metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new copper(II) complex based on 1-[(1H-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yanghuaixia888@163.com

(Received 16 March 2011; accepted 11 April 2011; online 16 April 2011)

The title complex, tetra­aqua­{1-[(1H-benzotriazol-1-yl)meth­yl]-1H-1,2,4-triazole-κN4}(sulfato-κO)copper(II) sesquihydrate, [Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O, is composed of one copper atom, one 1-[(2H-benzotriazol-1-yl)meth­yl]-1-H-1,2,4-triazole (bmt) ligand, one sulfate ligand, four coordin­ated water mol­ecules and one and a half uncoordinated water mol­ecules. The CuII atom is six-coordinated by one N atom from a bmt ligand and five O atoms from the monodentate sulfate ligand and four water mol­ecules in a distorted octa­hedral geometry. In the crystal, adjacent mol­ecules are linked through O—H⋯O and O—H⋯N hydrogen bonds involving the sulfate anion and the coordin­ated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For background to complexes based on triazole and benzotriazole derivatives, see: Aromia et al. (2011[Aromia, G., Barriosa, L. A., Roubeaub, O. & Gameza, P. (2011). Coord. Chem. Rev. 255, 485-564.]); Meng et al. (2009[Meng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519-1527.]). For background to complexes with CuII atoms, see: Zhou et al. (2007[Zhou, X.-L., Meng, X.-R., Cheng, W., Hou, H.-W., Tang, M.-S. & Fan, Y.-T. (2007). Inorg. Chim. Acta, 360, 3467-3474.]); Brown et al. (2009[Brown, K., Zolezzi, S., Aguirre, P., Venegas-Yazigi, D., Paredes-Garcia, V., Baggio, R., Novak, M. A. & Spodine, E. (2009). Dalton Trans. pp. 1422-1427.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O

  • Mr = 458.90

  • Monoclinic, C 2/c

  • a = 12.496 (3) Å

  • b = 8.662 (2) Å

  • c = 31.543 (6) Å

  • β = 90.97 (3)°

  • V = 3413.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.758, Tmax = 0.810

  • 13448 measured reflections

  • 4046 independent reflections

  • 3502 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.088

  • S = 1.10

  • 4046 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O9 0.85 1.82 2.662 (3) 170
O2—H3W⋯O10i 0.85 1.89 2.723 (2) 165
O9—H9W⋯N6ii 0.85 2.00 2.836 (3) 168
O10—H11W⋯O6iii 0.85 1.93 2.771 (2) 170
O1—H2W⋯N2iii 0.85 2.16 2.951 (3) 155
O3—H5W⋯O8iv 0.85 1.99 2.789 (3) 156
O4—H7W⋯O6v 0.85 1.86 2.697 (2) 170
O9—H10W⋯O7v 0.85 1.99 2.824 (3) 165
O3—H6W⋯O6v 0.85 2.19 2.943 (3) 148
O2—H4W⋯O5vi 0.85 1.92 2.766 (2) 174
O4—H8W⋯O8vi 0.85 1.85 2.702 (2) 175
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Triazole and benzotriazole derivatives have been widely used in the construction of complexes since they can act as polydentate ligands and function as bridging ligands (Aromia et al., 2011; Meng et al., 2009). Moreover, CuII complexes have attracted more and more attention owing to their intrinsic esthetic appeal and potential applications in various fields (Zhou et al., 2007; Brown et al., 2009). In this work, through the reaction of 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (bmt) with copper sulfate at room temperature, we obtained the title complex [Cu(bmt) (SO4) (H2O)4] (H2O)1.5, which is reported here. As shown in Figure 1, each CuII ion is located in a slightly distorted octahedral environment and is coordinated to one nitrogen atom from the bmt ligand, five oxygen atoms from four water molecules and one monodentate sulfate. Atoms O1, O2, O4, N1 and Cu1 are nearly co-planar (the mean deviation from the plane is 0.0203 Å). The apical Cu1—O3 and Cu1—O5 bond lengths (2.331 (2) and 2.465 Å) are considerably longer than the equatorial ones (1.974 (2)- 2.002 (2) Å) due to the Jahn-Teller effect. Intramolecular O—H···O hydrogen bonds stabilize the molecular configuration and O—H···O, O—H···N hydrogen bonds between adjacent molecules consolidate the crystal packing.

Related literature top

For background to complexes based on triazole and benzotriazole derivatives, see: Aromia et al. (2011); Meng et al. (2009). For background complexes with CuII atoms, see: Zhou et al. (2007); Brown et al. (2009).

Experimental top

The ligand 1-((benzotriazol-1-yl)methyl)-1-H-1,2,4-triazole (0.1 mmol) in methanol (4 ml) was added dropwise to an aqueous solution (2 ml) of copper sulfate (0.1 mmol). The resulting solution was allowed to stand at room temperature. After three weeks blue crystals with good quality were obtained from the filtrate and dried in air.

Refinement top

H atoms are positioned geometrically and refined as riding atoms, with C-H = 0.93 (aromatic) and 0.97 (CH2) Å and O-H = 0.85 Å, and with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsoids. H atoms are omitted for clarity.
tetraaqua{1-[(1H-benzotriazol-1-yl)methyl]-1H-1,2,4-triazole- κN4}(sulfato-κO)copper(II) sesquihydrate top
Crystal data top
[Cu(SO4)(C9H8N6)(H2O)4]·1.5H2OF(000) = 1888
Mr = 458.90Dx = 1.786 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4587 reflections
a = 12.496 (3) Åθ = 2.6–27.9°
b = 8.662 (2) ŵ = 1.47 mm1
c = 31.543 (6) ÅT = 293 K
β = 90.97 (3)°Prism, blue
V = 3413.7 (12) Å30.20 × 0.16 × 0.15 mm
Z = 8
Data collection top
Rigaku Saturn
diffractometer
4046 independent reflections
Radiation source: fine-focus sealed tube3502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear, Rigaku/MSC, 2006)
k = 811
Tmin = 0.758, Tmax = 0.810l = 4136
13448 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.547P]
where P = (Fo2 + 2Fc2)/3
4046 reflections(Δ/σ)max = 0.003
240 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(SO4)(C9H8N6)(H2O)4]·1.5H2OV = 3413.7 (12) Å3
Mr = 458.90Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.496 (3) ŵ = 1.47 mm1
b = 8.662 (2) ÅT = 293 K
c = 31.543 (6) Å0.20 × 0.16 × 0.15 mm
β = 90.97 (3)°
Data collection top
Rigaku Saturn
diffractometer
4046 independent reflections
Absorption correction: multi-scan
(CrystalClear, Rigaku/MSC, 2006)
3502 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.810Rint = 0.035
13448 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
4046 reflectionsΔρmin = 0.45 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76191 (2)0.23448 (3)0.685956 (9)0.02244 (10)
N10.90110 (15)0.1958 (2)0.65733 (6)0.0239 (4)
N21.05863 (17)0.0889 (2)0.64129 (7)0.0300 (5)
N31.04251 (15)0.2230 (2)0.61944 (6)0.0220 (4)
N41.10175 (16)0.2341 (2)0.54782 (6)0.0247 (4)
N51.02130 (17)0.3031 (3)0.52517 (7)0.0332 (5)
N61.01910 (18)0.2435 (3)0.48737 (7)0.0349 (5)
O10.70071 (13)0.31913 (19)0.63234 (5)0.0274 (4)
H1W0.64840.26550.62310.033*
H2W0.67870.41130.63520.033*
O20.82932 (13)0.1504 (2)0.73862 (5)0.0296 (4)
H3W0.88090.20750.74690.036*
H4W0.79540.10600.75830.036*
O30.69989 (14)0.0117 (2)0.66866 (6)0.0377 (5)
H5W0.72990.08350.68290.045*
H6W0.63510.02600.67550.045*
O40.62735 (13)0.28272 (19)0.71502 (5)0.0262 (4)
H7W0.57600.22610.70630.031*
H8W0.63590.28590.74180.031*
O50.79519 (13)0.50995 (19)0.70084 (5)0.0294 (4)
O60.97927 (13)0.5740 (2)0.68985 (5)0.0306 (4)
O70.84885 (15)0.6278 (2)0.63497 (5)0.0325 (4)
O80.84941 (15)0.77569 (18)0.69968 (5)0.0304 (4)
O90.54758 (15)0.1536 (2)0.59423 (5)0.0363 (4)
H9W0.53440.17440.56830.044*
H10W0.49070.16160.60850.044*
O100.50000.8423 (3)0.75000.0351 (6)
H11W0.49320.90440.72930.042*
C10.94835 (18)0.2833 (3)0.62931 (7)0.0237 (5)
H1A0.92010.37410.61800.028*
C20.9720 (2)0.0775 (3)0.66390 (8)0.0304 (6)
H2A0.95980.00330.68260.036*
C31.1218 (2)0.2839 (3)0.59085 (7)0.0271 (5)
H3A1.12070.39580.59200.033*
H3B1.19240.24960.60000.033*
C41.15259 (19)0.1279 (3)0.52359 (7)0.0245 (5)
C51.0988 (2)0.1353 (3)0.48467 (8)0.0280 (5)
C61.1307 (2)0.0434 (3)0.45077 (8)0.0380 (7)
H6A1.09500.04720.42470.046*
C71.2158 (2)0.0516 (3)0.45735 (10)0.0442 (7)
H7A1.23850.11440.43530.053*
C81.2701 (2)0.0572 (3)0.49644 (10)0.0433 (7)
H8A1.32870.12270.49950.052*
C91.2399 (2)0.0309 (3)0.53082 (9)0.0340 (6)
H9A1.27550.02580.55690.041*
S10.86691 (4)0.62224 (6)0.680761 (18)0.02084 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01695 (15)0.03034 (19)0.02010 (17)0.00004 (11)0.00198 (11)0.00009 (11)
N10.0208 (10)0.0252 (11)0.0259 (11)0.0019 (8)0.0041 (8)0.0001 (8)
N20.0281 (11)0.0278 (11)0.0344 (13)0.0062 (9)0.0069 (9)0.0071 (9)
N30.0216 (10)0.0235 (10)0.0208 (10)0.0011 (8)0.0032 (8)0.0011 (8)
N40.0216 (10)0.0311 (11)0.0215 (11)0.0046 (8)0.0014 (8)0.0020 (8)
N50.0289 (12)0.0416 (13)0.0292 (12)0.0109 (10)0.0005 (9)0.0034 (10)
N60.0296 (12)0.0479 (14)0.0270 (12)0.0077 (10)0.0029 (9)0.0014 (10)
O10.0290 (9)0.0262 (9)0.0270 (9)0.0039 (7)0.0024 (7)0.0009 (7)
O20.0226 (9)0.0409 (11)0.0252 (9)0.0061 (7)0.0014 (7)0.0041 (8)
O30.0296 (10)0.0339 (11)0.0494 (12)0.0008 (8)0.0039 (9)0.0045 (9)
O40.0200 (8)0.0334 (9)0.0252 (9)0.0042 (7)0.0025 (7)0.0016 (7)
O50.0286 (9)0.0254 (9)0.0345 (10)0.0078 (7)0.0075 (8)0.0030 (7)
O60.0190 (8)0.0371 (10)0.0355 (11)0.0002 (7)0.0033 (7)0.0005 (8)
O70.0344 (10)0.0431 (11)0.0197 (9)0.0051 (8)0.0020 (7)0.0007 (8)
O80.0414 (11)0.0213 (9)0.0285 (10)0.0001 (7)0.0031 (8)0.0014 (7)
O90.0346 (10)0.0515 (12)0.0228 (10)0.0007 (9)0.0018 (8)0.0052 (8)
O100.0373 (15)0.0287 (14)0.0387 (16)0.0000.0132 (12)0.000
C10.0227 (12)0.0253 (12)0.0230 (12)0.0054 (9)0.0028 (9)0.0014 (10)
C20.0293 (13)0.0261 (13)0.0362 (15)0.0037 (10)0.0091 (11)0.0080 (11)
C30.0259 (12)0.0323 (14)0.0234 (13)0.0025 (10)0.0042 (10)0.0004 (10)
C40.0232 (12)0.0266 (13)0.0240 (13)0.0002 (9)0.0045 (9)0.0018 (10)
C50.0265 (13)0.0324 (14)0.0251 (14)0.0007 (10)0.0010 (10)0.0025 (10)
C60.0394 (16)0.0489 (17)0.0257 (15)0.0065 (13)0.0023 (12)0.0080 (12)
C70.0467 (18)0.0411 (17)0.0453 (19)0.0024 (14)0.0146 (14)0.0121 (14)
C80.0323 (16)0.0386 (17)0.059 (2)0.0095 (12)0.0086 (14)0.0033 (14)
C90.0267 (13)0.0375 (15)0.0376 (16)0.0063 (11)0.0033 (11)0.0043 (12)
S10.0193 (3)0.0228 (3)0.0205 (3)0.0010 (2)0.0009 (2)0.0003 (2)
Geometric parameters (Å, º) top
Cu1—O41.974 (2)O4—H8W0.8505
Cu1—O11.985 (2)O5—S11.473 (2)
Cu1—O21.988 (2)O6—S11.488 (2)
Cu1—N12.002 (2)O7—S11.459 (2)
Cu1—O32.331 (2)O8—S11.475 (2)
N1—C11.312 (3)O9—H9W0.8501
N1—C21.368 (3)O9—H10W0.8499
N2—C21.310 (3)O10—H11W0.8500
N2—N31.363 (3)C1—H1A0.9300
N3—C11.329 (3)C2—H2A0.9300
N3—C31.451 (3)C3—H3A0.9700
N4—C41.360 (3)C3—H3B0.9700
N4—N51.362 (3)C4—C51.391 (3)
N4—C31.442 (3)C4—C91.393 (3)
N5—N61.299 (3)C5—C61.397 (3)
N6—C51.372 (3)C6—C71.358 (4)
O1—H1W0.8501C6—H6A0.9300
O1—H2W0.8499C7—C81.398 (4)
O2—H3W0.8501C7—H7A0.9300
O2—H4W0.8499C8—C91.384 (4)
O3—H5W0.8499C8—H8A0.9300
O3—H6W0.8500C9—H9A0.9300
O4—H7W0.8499
O4—Cu1—O189.92 (7)N1—C1—H1A125.0
O4—Cu1—O292.39 (7)N3—C1—H1A125.0
O1—Cu1—O2177.58 (7)N2—C2—N1113.6 (2)
O4—Cu1—N1177.18 (7)N2—C2—H2A123.2
O1—Cu1—N190.16 (8)N1—C2—H2A123.2
O2—Cu1—N187.50 (8)N4—C3—N3111.5 (2)
O4—Cu1—O391.14 (7)N4—C3—H3A109.3
O1—Cu1—O390.96 (7)N3—C3—H3A109.3
O2—Cu1—O389.72 (7)N4—C3—H3B109.3
N1—Cu1—O391.67 (7)N3—C3—H3B109.3
C1—N1—C2103.7 (2)H3A—C3—H3B108.0
C1—N1—Cu1127.68 (16)N4—C4—C5104.0 (2)
C2—N1—Cu1128.52 (16)N4—C4—C9133.5 (2)
C2—N2—N3102.88 (19)C5—C4—C9122.5 (2)
C1—N3—N2109.89 (19)N6—C5—C4108.5 (2)
C1—N3—C3128.3 (2)N6—C5—C6130.8 (2)
N2—N3—C3121.84 (19)C4—C5—C6120.6 (2)
C4—N4—N5110.47 (19)C7—C6—C5117.5 (3)
C4—N4—C3131.0 (2)C7—C6—H6A121.3
N5—N4—C3118.5 (2)C5—C6—H6A121.3
N6—N5—N4108.1 (2)C6—C7—C8121.5 (3)
N5—N6—C5108.9 (2)C6—C7—H7A119.2
Cu1—O1—H1W112.0C8—C7—H7A119.2
Cu1—O1—H2W112.2C9—C8—C7122.5 (3)
H1W—O1—H2W107.5C9—C8—H8A118.8
Cu1—O2—H3W110.6C7—C8—H8A118.8
Cu1—O2—H4W124.5C8—C9—C4115.3 (3)
H3W—O2—H4W115.1C8—C9—H9A122.3
Cu1—O3—H5W113.8C4—C9—H9A122.3
Cu1—O3—H6W112.8O7—S1—O5111.25 (11)
H5W—O3—H6W100.0O7—S1—O8110.46 (10)
Cu1—O4—H7W111.9O5—S1—O8109.00 (10)
Cu1—O4—H8W112.0O7—S1—O6109.24 (11)
H7W—O4—H8W114.9O5—S1—O6108.10 (11)
H9W—O9—H10W109.9O8—S1—O6108.73 (11)
N1—C1—N3109.9 (2)
O4—Cu1—N1—C153.0 (16)N5—N4—C3—N376.2 (3)
O1—Cu1—N1—C138.7 (2)C1—N3—C3—N487.7 (3)
O2—Cu1—N1—C1140.7 (2)N2—N3—C3—N493.6 (3)
O3—Cu1—N1—C1129.7 (2)N5—N4—C4—C50.1 (3)
O4—Cu1—N1—C2123.1 (14)C3—N4—C4—C5178.0 (2)
O1—Cu1—N1—C2145.3 (2)N5—N4—C4—C9177.9 (3)
O2—Cu1—N1—C235.3 (2)C3—N4—C4—C90.1 (5)
O3—Cu1—N1—C254.3 (2)N5—N6—C5—C40.4 (3)
C2—N2—N3—C10.8 (3)N5—N6—C5—C6178.1 (3)
C2—N2—N3—C3178.1 (2)N4—C4—C5—N60.2 (3)
C4—N4—N5—N60.3 (3)C9—C4—C5—N6178.4 (2)
C3—N4—N5—N6178.5 (2)N4—C4—C5—C6178.5 (2)
N4—N5—N6—C50.4 (3)C9—C4—C5—C60.3 (4)
C2—N1—C1—N30.3 (3)N6—C5—C6—C7178.1 (3)
Cu1—N1—C1—N3176.54 (15)C4—C5—C6—C70.3 (4)
N2—N3—C1—N10.7 (3)C5—C6—C7—C80.3 (4)
C3—N3—C1—N1178.1 (2)C6—C7—C8—C91.1 (5)
N3—N2—C2—N10.7 (3)C7—C8—C9—C41.0 (4)
C1—N1—C2—N20.3 (3)N4—C4—C9—C8177.2 (3)
Cu1—N1—C2—N2177.05 (17)C5—C4—C9—C80.4 (4)
C4—N4—C3—N3106.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O90.851.822.662 (3)170
O2—H3W···O10i0.851.892.723 (2)165
O9—H9W···N6ii0.852.002.836 (3)168
O10—H11W···O6iii0.851.932.771 (2)170
O10—H11W···S1iii0.852.883.6458 (18)150
O1—H2W···N2iii0.852.162.951 (3)155
O3—H5W···O8iv0.851.992.789 (3)156
O4—H7W···O6v0.851.862.697 (2)170
O4—H7W···S1v0.852.873.6842 (19)162
O9—H10W···O7v0.851.992.824 (3)165
O9—H10W···S1v0.852.803.582 (2)154
O3—H6W···O6v0.852.192.943 (3)148
O2—H4W···O5vi0.851.922.766 (2)174
O2—H4W···S1vi0.852.823.571 (2)148
O4—H8W···O8vi0.851.852.702 (2)175
O4—H8W···S1vi0.852.823.5687 (18)147
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z+1; (iii) x1/2, y+1/2, z; (iv) x, y1, z; (v) x1/2, y1/2, z; (vi) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C9H8N6)(H2O)4]·1.5H2O
Mr458.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.496 (3), 8.662 (2), 31.543 (6)
β (°) 90.97 (3)
V3)3413.7 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear, Rigaku/MSC, 2006)
Tmin, Tmax0.758, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
13448, 4046, 3502
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.088, 1.10
No. of reflections4046
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O90.851.822.662 (3)170
O2—H3W···O10i0.851.892.723 (2)165
O9—H9W···N6ii0.852.002.836 (3)168
O10—H11W···O6iii0.851.932.771 (2)170
O10—H11W···S1iii0.852.883.6458 (18)150
O1—H2W···N2iii0.852.162.951 (3)155
O3—H5W···O8iv0.851.992.789 (3)156
O4—H7W···O6v0.851.862.697 (2)170
O4—H7W···S1v0.852.873.6842 (19)162
O9—H10W···O7v0.851.992.824 (3)165
O9—H10W···S1v0.852.803.582 (2)154
O3—H6W···O6v0.852.192.943 (3)148
O2—H4W···O5vi0.851.922.766 (2)174
O2—H4W···S1vi0.852.823.571 (2)148
O4—H8W···O8vi0.851.852.702 (2)175
O4—H8W···S1vi0.852.823.5687 (18)147
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z+1; (iii) x1/2, y+1/2, z; (iv) x, y1, z; (v) x1/2, y1/2, z; (vi) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The study was supported by the Science and Technology Department of Henan Province (082102330003).

References

First citationAromia, G., Barriosa, L. A., Roubeaub, O. & Gameza, P. (2011). Coord. Chem. Rev. 255, 485–564.  Google Scholar
First citationBrown, K., Zolezzi, S., Aguirre, P., Venegas-Yazigi, D., Paredes-Garcia, V., Baggio, R., Novak, M. A. & Spodine, E. (2009). Dalton Trans. pp. 1422–1427.  CrossRef Google Scholar
First citationMeng, X.-R., Jin, S.-Z., Hou, H.-W., Du, C.-X. & Ng, S. W. (2009). Inorg. Chim. Acta, 362, 1519–1527.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, X.-L., Meng, X.-R., Cheng, W., Hou, H.-W., Tang, M.-S. & Fan, Y.-T. (2007). Inorg. Chim. Acta, 360, 3467–3474.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds