organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Febuxostat methanol solvate

Qi-Ying Jiang,^a Jing-Jing Qian,^b Jian-Ming Gu,^c Gu-Ping Tang^a and Xiu-Rong Hu^{c*}

^aInstitute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, ^bCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China Correspondence e-mail: huxiurong@yahoo.com.cn

Received 12 April 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.078; data-to-parameter ratio = 18.2.

In the title compound {systematic name: [2-(3-cyano-4isobutyloxyphenyl)-4-methyl-1,3-thiazole-5-carboxylic acid (febuxostat) methanol monosolvate}, C₁₆H₁₆N₂O₃S·CH₄O, the benzene and thiazole rings in the febuxostat molecule are twisted at 5.3 $(1)^{\circ}$. In the crystal structure, intermolecular $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds link the febuxostat and methanol molecules into helical chains along the 2_1 screw axis.

Related literature

For applications of febuxostat in the medicine, see: Schumacher et al. (2009); Becke et al. (2010); Khosravan et al. (2007); Takano et al. (2005). For the synthesis, polymorphism, stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000); Sorbera et al. (2001); Zhou et al. (2007). For the crystal structure of febuxostat pyridine solvate, see: Zhu et al. (2009).

Experimental

Crystal data

 $C_{16}H_{16}N_2O_3S \cdot CH_4O$ $M_r = 348.41$ Monoclinic, P2 a = 4.7089 (3) Å b = 17.9073 (13) Å c = 10.7965 (8) Å $\beta = 98.047 \ (2)^{\circ}$

 $V = 901.44 (11) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^-$ T = 296 K $0.48 \times 0.13 \times 0.10 \text{ mm}$ Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.905, \ \tilde{T}_{\max} = 0.980$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.078$	$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
4048 reflections	Absolute structure: Flack (1983),
223 parameters	with 1941 Friedel pairs
1 restraint	Flack parameter: -0.05 (7)

8429 measured reflections

 $R_{\rm int} = 0.034$

4048 independent reflections

3048 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4\cdots N1^{i}$	0.82	2.09	2.899 (3)	169
$O1-H1\cdots O4$	0.82	1.80	2.608 (3)	166

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, -z + 2.

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by Zhejiang Provincial Natural Science Foundation of China (grant No. J200801).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5075).

References

- Becke, M. A., Schumacher, H. R., Espinoza, L. R., Wells, A. F., Macdonald, P., Lloyd, E. & Lademacher, C. (2010). Arthritis Res. Ther. 12, R63, 1-12.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN 1275126.
- Khosravan, R., Grabowski, B., Wu, J. T., Joseph-Ridge, N. & Vernillet, L. (2007). Clin. Pharm. 65, 355-363.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Schumacher, H. R., Becker, M. A., Lloyd, E., Macdonald, P. A. & Lademacher, C. (2009). Rheumatology, 48, 188-194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sorbera, L. A., Revel, L., Rabasseda, X. & Castaner, J. (2001). Drugs Fut. 26, 32 - 38Takano, Y., Hase-Aoki, K., Horiuchi, H., Zhao, L., Kasahara, Y., Kondo, S. &
- Becker, M. A. (2005). Life Sci. 76, 1835-1847.
- Zhou, X. G., Tang, X. M., Deng, J., Ye, W. R., Luo, J., Zhang, D. L. & Fan, B. (2007). China Patent CN 1970547.
- Zhu, X., Wang, Y. & Lu, T. (2009). Acta Cryst. E65, o2603.

supporting information

Acta Cryst. (2011). E67, o1232 [doi:10.1107/S1600536811014905]

Febuxostat methanol solvate

Qi-Ying Jiang, Jing-Jing Qian, Jian-Ming Gu, Gu-Ping Tang and Xiu-Rong Hu

S1. Comment

Gout is a disorder caused by deposition of monosodium urate crystals in joints and other tissues as a result of extracellular urate supersaturation. However, hyperuricemia is the most important risk factor for the development of gout and occurs as a result of increased uric acid production (Takano *et al.*, 2005). Febuxostat is a novel non-purine selective inhibitor of xanthine oxidase which is currently under investigation for the management of hyperuricaemia in patients with gout (Khosravan *et al.*, 2007). Many patents and papers have been reported on the synthesis, polymorphism, stability and bioavailabitily of this drug (Hiramatsu *et al.*, 2000; Sorbera *et al.*, 2001; Zhou *et al.*, 2007). The single-crystal structure of febuxostat pyridine solvate has been reported by Zhu *et al.* (2009). In the present study, we report the crystal structure of febuxostat methanol solvate (I).

The asymmetric unit of (I) consists of one febuxostat molecule and one methanol molecule (Fig. 1). The benzene and thiazole rings of the febuxostat molecule are almost coplanar, with the dihedral angle between them being 5.3 (1)°. The carboxyl group is coplanar with the thiazole ring as indicated by torsion angles O2—C4—C3—C2 and O1—C4—C3—S1 of -0.8 (4)° and -2.5 (3)°, respectively. Conformations of the febuxostat molecule in (I) and in febuxostat pyridine solvate (Zhu *et al.*, 2009) are close.

In the crystal structure, febuxostat molecules and methanol molecule are linked by intermolecular hydrogen bonds O—H···N and O—H···O. In this way, the molecules are linked into infinite zigzag chains stretching along the *b* axis.

S2. Experimental

The crude product supplied by Zhejiang Huadong Pharmaceutical Co., Ltd, was recrystallized from methanol solution giving colourless crystals suitable for X-ray diffraction.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and O—H = 0.82 Å and included in the refinement in riding model, with $U_{iso}(H) = 1.2U_{eq}$ or $1.5U_{eq}$ (carrier atom).

Figure 1

Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids drawn at 40% probability level. H atoms are shown as small circles of arbitary radii.

Figure 2

A view down the *c* axis of a portion of the crystal structure showing hydrogen bonds by dashed lines [symmetry codes: (i) 1 - x, -1/2 + y, 2 - z; (ii) 1 - x, 1/2 + y, 2 - z].

[2-(3-cyano-4-isobutyloxyphenyl)-4-methyl-1,3-thiazole-5-carboxylic acid methanol monosolvate

Crystal data	
$C_{16}H_{16}N_2O_3S\cdot CH_4O$	F(000) = 368
$M_r = 348.41$	$D_{\rm x} = 1.284 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 6196 reflections
a = 4.7089 (3) Å	$\theta = 3.8 - 27.4^{\circ}$
<i>b</i> = 17.9073 (13) Å	$\mu=0.20~\mathrm{mm^{-1}}$
c = 10.7965 (8) Å	T = 296 K
$\beta = 98.047 \ (2)^{\circ}$	Needle, colourless
$V = 901.44 (11) \text{ Å}^3$	$0.48 \times 0.13 \times 0.10 \text{ mm}$
Z = 2	

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer	8429 measured reflections 4048 independent reflections
Radiation source: rolling anode	3048 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
ωscans	$h = -5 \rightarrow 6$
Absorption correction: multi-scan	$k = -23 \rightarrow 23$
(ABSCOR; Higashi, 1995)	$l = -13 \rightarrow 13$
$T_{\min} = 0.905, T_{\max} = 0.980$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0221P)^2 + 0.134P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
4048 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
223 parameters	$\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 1941 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: -0.05 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O4	0.2078 (5)	0.19681 (11)	0.8788 (2)	0.0794 (6)	
H4	0.2298	0.1575	0.9181	0.119*	
C17	0.0129 (8)	0.1856 (2)	0.7690 (3)	0.0918 (10)	
H17A	-0.1528	0.1595	0.7890	0.138*	
H17B	0.1031	0.1567	0.7106	0.138*	
H17C	-0.0445	0.2331	0.7324	0.138*	
S1	0.81600 (13)	0.45188 (3)	0.82299 (5)	0.04563 (15)	
N1	0.7895 (4)	0.56137 (10)	0.97388 (17)	0.0410 (4)	
03	1.6085 (4)	0.72442 (8)	0.62269 (15)	0.0491 (4)	
C6	1.0840 (5)	0.59027 (12)	0.8089 (2)	0.0377 (5)	
C8	1.3569 (5)	0.61374 (13)	0.6395 (2)	0.0411 (6)	
C1	0.8996 (5)	0.54145 (12)	0.8730 (2)	0.0403 (5)	
C13	1.6920 (5)	0.79823 (12)	0.6671 (2)	0.0465 (6)	
H13A	1.8109	0.7952	0.7479	0.056*	

H13B	1.5232	0.8276	0.6764	0.056*
01	0.5033 (5)	0.31992 (10)	0.87756 (19)	0.0708 (6)
H1	0.4149	0.2820	0.8907	0.106*
C3	0.6208 (5)	0.44077 (13)	0.9457 (2)	0.0420 (6)
C14	1.8573 (6)	0.83447 (13)	0.5728 (2)	0.0504 (6)
H14	2.0217	0.8026	0.5625	0.060*
C2	0.6304 (5)	0.50420 (13)	1.0150 (2)	0.0416 (5)
C11	1.1728 (5)	0.65996 (13)	0.8577 (2)	0.0463 (6)
H11	1.1123	0.6757	0.9318	0.056*
O2	0.3404 (4)	0.35831 (10)	1.05077 (18)	0.0692 (5)
С9	1.4399 (5)	0.68379 (13)	0.6888 (2)	0.0406 (5)
C7	1.1807 (5)	0.56763 (12)	0.6989 (2)	0.0443 (6)
H7	1.1269	0.5212	0.6648	0.053*
C10	1.3472 (5)	0.70618 (13)	0.7997 (2)	0.0453 (6)
H10	1.4029	0.7523	0.8346	0.054*
C4	0.4753 (5)	0.36987 (14)	0.9650(2)	0.0480 (6)
C12	1.4636 (6)	0.58932 (14)	0.5282 (3)	0.0572 (7)
C5	0.4890 (6)	0.51762 (15)	1.1292 (2)	0.0568 (7)
H5A	0.6307	0.5160	1.2023	0.085*
H5B	0.3475	0.4797	1.1352	0.085*
H5C	0.3982	0.5657	1.1233	0.085*
C16	1.9705 (7)	0.90956 (14)	0.6279 (3)	0.0750 (9)
H16A	2.0798	0.9015	0.7087	0.113*
H16B	1.8119	0.9420	0.6359	0.113*
H16C	2.0906	0.9321	0.5734	0.113*
N2	1.5505 (7)	0.56898 (16)	0.4403 (3)	0.0918 (9)
C15	1.6760 (7)	0.8435 (2)	0.4470 (3)	0.0838 (10)
H15A	1.5222	0.8777	0.4543	0.126*
H15B	1.5982	0.7959	0.4189	0.126*
H15C	1.7922	0.8626	0.3879	0.126*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	0.1106 (17)	0.0497 (12)	0.0779 (14)	-0.0241 (12)	0.0131 (14)	0.0098 (11)
C17	0.102 (3)	0.086 (2)	0.088 (2)	-0.013 (2)	0.017 (2)	0.012 (2)
S1	0.0576 (3)	0.0349 (3)	0.0467 (3)	-0.0026 (3)	0.0151 (3)	-0.0007 (3)
N1	0.0452 (10)	0.0372 (10)	0.0415 (10)	0.0046 (9)	0.0089 (9)	0.0009 (8)
O3	0.0636 (11)	0.0400 (9)	0.0473 (9)	-0.0117 (8)	0.0204 (9)	-0.0047 (7)
C6	0.0410 (12)	0.0334 (11)	0.0389 (12)	0.0016 (10)	0.0058 (10)	0.0038 (10)
C8	0.0465 (14)	0.0380 (12)	0.0399 (13)	-0.0025 (11)	0.0101 (11)	-0.0030 (10)
C1	0.0435 (13)	0.0358 (12)	0.0407 (12)	0.0018 (10)	0.0029 (11)	0.0024 (10)
C13	0.0519 (14)	0.0375 (12)	0.0509 (14)	-0.0060 (12)	0.0101 (12)	-0.0024 (11)
01	0.1015 (16)	0.0449 (11)	0.0727 (13)	-0.0199 (10)	0.0356 (12)	-0.0043 (10)
C3	0.0475 (13)	0.0388 (14)	0.0408 (12)	0.0016 (11)	0.0097 (10)	0.0076 (11)
C14	0.0499 (14)	0.0417 (14)	0.0627 (16)	-0.0004 (11)	0.0194 (13)	0.0036 (12)
C2	0.0424 (14)	0.0426 (13)	0.0402 (13)	0.0074 (11)	0.0069 (11)	0.0075 (10)
C11	0.0565 (15)	0.0422 (14)	0.0407 (13)	-0.0020 (12)	0.0089 (12)	-0.0045 (11)

supporting information

O2	0.0964 (15)	0.0531 (11)	0.0647 (12)	-0.0073 (10)	0.0341 (12)	0.0151 (9)
C9	0.0456 (13)	0.0357 (12)	0.0408 (13)	-0.0004 (10)	0.0072 (11)	0.0025 (10)
C7	0.0503 (13)	0.0351 (12)	0.0473 (13)	-0.0029 (11)	0.0062 (11)	-0.0024 (11)
C10	0.0595 (16)	0.0345 (12)	0.0427 (13)	-0.0059 (11)	0.0105 (12)	-0.0027 (10)
C4	0.0562 (15)	0.0423 (13)	0.0452 (14)	0.0044 (12)	0.0057 (13)	0.0100 (12)
C12	0.0730 (18)	0.0450 (14)	0.0577 (16)	-0.0140 (13)	0.0229 (14)	-0.0090 (13)
C5	0.0666 (17)	0.0557 (16)	0.0531 (16)	0.0009 (13)	0.0252 (14)	0.0004 (12)
C16	0.074 (2)	0.0436 (16)	0.113 (3)	-0.0099 (14)	0.0326 (19)	-0.0034 (16)
N2	0.126 (2)	0.085 (2)	0.0752 (18)	-0.0245 (18)	0.0498 (18)	-0.0323 (16)
C15	0.100 (3)	0.087 (2)	0.067 (2)	-0.004 (2)	0.0197 (19)	0.0235 (17)

Geometric parameters (Å, °)

O4—C17	1.409 (4)	C3—C2	1.357 (3)
O4—H4	0.8200	C3—C4	1.471 (3)
C17—H17A	0.9600	C14—C15	1.508 (4)
C17—H17B	0.9600	C14—C16	1.535 (4)
C17—H17C	0.9600	C14—H14	0.9800
S1—C1	1.720 (2)	C2—C5	1.501 (3)
S1—C3	1.727 (2)	C11—C10	1.377 (3)
N1—C1	1.319 (3)	C11—H11	0.9300
N1—C2	1.378 (3)	O2—C4	1.211 (3)
O3—C9	1.352 (3)	C9—C10	1.389 (3)
O3—C13	1.442 (3)	С7—Н7	0.9300
C6—C7	1.390 (3)	C10—H10	0.9300
C6—C11	1.396 (3)	C12—N2	1.144 (3)
C6—C1	1.472 (3)	С5—Н5А	0.9600
C8—C7	1.389 (3)	С5—Н5В	0.9600
C8—C9	1.397 (3)	С5—Н5С	0.9600
C8—C12	1.435 (4)	C16—H16A	0.9600
C13—C14	1.512 (3)	C16—H16B	0.9600
C13—H13A	0.9700	C16—H16C	0.9600
C13—H13B	0.9700	C15—H15A	0.9600
O1—C4	1.321 (3)	C15—H15B	0.9600
01—H1	0.8200	C15—H15C	0.9600
C17—O4—H4	109.5	C3—C2—C5	127.0 (2)
O4—C17—H17A	109.5	N1—C2—C5	118.0 (2)
O4—C17—H17B	109.5	C10—C11—C6	122.1 (2)
H17A—C17—H17B	109.5	C10—C11—H11	118.9
O4—C17—H17C	109.5	C6—C11—H11	118.9
H17A—C17—H17C	109.5	O3—C9—C10	125.3 (2)
H17B—C17—H17C	109.5	O3—C9—C8	115.8 (2)
C1—S1—C3	89.40 (12)	C10—C9—C8	118.8 (2)
C1—N1—C2	111.03 (19)	C6—C7—C8	120.6 (2)
C9—O3—C13	118.06 (17)	С6—С7—Н7	119.7
C7—C6—C11	117.8 (2)	C8—C7—H7	119.7
C7—C6—C1	120.9 (2)	C11—C10—C9	119.9 (2)

C11—C6—C1	121.3 (2)	C11—C10—H10	120.1
C7—C8—C9	120.8 (2)	C9—C10—H10	120.1
C7—C8—C12	120.5 (2)	O2—C4—O1	123.1 (2)
C9—C8—C12	118.7 (2)	O2—C4—C3	124.1 (2)
N1—C1—C6	123.6 (2)	O1—C4—C3	112.8 (2)
N1-C1-S1	114.35 (17)	N2—C12—C8	179.0 (3)
C6—C1—S1	122.03 (18)	С2—С5—Н5А	109.5
O3—C13—C14	108.14 (19)	С2—С5—Н5В	109.5
O3—C13—H13A	110.1	H5A—C5—H5B	109.5
C14—C13—H13A	110.1	С2—С5—Н5С	109.5
O3—C13—H13B	110.1	H5A—C5—H5C	109.5
C14—C13—H13B	110.1	H5B—C5—H5C	109.5
H13A—C13—H13B	108.4	C14—C16—H16A	109.5
C4—O1—H1	109.5	C14—C16—H16B	109.5
C2—C3—C4	128.6 (2)	H16A—C16—H16B	109.5
C2—C3—S1	110.26 (18)	C14—C16—H16C	109.5
C4—C3—S1	121.10 (18)	H16A—C16—H16C	109.5
C15—C14—C13	111.9 (2)	H16B—C16—H16C	109.5
C15—C14—C16	112.2 (2)	C14—C15—H15A	109.5
C13—C14—C16	107.4 (2)	C14—C15—H15B	109.5
C15—C14—H14	108.4	H15A—C15—H15B	109.5
C13—C14—H14	108.4	C14—C15—H15C	109.5
C16—C14—H14	108.4	H15A—C15—H15C	109.5
C3—C2—N1	115.0 (2)	H15B—C15—H15C	109.5
C2—N1—C1—C6	-178.87 (19)	C7—C6—C11—C10	0.9 (3)
C2—N1—C1—S1	-0.2 (2)	C1-C6-C11-C10	179.5 (2)
C7—C6—C1—N1	-176.4 (2)	C13—O3—C9—C10	-2.4 (3)
C11—C6—C1—N1	5.0 (3)	C13—O3—C9—C8	177.84 (19)
C7—C6—C1—S1	5.0 (3)	C7—C8—C9—O3	-179.2 (2)
C11—C6—C1—S1	-173.57 (17)	С12—С8—С9—О3	2.6 (3)
C3—S1—C1—N1	0.00 (18)	C7—C8—C9—C10	1.1 (3)
C3—S1—C1—C6	178.72 (18)	C12—C8—C9—C10	-177.2 (2)
C9—O3—C13—C14	-175.41 (19)	C11—C6—C7—C8	-0.8 (3)
C1—S1—C3—C2	0.17 (18)	C1—C6—C7—C8	-179.4 (2)
C1—S1—C3—C4	-179.20 (18)	C9—C8—C7—C6	-0.2 (3)
O3—C13—C14—C15	62.2 (3)	C12—C8—C7—C6	178.1 (2)
O3—C13—C14—C16	-174.3 (2)	C6-C11-C10-C9	0.1 (4)
C4—C3—C2—N1	179.0 (2)	O3—C9—C10—C11	179.3 (2)
S1—C3—C2—N1	-0.3 (2)	C8—C9—C10—C11	-1.0 (3)
C4—C3—C2—C5	-0.8 (4)	C2—C3—C4—O2	-0.8 (4)
S1—C3—C2—C5	179.91 (19)	S1—C3—C4—O2	178.45 (19)
C1—N1—C2—C3	0.3 (3)	C2—C3—C4—O1	178.3 (2)
C1—N1—C2—C5	-179.9 (2)	S1—C3—C4—O1	-2.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O4—H4…N1 ⁱ	0.82	2.09	2.899 (3)	169
01—H1…O4	0.82	1.80	2.608 (3)	166

Symmetry code: (i) -x+1, y-1/2, -z+2.