	119.9	$C_{31} = C_{30} = C_{29}$	107.6 (3)
С6—С5—Н5	119.9	C31—C30—Ru1	70.21 (18)
C1C6C5	120.6 (3)	C29—C30—Ru1	78.12 (18)
С1—С6—Н6	119.7	С31—С30—Н30	125.8
С5—С6—Н6	119.7	С29—С30—Н30	125.8
C12—C7—C8	118.3 (3)	Ru1—C30—H30	125.8
C12—C7—P1	120.5 (3)	C32—C31—C30	109.2 (3)
C8—C7—P1	121.2 (3)	C32—C31—Ru1	73.2 (2)
C9—C8—C7	120.4 (3)	C30—C31—Ru1	71.56 (19)
С9—С8—Н8	119.8	С32—С31—Н31	125.3
С7—С8—Н8	119.8	C30—C31—H31	125.3
C8—C9—C10	120.2 (3)	Ru1—C31—H31	125.3
С8—С9—Н9	119.9	C31—C32—C33	107.0 (3)
С10—С9—Н9	119.9	C31—C32—Ru1	69.11 (19)
C11—C10—C9	119.7 (3)	C_{33} — C_{32} — R_{u1}	76.74 (18)
C11-C10-H10	120.1	$C_{31} - C_{32} - H_{32}$	126.2
C9-C10-H10	120.1	C_{33} C_{32} H_{32}	126.2
C_{12} C_{11} C_{10}	120.1 120.4(4)	Ru1_C32_H32	126.2
$C_{12} = C_{11} = C_{10}$	110.8	$C_{34} = C_{32} = C_{32}$	120.2
$C_{12} = C_{11} = H_{11}$	119.0	$C_{34} = C_{33} = C_{23}$	119.9(3)
C_{10} C_{11} C_{12} C_{7}	119.0	$C_{34} = C_{33} = C_{32}$	131.0(3)
CII = CI2 = C/	121.0 (5)	$C_{29} = C_{33} = C_{32}$	108.3(3)
CII—CI2—HI2	119.5	C34—C33—Rul	127.2(2)
C/CI2HI2	119.5	C29—C33—Rul	/2.41 (18)
C14—C13—P1	119.3 (2)	C32—C33—Rul	66.65 (18)
C14—C13—H13A	107.5	C35—C34—C33	118.9 (4)
P1—C13—H13A	107.5	С35—С34—Н34	120.5
C14—C13—H13B	107.5	С33—С34—Н34	120.5
P1—C13—H13B	107.5	C34—C35—C36	121.3 (4)
H13A—C13—H13B	107.0	С34—С35—Н35	119.4
C15—C14—C13	116.7 (3)	С36—С35—Н35	119.4
C15—C14—H14A	108.1	C37—C36—C35	121.3 (4)
C13—C14—H14A	108.1	С37—С36—Н36	119.3
C15—C14—H14B	108.1	С35—С36—Н36	119.3
C13—C14—H14B	108.1	C36—C37—C29	119.2 (3)
H14A—C14—H14B	107.3	С36—С37—Н37	120.4
C14—C15—C16	115.5 (3)	С29—С37—Н37	120.4
C14—C15—H15A	108.4	C31—Ru1—C30	38.23 (12)

C16—C15—H15A	108.4	C31—Ru1—C32	37.69 (14)
C14—C15—H15B	108.4	C30—Ru1—C32	63.48 (13)
C16—C15—H15B	108.4	C31—Ru1—P1	89.21 (10)
H15A—C15—H15B	107.5	C30—Ru1—P1	114.21 (10)
C15—C16—P2	114.8 (2)	C32—Ru1—P1	101.18 (10)
C15—C16—H16A	108.6	C31—Ru1—P2	132.17 (10)
P2—C16—H16A	108.6	C30—Ru1—P2	99.27 (9)
C15—C16—H16B	108.6	C32—Ru1—P2	160.13 (9)
P2—C16—H16B	108.6	P1—Ru1—P2	94.88 (3)
H16A—C16—H16B	107.5	C31—Ru1—C33	60.97 (14)
C22—C17—C18	118.0 (3)	C30—Ru1—C33	61.09 (12)
C22—C17—P2	122.6 (3)	C32—Ru1—C33	36.61 (12)
C18—C17—P2	119.2 (3)	P1—Ru1—C33	137.29 (9)
C19—C18—C17	120.7 (4)	P2—Ru1—C33	127.67 (9)
C19—C18—H18	119.7	C31—Ru1—C29	61.28 (13)
C17—C18—H18	119.7	C30—Ru1—C29	36.72 (12)
C18—C19—C20	120.5 (4)	C32—Ru1—C29	61.13 (12)
C18—C19—H19	119.7	P1—Ru1—C29	149.38 (9)
C20—C19—H19	119.7	P2—Ru1—C29	99.26 (8)
C21—C20—C19	119.7 (4)	C33—Ru1—C29	35.31 (11)
C21—C20—H20	120.1	C31—Ru1—Cl1	137.05 (11)
С19—С20—Н20	120.1	C30—Ru1—C11	154.00 (10)
C20—C21—C22	119.7 (4)	C32—Ru1—Cl1	101.22 (11)
C20—C21—H21	120.2	P1—Ru1—Cl1	88.51 (3)
C22—C21—H21	120.2	P2—Ru1—Cl1	90.75 (3)
C21—C22—C17	121.3 (3)	C33—Ru1—C11	93.83 (9)
C21—C22—H22	119.4	C29—Ru1—Cl1	118.14 (9)
C17—C22—H22	119.4	C7—P1—C1	102.34 (15)
C24—C23—C28	118.0 (3)	C7—P1—C13	103.63 (16)
C24—C23—P2	123.6 (3)	C1—P1—C13	99.75 (15)
C28—C23—P2	118.2 (2)	C7—P1—Ru1	118.56 (11)
C25—C24—C23	121.1 (3)	C1—P1—Ru1	109.17 (11)
C25—C24—H24	119.4	C13—P1—Ru1	120.43 (11)
C23—C24—H24	119.4	C23—P2—C16	102.80 (15)
C26—C25—C24	120.1 (4)	C23—P2—C17	100.73 (14)
С26—С25—Н25	120.0	C16—P2—C17	101.01 (15)
С24—С25—Н25	120.0	C23—P2—Ru1	116.19 (11)
C27—C26—C25	120.1 (3)	C16—P2—Ru1	120.06 (11)
С27—С26—Н26	119.9	C17—P2—Ru1	113.29 (10)