organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1118

A second monoclinic polymorph of ethyl­enedi­ammonium bis­­(hydrogen squarate) monohydrate

aFaculté des Sciences et Technologie et Sciences de la Matière, Université Kasdi Merbah Ouargla, Route Gardaia, Ourgla, Algeria, and bLaboratoire Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: louizazenkhri@yahoo.fr

(Received 24 February 2011; accepted 9 March 2011; online 13 April 2011)

The title compound, C2H10N22+·2HC4O4·H2O, a new polymorph of ethyl­enediammonium bis­(hydrogen squarate) monohydrate, was synthesized by slow evaporation of an acid solution. The asymetric unit contains two hydrogen squarate anions, two half-mol­ecules of protonated ethyl­enediamine arranged around a twofold axis and one water mol­ecule. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds between the hydrogen squarate anions, protonated N atoms from the amine group and water mol­ecules lead to a three-dimensional framework. In particular, the cohesion between the squarate groups is ensured by very short intermolecular hydrogen bonds bonds. The title compound crystallized together with the previously reported polymorph [Mathew et al. (2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]). J. Mol. Struct. 641, 263–279].

Related literature

For the previously reported polymorph, see: Mathew et al. (2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C4HO4·H2O

  • Mr = 306.23

  • Monoclinic, P 2/c

  • a = 14.1907 (3) Å

  • b = 9.0224 (2) Å

  • c = 10.9412 (2) Å

  • β = 111.789 (1)°

  • V = 1300.77 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.45 × 0.44 × 0.37 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 16099 measured reflections

  • 2957 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.116

  • S = 1.06

  • 2957 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.89 2.14 2.9205 (17) 146
N1—H1B⋯O1Wii 0.88 1.99 2.8482 (18) 163
N1—H1C⋯O8 0.88 1.90 2.7717 (18) 169
N2—H2A⋯O2 0.88 1.97 2.8222 (17) 162
N2—H2B⋯O1Wiii 0.90 1.94 2.8279 (18) 171
N2—H2C⋯O1i 0.90 1.92 2.8071 (17) 168
O4—H4⋯O3iv 1.05 1.42 2.4675 (15) 179
O7—H7⋯O6iii 1.06 1.41 2.4645 (14) 178
O1W—H1W⋯O6 0.92 2.10 2.8724 (17) 140
O1W—H1W⋯O8iv 0.92 2.40 3.0489 (18) 128
O1W—H2W⋯O3 0.93 1.88 2.8035 (19) 171
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT, Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the course of a study on mixed squarate of amines and metals, the role of the amine group has been investigated in the topology of the organic-inorganic framework. The preparation did not lead to a mixed compound but to a new hydrogen squarate of ethylenediammonium.

The compound is a polymorph of the compound previously reported by Mathew et al., 2002, whose molecular framework is also stabilized by hydrogen bonds (Fig. 1, Table 1). In the title compound hydrogen bonds connect the hydrogen squarate units along the a axis in the form of zigzag chains, which are connected to each other along the c axis through hydrogen bonds implying the water molecules, then forming a layer. Amine groups are situated in between neighbour layers and connected to them along the b axis through hydrogen bonds leading to a molecular three-dimensional framework (Table 1, Fig. 2).

The main differences between the structures of the two polymorphs reside in the orientation of the amine groups related to that of the mean planes of the squarate groups. Indeed, in the title structure, the ethylenediammonium cations are perpendicular to the squarate groups, while the mean planes between these two molecules in the already reported polymorph deviate to 56.2 (2)°.

Related literature top

For the previously reported polymorph, see: Mathew et al. (2002). Author: please provide a scheme in the normal journal style]

Experimental top

The title compound, (HC4O4)2(C2H10N2)(H2O) was prepared from an aquous solution (20 ml) of dissolved yttrium nitrate (0.5 mmol), ethylenediamine (0.1 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione, also named squaric acid (0.1 mmol). The slow evaporation at room temperature leads after some hours to the formation of both polymorphs. A metal salt seems to be necessary to the synthesis of the title compound even if its role has not been clearly established.

Refinement top

All H atoms were found from Fourier difference maps but those attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.98 Å and N—H = 0.87 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). The H attached to the water molecule and those of the hydroxyl groups were refined using restraints: O-H= 0.92 (1)Å and H···H= 1.42 (2)Å) for the water and O—H = 1.05 (2)Å for the hydroxyl H with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+3/2, y, -z+1; (ii) -x+3/2, y, -z]
[Figure 2] Fig. 2. Packing view of the title compound displaying the hydrogen bonds between protonated nitrogen of ethylenediamine, hydrogen squarate and water molecules. H atoms not involved in hydrogen bondings have been omitted for clarity.
Ethylenediammonium bis(hydrogen squarate) monohydrate top
Crystal data top
C2H10N22+·2C4HO4·H2OF(000) = 640
Mr = 306.23Dx = 1.564 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 15363 reflections
a = 14.1907 (3) Åθ = 2.6–27.5°
b = 9.0224 (2) ŵ = 0.14 mm1
c = 10.9412 (2) ÅT = 293 K
β = 111.789 (1)°Block, colourless
V = 1300.77 (5) Å30.45 × 0.44 × 0.37 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2101 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.7°
CCD scansh = 1314
16099 measured reflectionsk = 1111
2957 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.4175P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C2H10N22+·2C4HO4·H2OV = 1300.77 (5) Å3
Mr = 306.23Z = 4
Monoclinic, P2/cMo Kα radiation
a = 14.1907 (3) ŵ = 0.14 mm1
b = 9.0224 (2) ÅT = 293 K
c = 10.9412 (2) Å0.45 × 0.44 × 0.37 mm
β = 111.789 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2101 reflections with I > 2σ(I)
16099 measured reflectionsRint = 0.039
2957 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2957 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13638 (12)0.21953 (17)0.23974 (14)0.0274 (3)
C20.12945 (12)0.22646 (17)0.37292 (15)0.0294 (3)
C30.13154 (12)0.06345 (17)0.37612 (14)0.0280 (3)
C40.13514 (12)0.05880 (16)0.24889 (14)0.0270 (3)
C50.37318 (12)0.22227 (17)0.53401 (14)0.0282 (3)
C60.37820 (12)0.05841 (17)0.53440 (14)0.0266 (3)
C70.37483 (12)0.05424 (16)0.66247 (14)0.0264 (3)
C80.36698 (12)0.21411 (17)0.66793 (14)0.0285 (3)
C90.45935 (12)0.62029 (18)0.68196 (15)0.0310 (4)
H9A0.46200.71230.63750.037*
H9B0.47080.53910.63100.037*
C100.00261 (13)0.36235 (19)0.68282 (16)0.0359 (4)
H10A0.02210.26830.64000.043*
H10B0.04080.44010.63000.043*
N10.35844 (10)0.60417 (15)0.69124 (14)0.0330 (3)
H1A0.35370.66300.75440.040*
H1B0.31270.63000.61430.040*
H1C0.34950.51120.70900.040*
N20.10844 (11)0.38656 (14)0.69090 (13)0.0343 (3)
H2A0.11550.34800.62090.041*
H2B0.15340.34500.76420.041*
H2C0.12190.48420.69310.041*
O10.14176 (10)0.31161 (12)0.15936 (12)0.0406 (3)
O20.12416 (11)0.32661 (14)0.44601 (12)0.0469 (4)
O30.13116 (11)0.03557 (13)0.45842 (11)0.0422 (3)
O40.13646 (10)0.05236 (12)0.17443 (11)0.0402 (3)
H40.13390.01640.08190.060*
O50.37214 (10)0.32156 (13)0.45711 (11)0.0411 (3)
O60.38111 (10)0.03993 (12)0.45340 (10)0.0365 (3)
O70.37617 (10)0.05505 (12)0.73992 (11)0.0366 (3)
H70.37680.01500.83130.055*
O80.35656 (11)0.30475 (13)0.74692 (11)0.0430 (3)
O1W0.24474 (9)0.28124 (14)0.43628 (12)0.0436 (3)
H1W0.29600.23700.41700.065*
H2W0.20630.20500.45100.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (9)0.0254 (7)0.0260 (7)0.0044 (6)0.0127 (6)0.0034 (6)
C20.0340 (9)0.0287 (8)0.0284 (7)0.0042 (7)0.0152 (7)0.0008 (7)
C30.0331 (9)0.0274 (8)0.0245 (7)0.0015 (6)0.0119 (6)0.0003 (6)
C40.0328 (9)0.0261 (8)0.0227 (8)0.0002 (6)0.0110 (6)0.0001 (6)
C50.0339 (9)0.0283 (8)0.0242 (7)0.0034 (6)0.0130 (6)0.0006 (6)
C60.0310 (8)0.0284 (8)0.0228 (7)0.0033 (6)0.0128 (6)0.0015 (6)
C70.0338 (8)0.0255 (7)0.0220 (7)0.0013 (6)0.0128 (6)0.0011 (6)
C80.0377 (9)0.0257 (7)0.0250 (7)0.0033 (7)0.0149 (7)0.0019 (6)
C90.0310 (9)0.0318 (8)0.0315 (8)0.0005 (7)0.0132 (7)0.0010 (7)
C100.0392 (9)0.0397 (9)0.0304 (8)0.0039 (8)0.0147 (7)0.0019 (7)
N10.0330 (8)0.0299 (7)0.0359 (7)0.0010 (6)0.0123 (6)0.0002 (6)
N20.0462 (9)0.0273 (7)0.0354 (7)0.0004 (6)0.0221 (7)0.0003 (6)
O10.0643 (9)0.0280 (6)0.0374 (6)0.0064 (6)0.0281 (6)0.0086 (5)
O20.0751 (10)0.0337 (7)0.0416 (7)0.0100 (6)0.0328 (7)0.0038 (6)
O30.0740 (9)0.0308 (6)0.0279 (6)0.0068 (6)0.0260 (6)0.0024 (5)
O40.0723 (9)0.0261 (6)0.0277 (6)0.0030 (6)0.0249 (6)0.0033 (5)
O50.0632 (9)0.0314 (6)0.0341 (6)0.0034 (6)0.0241 (6)0.0061 (5)
O60.0591 (8)0.0299 (6)0.0272 (6)0.0046 (5)0.0239 (6)0.0059 (5)
O70.0646 (8)0.0243 (6)0.0283 (6)0.0017 (5)0.0260 (6)0.0031 (5)
O80.0776 (10)0.0254 (6)0.0366 (6)0.0007 (6)0.0334 (7)0.0046 (5)
O1W0.0384 (7)0.0416 (7)0.0464 (7)0.0044 (6)0.0106 (6)0.0083 (6)
Geometric parameters (Å, º) top
C1—O11.2326 (18)C9—C9i1.508 (3)
C1—C41.454 (2)C9—H9A0.9700
C1—C21.498 (2)C9—H9B0.9700
C2—O21.2273 (19)C10—N21.487 (2)
C2—C31.471 (2)C10—C10ii1.499 (3)
C3—O31.2699 (18)C10—H10A0.9700
C3—C41.412 (2)C10—H10B0.9700
C4—O41.2966 (18)N1—H1A0.8933
C5—O51.2253 (18)N1—H1B0.8824
C5—C61.480 (2)N1—H1C0.8806
C5—C81.502 (2)N2—H2A0.8805
C6—O61.2655 (18)N2—H2B0.9002
C6—C71.420 (2)N2—H2C0.9002
C7—O71.2958 (18)O4—H41.0509
C7—C81.450 (2)O7—H71.0597
C8—O81.2380 (18)O1W—H1W0.9203
C9—N11.480 (2)O1W—H2W0.9287
O1—C1—C4136.62 (14)C9i—C9—H9A109.7
O1—C1—C2135.22 (15)N1—C9—H9B109.7
C4—C1—C288.16 (12)C9i—C9—H9B109.7
O2—C2—C3136.56 (15)H9A—C9—H9B108.2
O2—C2—C1134.96 (15)N2—C10—C10ii110.98 (17)
C3—C2—C188.47 (12)N2—C10—H10A109.4
O3—C3—C4133.57 (14)C10ii—C10—H10A109.4
O3—C3—C2135.63 (14)N2—C10—H10B109.4
C4—C3—C290.81 (12)C10ii—C10—H10B109.4
O4—C4—C3131.03 (14)H10A—C10—H10B108.0
O4—C4—C1136.44 (14)C9—N1—H1A110.3
C3—C4—C192.52 (12)C9—N1—H1B107.2
O5—C5—C6136.10 (14)H1A—N1—H1B110.0
O5—C5—C8135.69 (15)C9—N1—H1C109.3
C6—C5—C888.19 (11)H1A—N1—H1C109.7
O6—C6—C7133.96 (14)H1B—N1—H1C110.3
O6—C6—C5135.43 (14)C10—N2—H2A109.2
C7—C6—C590.58 (12)C10—N2—H2B111.0
O7—C7—C6131.89 (14)H2A—N2—H2B109.8
O7—C7—C8135.48 (14)C10—N2—H2C110.2
C6—C7—C892.61 (12)H2A—N2—H2C108.5
O8—C8—C7135.81 (14)H2B—N2—H2C108.1
O8—C8—C5135.57 (14)C4—O4—H4111.3
C7—C8—C588.59 (12)C7—O7—H7110.5
N1—C9—C9i109.73 (16)H1W—O1W—H2W106.5
N1—C9—H9A109.7
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5iii0.892.142.9205 (17)146
N1—H1B···O1Wiv0.881.992.8482 (18)163
N1—H1C···O80.881.902.7717 (18)169
N2—H2A···O20.881.972.8222 (17)162
N2—H2B···O1Wv0.901.942.8279 (18)171
N2—H2C···O1iii0.901.922.8071 (17)168
O4—H4···O3vi1.051.422.4675 (15)179
O7—H7···O6v1.061.412.4645 (14)178
O1W—H1W···O60.922.102.8724 (17)140
O1W—H1W···O8vi0.922.403.0489 (18)128
O1W—H2W···O30.931.882.8035 (19)171
Symmetry codes: (iii) x, y+1, z+1/2; (iv) x, y+1, z; (v) x, y, z+1/2; (vi) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C4HO4·H2O
Mr306.23
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)14.1907 (3), 9.0224 (2), 10.9412 (2)
β (°) 111.789 (1)
V3)1300.77 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.45 × 0.44 × 0.37
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16099, 2957, 2101
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.06
No. of reflections2957
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.892.142.9205 (17)145.6
N1—H1B···O1Wii0.881.992.8482 (18)163.1
N1—H1C···O80.881.902.7717 (18)168.6
N2—H2A···O20.881.972.8222 (17)162.1
N2—H2B···O1Wiii0.901.942.8279 (18)170.9
N2—H2C···O1i0.901.922.8071 (17)168.3
O4—H4···O3iv1.051.422.4675 (15)178.7
O7—H7···O6iii1.061.412.4645 (14)178.0
O1W—H1W···O60.922.102.8724 (17)140.4
O1W—H1W···O8iv0.922.403.0489 (18)127.5
O1W—H2W···O30.931.882.8035 (19)171.1
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z; (iii) x, y, z+1/2; (iv) x, y, z1/2.
 

Acknowledgements

Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractomtétrie X, UMR CNRS 6226) for his assistance with the single-crystal data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT, Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1118
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds