organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1182

4-Meth­­oxy-N′-(4-meth­­oxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: biyeqqhar@yahoo.com.cn

(Received 6 April 2011; accepted 13 April 2011; online 22 April 2011)

The title compound, C16H16N2O3, was prepared by the reaction of 4-meth­oxy­benzaldehyde with 4-meth­oxy­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 3.1 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains along the b axis.

Related literature

For the biological activity of hydrazone compounds, see: Peng (2011[Peng, S.-J. (2011). J. Chem. Crystallogr. 41, 280-285.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For related structures, see: Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o300.]); Lei & Fu (2011[Lei, Y. & Fu, C. (2011). Acta Cryst. E67, o410.]); Tang (2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Monoclinic, P c

  • a = 10.617 (3) Å

  • b = 4.877 (2) Å

  • c = 13.632 (3) Å

  • β = 92.409 (2)°

  • V = 705.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.984

  • 3893 measured reflections

  • 1396 independent reflections

  • 1026 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.138

  • S = 1.30

  • 1396 reflections

  • 195 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.90 (1) 1.99 (3) 2.844 (7) 157 (7)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have attracted much attention due to their biological activities (Peng, 2011; Angelusiu et al., 2010; Ajani et al., 2010; Horiuchi et al., 2009). In this paper, we present the title compound (I), which is a new hydrazone derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Zhang, 2011; Lei & Fu, 2011; Tang, 2011). The dihedral angle between the two benzene rings is 3.1 (3)°. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis b into chains (Fig. 2).

Related literature top

For the biological activity of hydrazone compounds, see: Peng (2011); Angelusiu et al. (2010); Ajani et al. (2010); Horiuchi et al. (2009). For related structures, see: Zhang (2011); Lei & Fu (2011); Tang (2011).

Experimental top

Equimolar quantities (1.0 mmol each) of 4-methoxybenzaldehyde and 4-methoxybenzohydrazide were mixed in methanol. The mixture was stirred at room temperature for half an hour to give a colorless solution. After keeping the solution in air for a few days, colorless block-shaped crystals were formed.

Refinement top

Atom H2A attached to N2 was located on a difference map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances of 0.93-0.96 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(C8 and C16). In the absence of any significant anomalous scatterers in the molecule, 735 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines.
4-Methoxy-N'-(4-methoxybenzylidene)benzohydrazide top
Crystal data top
C16H16N2O3F(000) = 300
Mr = 284.31Dx = 1.339 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 10.617 (3) ÅCell parameters from 1579 reflections
b = 4.877 (2) Åθ = 2.9–28.3°
c = 13.632 (3) ŵ = 0.09 mm1
β = 92.409 (2)°T = 298 K
V = 705.2 (4) Å3Block, colourless
Z = 20.20 × 0.18 × 0.17 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1396 independent reflections
Radiation source: fine-focus sealed tube1026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.982, Tmax = 0.984k = 66
3893 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.30 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.6212P]
where P = (Fo2 + 2Fc2)/3
1396 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H16N2O3V = 705.2 (4) Å3
Mr = 284.31Z = 2
Monoclinic, PcMo Kα radiation
a = 10.617 (3) ŵ = 0.09 mm1
b = 4.877 (2) ÅT = 298 K
c = 13.632 (3) Å0.20 × 0.18 × 0.17 mm
β = 92.409 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1396 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1026 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.029
3893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.30Δρmax = 0.24 e Å3
1396 reflectionsΔρmin = 0.22 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4613 (6)0.2010 (11)0.6226 (5)0.0425 (15)
N20.5326 (7)0.2629 (11)0.5429 (5)0.0450 (16)
O10.1067 (5)0.2188 (12)0.9836 (4)0.0622 (17)
O20.5985 (5)0.1728 (8)0.5324 (4)0.0565 (13)
O30.8991 (5)0.3171 (14)0.1869 (4)0.0609 (16)
C10.3252 (7)0.3481 (14)0.7438 (6)0.0426 (19)
C20.3588 (7)0.1499 (17)0.8117 (6)0.051 (2)
H20.43080.04620.80220.061*
C30.2908 (7)0.0991 (17)0.8929 (6)0.056 (2)
H30.31650.03430.93810.067*
C40.1832 (8)0.2503 (16)0.9059 (6)0.048 (2)
C50.1462 (9)0.4446 (17)0.8393 (6)0.063 (3)
H50.07280.54420.84790.076*
C60.2175 (9)0.4938 (16)0.7594 (7)0.063 (3)
H60.19200.62920.71480.075*
C70.3991 (8)0.3890 (13)0.6570 (6)0.046 (2)
H70.39920.56020.62690.056*
C80.1325 (10)0.0017 (19)1.0495 (7)0.073 (3)
H8A0.12940.16911.01440.110*
H8B0.07080.00021.09900.110*
H8C0.21500.02581.07990.110*
C90.6006 (7)0.0565 (13)0.5037 (5)0.0379 (17)
C100.6766 (6)0.1469 (14)0.4199 (5)0.0358 (16)
C110.7875 (7)0.0084 (14)0.4050 (6)0.046 (2)
H110.81320.13110.44780.055*
C120.8599 (8)0.0742 (16)0.3281 (6)0.051 (2)
H120.93610.01570.32030.061*
C130.8211 (8)0.2711 (15)0.2624 (6)0.0434 (18)
C140.7112 (7)0.4090 (14)0.2749 (5)0.046 (2)
H140.68480.54400.23050.055*
C150.6390 (7)0.3463 (15)0.3546 (5)0.0427 (18)
H150.56440.44090.36350.051*
C160.8644 (10)0.5240 (18)0.1176 (6)0.062 (3)
H16A0.78370.48050.08700.093*
H16B0.92630.53380.06840.093*
H16C0.85960.69760.15040.093*
H2A0.539 (8)0.440 (5)0.525 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.047 (4)0.024 (3)0.058 (4)0.002 (3)0.015 (3)0.002 (3)
N20.045 (4)0.040 (3)0.052 (4)0.006 (3)0.017 (3)0.010 (3)
O10.055 (4)0.071 (4)0.062 (4)0.008 (3)0.025 (3)0.005 (3)
O20.077 (3)0.018 (2)0.077 (3)0.002 (2)0.027 (3)0.007 (2)
O30.049 (4)0.081 (4)0.054 (3)0.001 (3)0.016 (3)0.008 (3)
C10.049 (5)0.019 (3)0.060 (5)0.006 (3)0.006 (4)0.002 (3)
C20.040 (5)0.053 (5)0.061 (5)0.009 (4)0.014 (4)0.008 (4)
C30.043 (5)0.066 (5)0.060 (6)0.012 (5)0.005 (5)0.013 (4)
C40.037 (4)0.061 (5)0.047 (5)0.004 (4)0.006 (4)0.004 (4)
C50.056 (6)0.063 (6)0.071 (7)0.026 (5)0.017 (5)0.009 (5)
C60.080 (7)0.047 (5)0.063 (6)0.017 (5)0.019 (6)0.017 (4)
C70.061 (5)0.016 (3)0.063 (5)0.003 (3)0.014 (4)0.012 (3)
C80.085 (8)0.072 (6)0.066 (7)0.002 (5)0.030 (6)0.004 (5)
C90.031 (4)0.038 (4)0.045 (4)0.004 (3)0.004 (3)0.007 (3)
C100.031 (4)0.034 (3)0.043 (4)0.010 (3)0.006 (3)0.000 (3)
C110.040 (5)0.039 (4)0.060 (6)0.004 (3)0.006 (4)0.007 (4)
C120.038 (5)0.058 (5)0.057 (6)0.010 (4)0.009 (4)0.002 (4)
C130.039 (4)0.042 (4)0.050 (5)0.007 (3)0.007 (4)0.007 (3)
C140.054 (5)0.042 (4)0.043 (5)0.001 (4)0.012 (4)0.007 (3)
C150.037 (4)0.038 (4)0.054 (5)0.007 (4)0.005 (4)0.001 (4)
C160.072 (7)0.067 (5)0.049 (5)0.011 (5)0.017 (5)0.003 (4)
Geometric parameters (Å, º) top
N1—C71.234 (9)C6—H60.9300
N1—N21.383 (6)C7—H70.9300
N2—C91.361 (9)C8—H8A0.9600
N2—H2A0.900 (11)C8—H8B0.9600
O1—C41.371 (10)C8—H8C0.9600
O1—C81.408 (10)C9—C101.492 (9)
O2—C91.186 (7)C10—C151.367 (9)
O3—C131.366 (10)C10—C111.380 (10)
O3—C161.421 (10)C11—C121.364 (10)
C1—C61.370 (11)C11—H110.9300
C1—C21.375 (10)C12—C131.365 (11)
C1—C71.462 (10)C12—H120.9300
C2—C31.369 (11)C13—C141.364 (11)
C2—H20.9300C14—C151.390 (10)
C3—C41.377 (11)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.359 (11)C16—H16A0.9600
C5—C61.373 (11)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C7—N1—N2117.1 (6)O1—C8—H8C109.5
C9—N2—N1117.6 (5)H8A—C8—H8C109.5
C9—N2—H2A124 (5)H8B—C8—H8C109.5
N1—N2—H2A118 (5)O2—C9—N2123.4 (7)
C4—O1—C8118.1 (7)O2—C9—C10123.4 (7)
C13—O3—C16118.0 (7)N2—C9—C10113.2 (6)
C6—C1—C2117.1 (8)C15—C10—C11118.6 (7)
C6—C1—C7122.3 (7)C15—C10—C9123.9 (6)
C2—C1—C7120.5 (7)C11—C10—C9117.4 (7)
C3—C2—C1122.7 (7)C12—C11—C10120.6 (7)
C3—C2—H2118.7C12—C11—H11119.7
C1—C2—H2118.7C10—C11—H11119.7
C2—C3—C4118.4 (8)C11—C12—C13120.4 (8)
C2—C3—H3120.8C11—C12—H12119.8
C4—C3—H3120.8C13—C12—H12119.8
C5—C4—O1115.5 (8)C14—C13—C12120.0 (8)
C5—C4—C3120.4 (9)C14—C13—O3124.2 (7)
O1—C4—C3124.1 (8)C12—C13—O3115.7 (8)
C4—C5—C6119.9 (8)C13—C14—C15119.5 (7)
C4—C5—H5120.1C13—C14—H14120.3
C6—C5—H5120.1C15—C14—H14120.3
C1—C6—C5121.6 (8)C10—C15—C14120.7 (7)
C1—C6—H6119.2C10—C15—H15119.6
C5—C6—H6119.2C14—C15—H15119.6
N1—C7—C1121.4 (6)O3—C16—H16A109.5
N1—C7—H7119.3O3—C16—H16B109.5
C1—C7—H7119.3H16A—C16—H16B109.5
O1—C8—H8A109.5O3—C16—H16C109.5
O1—C8—H8B109.5H16A—C16—H16C109.5
H8A—C8—H8B109.5H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.90 (1)1.99 (3)2.844 (7)157 (7)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)10.617 (3), 4.877 (2), 13.632 (3)
β (°) 92.409 (2)
V3)705.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3893, 1396, 1026
Rint0.029
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.138, 1.30
No. of reflections1396
No. of parameters195
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.900 (11)1.99 (3)2.844 (7)157 (7)
Symmetry code: (i) x, y+1, z.
 

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoriuchi, T., Nagata, M., KitagawaB, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLei, Y. & Fu, C. (2011). Acta Cryst. E67, o410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. (2011). J. Chem. Crystallogr. 41, 280-285.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds