organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-tert-Butyl O-2-isopropyl-5-methylcyclohexyl phenylphosphonamidate

Li-Juan Liu, Fan-Jie Meng, Hao Xu, Daqi Wang and Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: literabc@hotmail.com

Received 3 April 2011; accepted 6 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.053; wR factor = 0.130; data-to-parameter ratio = 16.2.

In the title compound, $C_{20}H_{34}NO_2P$, the P atom has an irregular tetrahedral environment and exhibits S_p chirality. In the crystal, weak intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into chains extending in [010].

Related literature

For the crystal structures of related P-chiral compounds, see: Chaloner *et al.* (1991); Meng *et al.* (2010).

Experimental

$C_{20}H_{34}NO_2P$	b = 11.064 (4) Å
$M_r = 351.45$	c = 22.557 (9) Å
Orthorhombic, $P2_12_12_1$	$V = 2072.8 (15) \text{ Å}^3$
a = 8.305 (3) Å	Z = 4

Mo $K\alpha$ radiation $\mu = 0.14 \text{ mm}^{-1}$

Data collection

Bruker SMART-1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.938, T_{\rm max} = 0.949$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.053 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.130 & \mbox{$\Delta\rho_{max}$} = 0.27 \mbox{e} \begin{tabular}{lll} A_{p_{max}} = 0.27 \mbox{e} \begin{tabular}{lll} A_{p_{min}} = -0.31 \mbox{e} \begin{tabular}{lll} A_{p_{min}} \begin{tabular}$

T = 298 K

 $R_{\rm int} = 0.075$

 $0.45 \times 0.40 \times 0.37 \text{ mm}$

10336 measured reflections

3610 independent reflections

1993 reflections with $I > 2\sigma(I)$

Table 1		
TT	1	

Hydrogen-bond geometry (Å, °).

$N1-H1\cdots O2^{i}$ 0.86 2.52 3.326 (4)	156
$C13-H13\cdots O2^{i}$ 0.93 2.51 3.391 (5)	157

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Natural Science Foundation of China (grant No. 20772055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5071).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1991). Acta Cryst. C47, 2241–2242.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Meng, F.-J., Xu, H., Liu, L.-J., Wang, D. & Zhao, C.-Q. (2010). Acta Cryst. E66, 02352.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1244 [doi:10.1107/S1600536811012864]

N-tert-Butyl O-2-isopropyl-5-methylcyclohexyl phenylphosphonamidate

Li-Juan Liu, Fan-Jie Meng, Hao Xu, Daqi Wang and Chang-Qiu Zhao

S1. Comment

We recently reported the crystal stucture of 2-isopropyl-5-methylcyclohexyl *N*-cyclohexyl-*P*- phenylphosphonamidate synthesized by the reaction of (R_p) -*O*-menthyl phenylphosphinate with cyclohexylamine (Meng *et al.*, 2010). Herein we report the title compound (I) obtained by the reaction of the same phosphinate with *tert*-butylamine.

In (I) (Fig.1), the configuration of the central P atom was detemined as *S* and the four groups around the P atom form an irregular tetrahedron. A stable chair conformation was observed for the 2-isopropyl-5-methylcyclohexyloxy, in which the isopropyl, methyl and oxygen atom locate at equatorial bond. The absolute configuration of C_4 , C_7 , and C_{11} are *S*, *R*, and *R*, respectively. The bond angle around the P atom are normal and comparable with those observed in the related compounds (Meng *et al.*, 2010; Chaloner *et al.* 1991).

In the crystal structure, the molecules are linked by weak intermolecular N1—H1…O2 and C13—H13…O2 hodrogen bonds (Tabel 1) into chains extended in [010].

S2. Experimental

Carbon tetrachloride was added to a solution of (R_p) -*O*-menthyl-phenylphosphonothioate dissolved in dry ether and *tert*butylamine. The reaction mixture was stirred for 30 h at room temperature. The crystal suitable for X-ray diffraction was obtained by recrystallization with dichloromethane/hexane.

S3. Refinement

All H atoms were fixed geometrically (C—H = 0.93 - 0.98 Å; N—H = 0.86 Å), and treated as riding, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Figure 1

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

N-tert-Butyl O-2-isopropyl-5-methylcyclohexyl phenylphosphonamidate

Crystal data $C_{20}H_{34}NO_2P$ F(000) = 768 $M_r = 351.45$ $D_{\rm x} = 1.126 {\rm Mg} {\rm m}^{-3}$ Orthorhombic, P2₁2₁2₁ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1474 reflections Hall symbol: P 2ac 2ab a = 8.305 (3) Å $\theta = 2.6 - 18.0^{\circ}$ b = 11.064 (4) Å $\mu = 0.14 \text{ mm}^{-1}$ T = 298 Kc = 22.557 (9) ÅV = 2072.8 (15) Å³ Block, colourless Z = 4 $0.45 \times 0.40 \times 0.37 \text{ mm}$ Data collection Desilver CMADT 1000 CCD 1 . . 10226

Bruker SMART-1000 CCD area-detector	10336 measured reflections
diffractometer	3610 independent reflections
Radiation source: fine-focus sealed tube	1993 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.075$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 13$
$T_{\min} = 0.938, \ T_{\max} = 0.949$	$l = -26 \rightarrow 25$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
3610 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
223 parameters	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
114 restraints	$\Delta ho_{\min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2085 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.06 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.54415 (14)	0.34918 (10)	0.23972 (5)	0.0462 (3)
01	0.6726 (3)	0.2945 (3)	0.19552 (12)	0.0503 (8)
O2	0.5009 (3)	0.4756 (2)	0.23040 (13)	0.0578 (9)
N1	0.3903 (4)	0.2570 (3)	0.23664 (16)	0.0521 (9)
H1	0.4139	0.1816	0.2332	0.063*
C4	0.7421 (5)	0.3383 (5)	0.09282 (17)	0.0586 (13)
H4	0.8542	0.3192	0.1027	0.070*
C5	0.6512 (5)	0.3284 (4)	0.30808 (17)	0.0418 (11)
C6	0.7238 (7)	0.4734 (5)	0.1000 (2)	0.0679 (14)
H6	0.7301	0.4912	0.1425	0.082*
C7	0.6383 (5)	0.2641 (4)	0.13399 (18)	0.0511 (12)
H7	0.5247	0.2806	0.1256	0.061*
C8	0.6923 (6)	0.4277 (4)	0.3410 (2)	0.0624 (14)
H8	0.6632	0.5044	0.3281	0.075*
С9	0.6699 (6)	0.1301 (4)	0.1270 (2)	0.0636 (14)
H9A	0.7795	0.1132	0.1394	0.076*
H9B	0.5983	0.0861	0.1533	0.076*
C10	0.2175 (5)	0.2851 (4)	0.2390 (2)	0.0605 (12)
C11	0.6471 (7)	0.0842 (5)	0.0651 (2)	0.0708 (15)
H11	0.5336	0.0970	0.0551	0.085*
C12	0.7434 (7)	0.1585 (6)	0.0229 (2)	0.0831 (17)
H12A	0.7165	0.1348	-0.0173	0.100*
H12B	0.8568	0.1418	0.0291	0.100*

C13	0.6942 (6)	0.2165 (4)	0.3286 (2)	0.0627 (14)
H13	0.6688	0.1482	0.3065	0.075*
C14	0.7741 (6)	0.2041 (5)	0.3811 (2)	0.0750 (16)
H14	0.7992	0.1275	0.3952	0.090*
C15	0.8169 (6)	0.3034 (6)	0.4129 (2)	0.0723 (16)
H15	0.8739	0.2941	0.4481	0.087*
C16	0.7145 (6)	0.2930 (5)	0.0299 (2)	0.0732 (16)
H16A	0.6046	0.3111	0.0183	0.088*
H16B	0.7856	0.3362	0.0032	0.088*
C17	0.1234 (6)	0.1719 (5)	0.2447 (3)	0.1004 (18)
H17A	0.1550	0.1304	0.2802	0.151*
H17B	0.1435	0.1211	0.2110	0.151*
H17C	0.0107	0.1908	0.2467	0.151*
C18	0.6792 (8)	-0.0509 (5)	0.0587 (2)	0.103 (2)
H18A	0.6648	-0.0744	0.0181	0.154*
H18B	0.6054	-0.0951	0.0833	0.154*
H18C	0.7876	-0.0683	0.0708	0.154*
C19	0.5637 (7)	0.5245 (5)	0.0774 (2)	0.0915 (19)
H19A	0.5523	0.5065	0.0360	0.137*
H19B	0.5621	0.6105	0.0830	0.137*
H19C	0.4764	0.4885	0.0990	0.137*
C20	0.7781 (7)	0.4143 (5)	0.3941 (2)	0.0723 (16)
H20	0.8077	0.4819	0.4160	0.087*
C21	0.8611 (8)	0.5424 (6)	0.0696 (3)	0.109 (2)
H21A	0.9626	0.5089	0.0817	0.163*
H21B	0.8566	0.6261	0.0807	0.163*
H21C	0.8502	0.5354	0.0274	0.163*
C22	0.1788 (8)	0.3622 (6)	0.2900 (3)	0.136 (2)
H22A	0.0641	0.3665	0.2948	0.204*
H22B	0.2210	0.4419	0.2835	0.204*
H22C	0.2260	0.3286	0.3252	0.204*
C23	0.1671 (8)	0.3533 (7)	0.1851 (3)	0.137 (2)
H23A	0.0565	0.3770	0.1890	0.206*
H23B	0.1793	0.3028	0.1508	0.206*
H23C	0.2332	0.4240	0.1809	0.206*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0430 (6)	0.0520 (7)	0.0436 (7)	-0.0011 (6)	-0.0006 (6)	0.0021 (6)
01	0.0398 (17)	0.071 (2)	0.0398 (17)	-0.0001 (16)	-0.0011 (14)	-0.0013 (14)
O2	0.054 (2)	0.0493 (18)	0.070 (2)	-0.0005 (15)	-0.0028 (16)	0.0074 (15)
N1	0.037 (2)	0.052 (2)	0.068 (2)	-0.0012 (17)	0.0005 (19)	-0.0009 (19)
C4	0.042 (3)	0.093 (4)	0.041 (3)	0.000 (3)	-0.004 (2)	0.006 (3)
C5	0.040 (3)	0.051 (3)	0.035 (2)	-0.003 (2)	-0.0010 (19)	0.005 (2)
C6	0.067 (4)	0.075 (4)	0.062 (3)	-0.014 (3)	0.004 (3)	0.001 (3)
C7	0.040 (3)	0.076 (4)	0.038 (3)	-0.002 (3)	0.003 (2)	-0.009 (2)
C8	0.077 (4)	0.057 (3)	0.053 (3)	0.008 (3)	-0.009 (3)	-0.005 (3)

C9	0.053 (3)	0.080 (4)	0.058 (3)	0.005 (3)	0.003 (2)	-0.005 (3)	
C10	0.042 (3)	0.065 (3)	0.074 (3)	-0.004(2)	0.001 (3)	-0.003 (3)	
C11	0.065 (4)	0.090 (4)	0.057 (3)	0.004 (3)	0.001 (3)	-0.011 (3)	
C12	0.078 (4)	0.115 (5)	0.056 (3)	0.008 (4)	0.008 (3)	-0.014 (3)	
C13	0.074 (4)	0.050 (3)	0.064 (3)	0.001 (3)	-0.017 (3)	-0.002(2)	
C14	0.076 (4)	0.076 (4)	0.073 (4)	-0.001 (3)	-0.028 (3)	0.010 (3)	
C15	0.067 (4)	0.101 (5)	0.048 (3)	0.004 (3)	-0.019 (3)	0.002 (3)	
C16	0.072 (4)	0.104 (5)	0.044 (3)	-0.003 (3)	0.002 (3)	0.001 (3)	
C17	0.055 (3)	0.079 (4)	0.168 (5)	-0.013 (3)	0.010 (4)	-0.014 (4)	
C18	0.120 (6)	0.098 (5)	0.090 (4)	0.020 (4)	-0.006 (4)	-0.037 (3)	
C19	0.097 (5)	0.084 (4)	0.093 (4)	-0.006 (4)	0.017 (4)	0.014 (3)	
C20	0.093 (5)	0.064 (4)	0.059 (4)	-0.002 (4)	-0.018 (3)	-0.016 (3)	
C21	0.098 (5)	0.118 (5)	0.110 (5)	-0.046 (4)	0.018 (4)	0.020 (4)	
C22	0.081 (4)	0.143 (5)	0.183 (6)	-0.013 (4)	0.033 (4)	-0.072 (5)	
C23	0.074 (4)	0.166 (6)	0.172 (6)	-0.017 (4)	-0.036 (4)	0.072 (5)	

Geometric parameters (Å, °)

P1—O2	1.459 (3)	C12—H12A	0.9700
P1—O1	1.581 (3)	C12—H12B	0.9700
P1—N1	1.636 (3)	C13—C14	1.365 (6)
P1—C5	1.794 (4)	С13—Н13	0.9300
O1—C7	1.456 (5)	C14—C15	1.359 (6)
N1—C10	1.470 (5)	C14—H14	0.9300
N1—H1	0.8600	C15—C20	1.338 (6)
C4—C7	1.510 (6)	C15—H15	0.9300
C4—C6	1.512 (6)	C16—H16A	0.9700
C4—C16	1.524 (6)	C16—H16B	0.9700
C4—H4	0.9800	C17—H17A	0.9600
C5—C13	1.369 (6)	C17—H17B	0.9600
C5—C8	1.370 (6)	С17—Н17С	0.9600
C6—C19	1.533 (7)	C18—H18A	0.9600
C6—C21	1.534 (7)	C18—H18B	0.9600
С6—Н6	0.9800	C18—H18C	0.9600
С7—С9	1.514 (6)	C19—H19A	0.9600
С7—Н7	0.9800	C19—H19B	0.9600
C8—C20	1.400 (6)	C19—H19C	0.9600
С8—Н8	0.9300	С20—Н20	0.9300
C9—C11	1.497 (6)	C21—H21A	0.9600
С9—Н9А	0.9700	C21—H21B	0.9600
С9—Н9В	0.9700	C21—H21C	0.9600
C10—C22	1.469 (7)	C22—H22A	0.9600
C10—C17	1.483 (6)	C22—H22B	0.9600
C10—C23	1.490 (7)	С22—Н22С	0.9600
C11—C12	1.490 (7)	С23—Н23А	0.9600
C11—C18	1.525 (7)	С23—Н23В	0.9600
C11—H11	0.9800	С23—Н23С	0.9600
C12—C16	1.516 (7)		

O2—P1—O1	116.25 (17)	C16-C12-H12B	109.0
O2—P1—N1	113.53 (18)	H12A—C12—H12B	107.8
O1—P1—N1	105.14 (17)	C5—C13—C14	120.7 (4)
O2—P1—C5	111.6 (2)	С5—С13—Н13	119.6
O1—P1—C5	99.14 (18)	C14—C13—H13	119.6
N1—P1—C5	110.08 (19)	C15—C14—C13	120.3 (5)
C7—O1—P1	123.9 (3)	C15—C14—H14	119.9
C10—N1—P1	129.0 (3)	C13—C14—H14	119.9
C10—N1—H1	115.5	C20-C15-C14	120.7 (5)
P1—N1—H1	115.5	C20—C15—H15	119.7
C7—C4—C6	114.5 (4)	C14—C15—H15	119.7
C7—C4—C16	108.0 (4)	C12—C16—C4	113.3 (4)
C6—C4—C16	114.2 (4)	C12—C16—H16A	108.9
С7—С4—Н4	106.5	C4—C16—H16A	108.9
С6—С4—Н4	106.5	C12—C16—H16B	108.9
C16—C4—H4	106.5	C4—C16—H16B	108.9
C13—C5—C8	118.5 (4)	H16A—C16—H16B	107.7
C13—C5—P1	122.4 (4)	С10—С17—Н17А	109.5
C8—C5—P1	119.2 (4)	C10—C17—H17B	109.5
C4—C6—C19	114.6 (4)	H17A—C17—H17B	109.5
C4—C6—C21	111.6 (5)	C10—C17—H17C	109.5
C19—C6—C21	108.2 (4)	H17A—C17—H17C	109.5
C4—C6—H6	107.4	H17B—C17—H17C	109.5
С19—С6—Н6	107.4	C11—C18—H18A	109.5
С21—С6—Н6	107.4	C11—C18—H18B	109.5
O1—C7—C4	110.4 (4)	H18A—C18—H18B	109.5
O1—C7—C9	107.0 (3)	C11—C18—H18C	109.5
C4—C7—C9	111.7 (4)	H18A—C18—H18C	109.5
O1—C7—H7	109.2	H18B—C18—H18C	109.5
C4—C7—H7	109.2	C6—C19—H19A	109.5
С9—С7—Н7	109.2	C6—C19—H19B	109.5
C5—C8—C20	120.4 (5)	H19A—C19—H19B	109.5
С5—С8—Н8	119.8	C6—C19—H19C	109.5
С20—С8—Н8	119.8	H19A—C19—H19C	109.5
C11—C9—C7	114.0 (4)	H19B—C19—H19C	109.5
С11—С9—Н9А	108.7	C15—C20—C8	119.4 (5)
С7—С9—Н9А	108.7	С15—С20—Н20	120.3
С11—С9—Н9В	108.7	C8—C20—H20	120.3
С7—С9—Н9В	108.7	C6—C21—H21A	109.5
H9A—C9—H9B	107.6	C6—C21—H21B	109.5
N1—C10—C22	111.4 (4)	H21A—C21—H21B	109.5
N1—C10—C17	109.8 (4)	C6—C21—H21C	109.5
C22—C10—C17	107.8 (5)	H21A—C21—H21C	109.5
N1—C10—C23	110.6 (4)	H21B—C21—H21C	109.5
C22—C10—C23	106.5 (5)	C10—C22—H22A	109.5
C17—C10—C23	110.6 (5)	C10—C22—H22B	109.5
C12—C11—C9	109.9 (4)	H22A—C22—H22B	109.5

C12—C11—C18	112.7 (5)	C10—C22—H22C	109.5
C9—C11—C18	113.5 (4)	H22A—C22—H22C	109.5
C12—C11—H11	106.8	H22B—C22—H22C	109.5
С9—С11—Н11	106.8	С10—С23—Н23А	109.5
C18—C11—H11	106.8	С10—С23—Н23В	109.5
C11—C12—C16	113.0 (4)	H23A—C23—H23B	109.5
C11—C12—H12A	109.0	C10—C23—H23C	109.5
C16—C12—H12A	109.0	H23A—C23—H23C	109.5
C11—C12—H12B	109.0	H23B—C23—H23C	109.5
02 D1 01 C7	72 5 (2)	C_{16} C_{4} C_{7} C_{0}	55.0 (5)
02-PI-OI-C7	-73.3(3)	$C_{10} - C_{4} - C_{7} - C_{9}$	33.0(3)
NI = PI = OI = C7	52.9(5)	C13 - C5 - C8 - C20	0.7(7)
$C_3 = P_1 = O_1 = C_7$	100.8(3) 14.7(5)	PI = C3 = C8 = C20	-1/9.0(4)
02-PI-NI-CIO	-14.7(3)	01 - 07 - 09 - 011	-1/7.3(4)
OI = PI = NI = CI0	-142.9(4)	C4 - C7 - C9 - C11	-56.6 (5)
C_{3} PI C_{5} C_{12}	111.2 (4)	PI = NI = C10 = C17	-51.2(6)
02-P1-C5-C13	1/5.2(4)	PI = NI = CI0 = CI7	-1/0.6(4)
01-P1-C5-C13	-61.8 (4)	PI = NI = CI0 = C23	67.1 (6)
NI - PI - C5 - C13	48.1 (4)	C/_C9_C11_C12	52.8 (6)
02—P1—C5—C8	-5.2 (4)	C/-C9-C11-C18	-180.0(5)
01	117.9 (4)	C9—C11—C12—C16	-51.2 (6)
NI—PI—C5—C8	-132.2 (3)	C18—C11—C12—C16	-17/8.9(4)
C7—C4—C6—C19	-71.5 (5)	C8—C5—C13—C14	1.0 (7)
C16—C4—C6—C19	53.6 (6)	P1C5C13C14	-179.3 (4)
C7—C4—C6—C21	165.0 (4)	C5—C13—C14—C15	-2.3 (8)
C16—C4—C6—C21	-69.8 (6)	C13—C14—C15—C20	1.7 (9)
P1—O1—C7—C4	118.4 (4)	C11—C12—C16—C4	54.8 (6)
P1—O1—C7—C9	-119.8 (3)	C7—C4—C16—C12	-54.9 (6)
C6—C4—C7—O1	-57.7 (5)	C6—C4—C16—C12	176.5 (4)
C16—C4—C7—O1	173.9 (4)	C14—C15—C20—C8	0.0 (9)
C6—C4—C7—C9	-176.6 (4)	C5—C8—C20—C15	-1.2 (8)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.86	2.52	3.326 (4)	156
C13—H13····O2 ⁱ	0.93	2.51	3.391 (5)	157

Symmetry code: (i) -x+1, y-1/2, -z+1/2.