metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(4'-hydroxybiphenyl-4-carboxylato- κO^{1})(1.10-phenanthroline- $\kappa^{2}N.N'$)zinc

Wei-Ping Wu,* Jun Wang, Lu Lu, Xi-Yang He and Li-Ke Zou

School of Chemistry and Pharmaceutical Engineering, Institute of Functionalized Materials, Sichuan University of Science and Engineering, Zigong, Sichuan 643000. People's Republic of China

Correspondence e-mail: wuweipingzg@126.com

Received 30 March 2011; accepted 1 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.092; data-to-parameter ratio = 12.2.

In the title compound, $[Zn(C_{13}H_9O_3)_2(C_{12}H_8N_2)]$, the Zn^{II} atom is located on a twofold rotation axis and has a distorted tetrahedral coordination with two N atoms from the phenanthroline ligand arranged around the twofold axis and two O atoms from two symmetry-related 4'-hydroxybiphenyl-4-carboxylate ligands. The molecules are linked by $O-H \cdots O$ hydrogen bonds, forming a chain developing parallel to [101].

Related literature

For background to crystal engineering, see: Aakeroy & Seddon (1993). For the related carboxylic acid, see: Song et al. (2004); Liu et al. (2011a). For the related phenanthroline and its derivative complexes, see: Breneman et al. (1993); Liu et al. (2011b); Zhang et al. (2011).

Experimental

Crystal data

 $[Zn(C_{13}H_9O_3)_2(C_{12}H_8N_2)]$ $V = 2908 (2) \text{ Å}^3$ $M_r = 671.98$ Z = 4Monoclinic, C2/c Mo $K\alpha$ radiation $\mu = 0.90 \text{ mm}^$ a = 15.378 (8) Å b = 10.616(5) Å T = 298 Kc = 17.816 (9) Å $0.30 \times 0.27 \times 0.21 \text{ mm}$ $\beta = 90.702 \ (9)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.774, T_{\max} = 0.833$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	214 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
2605 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

10508 measured reflections

 $R_{\rm int} = 0.027$

2605 independent reflections

2273 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O3-H3A\cdots O2^{i}$ 0.82 1.81 2.622 (2) 173

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial assistance from Sichuan University of Science and Engineering, the Institute of Functionalized Materials (grant Nos. 2009xjkpL003 and 2010XJKYL005), the Education Committee of Sichuan Province (No. 09ZA057) and the Committee of Science and Technology of Sichuan Province (No. 2010GZ0130).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2671).

References

Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.

- Breneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891-895.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Liu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011a). Cryst. Growth Des. 11, 569-574
- Liu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011b). J. Mol. Struct. 987, 126-131.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, J. L., Lei, C. & Mao, J. G. (2004). Inorg. Chem. 43, 5630-5634.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhang, S.-S., Chen, L.-J. & Han, Y.-F. (2011). Acta Cryst. E67, m398.

supporting information

Acta Cryst. (2011). E67, m568 [doi:10.1107/S1600536811012244]

Bis(4'-hydroxybiphenyl-4-carboxylato- κO^1)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc

Wei-Ping Wu, Jun Wang, Lu Lu, Xi-Yang He and Li-Ke Zou

S1. Comment

In the past years, many supramolecular motifs based on hydrogen bonds have been achieved by using transition metal centers and organic ligands (Aakeroy *et al.*, 1993). The 4'-hydroxybiphenyl-4-carboxylic acid (H₂L) has inspired great research interest for assembling coordination architectures. As a versatile ligand, it contains two sulfonic groups and two hydroxyl groups, which may be partially or completely deprotonated and normally serves as linkage to construct diverse metallosupramolecular systems (Song *et al.*, 2004; Liu *et al.*, 2011*a*). On the other hand, 1, 10-Phenanthroline, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as monomers(Breneman *et al.* 1993; Liu *et al.*, 2011*b*, Zhang *et al.*, 2011). Herein, we are interested in self-assemblies of Zn^{II} ion with H₂L and phen, which led to the title compound.

The title compound, $\{[Zn(L)_2(phen)] (H_2L=4'-hydroxybiphenyl-4-carboxylic acid), is built up from a distorted tetrahedral Zn^{II} located on a two fold axis and surrounded by two O atoms of two 4'-hydroxybiphenyl-4-carboxylate ligands and the two N atoms of the phenanthroline ligand (Fig. 1).$

The molecules are linked by O-H…O hydrogen bonds, forming a one-dimensional chain parallel to the [1 0 1] direction (Fig. 2, Table 1).

S2. Experimental

A mixture of Zn(AC)2.H2O(25mg, 0.1mmol), $H_2L(26mg, 0.1mmol)$, phen(19mg, 0.1mmol), NaOH(0.1mmol) and 5mL H_2O and $CH_3OH(2mL)$ was stirred for 3h, and then the mixture was transferred to an 25mL Teflon-lined reactor and kept under autogenous pressure at 423k for 3 days, then cooled down to room temperature. Single crystals suitable for X-ray diffraction were obtained.

S3. Refinement

All H atoms attached to C and O (hydroxyl group) atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C, O)$.

Figure 1

Molecular structure of (I), showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. [Symmetry code: (i) -x+1, y, -z+1/2]

Figure 2

Partial packing view showing the formation of the chain through O-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x-1/2, -y+3/2, z-1/2]

Bis(4'-hydroxybiphenyl-4-carboxylato- κO^1)(1,10-phenanthroline- $\kappa^2 N, N'$)zinc

F(000) = 1384

 $\theta = 2.3 - 25.2^{\circ}$

 $\mu = 0.90 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.027$

 $k = 0 \rightarrow 12$ $l = 0 \rightarrow 21$

Block, colourless

 $0.30 \times 0.27 \times 0.21 \text{ mm}$

10508 measured reflections 2605 independent reflections 2273 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -18 \rightarrow 18$

 $D_{\rm x} = 1.535 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2606 reflections

Crystal data

 $[Zn(C_{13}H_9O_3)_2(C_{12}H_8N_2)]$ $M_r = 671.98$ Monoclinic, C2/cHall symbol: -C 2yc a = 15.378 (8) Å b = 10.616 (5) Å c = 17.816 (9) Å $\beta = 90.702$ (9)° V = 2908 (2) Å³ Z = 4

Data collection

Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.774, T_{\max} = 0.833$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0557P)^2 + 1.3191P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Znl	0.5000	0.35249 (3)	0.2500	0.04222 (15)	
01	0.50786 (11)	0.45044 (15)	0.16187 (8)	0.0515 (4)	
O2	0.61479 (12)	0.59120 (16)	0.16290 (10)	0.0650 (5)	
O3	0.20326 (10)	1.04044 (13)	-0.23778 (9)	0.0462 (4)	

H3A	0.1793	0.9948	-0.2689	0.069*
N1	0.56738 (11)	0.20478 (17)	0.29840 (9)	0.0419 (4)
C1	0.49614 (12)	0.62166 (18)	0.07931 (10)	0.0338 (4)
C2	0.53096 (13)	0.73018 (19)	0.04826 (12)	0.0396 (5)
H2	0.5858	0.7577	0.0637	0.047*
C3	0.48521 (12)	0.79735 (19)	-0.00498 (11)	0.0380 (4)
H3	0.5096	0.8700	-0.0249	0.046*
C4	0.40291 (12)	0.75884 (18)	-0.02979 (10)	0.0313 (4)
C5	0.36906 (12)	0.64957 (18)	0.00116 (12)	0.0373 (5)
Н5	0.3145	0.6214	-0.0145	0.045*
C6	0.41457 (13)	0.58227 (19)	0.05454 (11)	0.0382 (5)
H6	0.3904	0.5094	0.0744	0.046*
C7	0.35300 (12)	0.83181 (18)	-0.08651 (10)	0.0317 (4)
C8	0.35415 (13)	0.96324 (18)	-0.08772 (11)	0.0392 (5)
H8	0.3889	1.0062	-0.0531	0.047*
C9	0.30532 (13)	1.03091 (19)	-0.13874 (12)	0.0406 (5)
H9	0.3080	1.1184	-0.1387	0.049*
C10	0.25204 (12)	0.96926 (18)	-0.19028 (11)	0.0346 (4)
C11	0.25167 (12)	0.83874 (18)	-0.19150 (11)	0.0349 (4)
H11	0.2178	0.7961	-0.2269	0.042*
C12	0.30139 (12)	0.77208 (18)	-0.14041 (10)	0.0340 (4)
H12	0.3004	0.6845	-0.1420	0.041*
C13	0.54446 (14)	0.55089 (19)	0.13953 (11)	0.0388 (5)
C14	0.53520 (14)	0.09192 (19)	0.27718 (12)	0.0423 (5)
C15	0.56745 (16)	-0.0227 (2)	0.30488 (15)	0.0569 (7)
C16	0.63435 (18)	-0.0157 (3)	0.35882 (16)	0.0687 (8)
H16	0.6568	-0.0889	0.3801	0.082*
C17	0.66621 (18)	0.0979 (3)	0.37981 (15)	0.0672 (8)
H17	0.7113	0.1027	0.4149	0.081*
C18	0.63158 (15)	0.2074 (3)	0.34886 (13)	0.0533 (6)
H18	0.6541	0.2848	0.3640	0.064*
C19	0.53160 (19)	-0.1375 (2)	0.27629 (18)	0.0741 (9)
H19	0.5525	-0.2139	0.2945	0.089*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0656 (3)	0.0293 (2)	0.0316 (2)	0.000	-0.00514 (15)	0.000
O1	0.0671 (10)	0.0459 (9)	0.0411 (9)	-0.0079 (8)	-0.0141 (7)	0.0139 (7)
O2	0.0700 (11)	0.0529 (10)	0.0711 (12)	-0.0120 (8)	-0.0427 (9)	0.0165 (9)
O3	0.0560 (9)	0.0363 (8)	0.0458 (9)	0.0032 (7)	-0.0224 (7)	0.0020 (6)
N1	0.0476 (10)	0.0396 (10)	0.0387 (9)	0.0014 (8)	0.0050 (8)	0.0047 (8)
C1	0.0414 (10)	0.0318 (9)	0.0279 (10)	-0.0009 (8)	-0.0060 (8)	-0.0014 (8)
C2	0.0381 (10)	0.0369 (11)	0.0433 (11)	-0.0089 (8)	-0.0153 (9)	0.0021 (9)
C3	0.0393 (10)	0.0346 (10)	0.0399 (11)	-0.0099 (8)	-0.0079 (8)	0.0053 (9)
C4	0.0334 (9)	0.0331 (10)	0.0274 (9)	-0.0019 (7)	-0.0027 (7)	-0.0017 (8)
C5	0.0332 (10)	0.0401 (11)	0.0384 (11)	-0.0093 (8)	-0.0070 (8)	0.0037 (8)
C6	0.0417 (10)	0.0358 (11)	0.0369 (11)	-0.0094 (8)	-0.0014 (8)	0.0051 (9)

C7	0.0322 (9)	0.0335 (10)	0.0293 (9)	-0.0039 (7)	-0.0030 (7)	0.0007 (8)	
C8	0.0450 (11)	0.0328 (10)	0.0395 (11)	-0.0068 (8)	-0.0151 (9)	-0.0028 (8)	
C9	0.0472 (11)	0.0278 (10)	0.0464 (12)	-0.0025 (8)	-0.0127 (9)	-0.0008 (8)	
C10	0.0353 (9)	0.0362 (10)	0.0321 (10)	0.0009 (8)	-0.0045 (8)	0.0013 (8)	
C11	0.0372 (10)	0.0350 (10)	0.0323 (10)	-0.0047 (8)	-0.0088 (8)	-0.0038 (8)	
C12	0.0381 (10)	0.0283 (10)	0.0355 (10)	-0.0047 (8)	-0.0043 (8)	-0.0016 (8)	
C13	0.0508 (12)	0.0327 (10)	0.0328 (10)	0.0023 (9)	-0.0095 (9)	-0.0013 (8)	
C14	0.0490 (12)	0.0332 (11)	0.0453 (12)	0.0032 (9)	0.0177 (9)	0.0044 (9)	
C15	0.0637 (15)	0.0422 (13)	0.0657 (16)	0.0161 (11)	0.0328 (13)	0.0134 (11)	
C16	0.0699 (17)	0.0684 (18)	0.0684 (18)	0.0340 (15)	0.0241 (14)	0.0281 (15)	
C17	0.0565 (15)	0.090(2)	0.0555 (16)	0.0228 (15)	0.0038 (12)	0.0197 (15)	
C18	0.0527 (13)	0.0625 (15)	0.0448 (13)	0.0041 (11)	0.0010 (10)	0.0089 (11)	
C19	0.088 (2)	0.0331 (12)	0.103 (3)	0.0104 (11)	0.0473 (17)	0.0107 (13)	

Geometric parameters (Å, °)

Zn1—O1 ⁱ	1.8884 (16)	C7—C12	1.391 (2)
Zn1—O1	1.8884 (16)	C7—C8	1.396 (3)
Zn1—N1 ⁱ	2.0626 (19)	C8—C9	1.375 (3)
Zn1—N1	2.0626 (19)	C8—H8	0.9300
O1—C13	1.272 (3)	C9—C10	1.387 (3)
O2—C13	1.231 (3)	С9—Н9	0.9300
O3—C10	1.354 (2)	C10-C11	1.386 (3)
O3—H3A	0.8200	C11—C12	1.377 (3)
N1—C18	1.327 (3)	C11—H11	0.9300
N1	1.349 (3)	C12—H12	0.9300
C1—C2	1.388 (3)	C14—C15	1.401 (3)
C1—C6	1.389 (3)	C14—C14 ⁱ	1.444 (5)
C1—C13	1.499 (3)	C15—C16	1.401 (4)
C2—C3	1.374 (3)	C15—C19	1.429 (4)
C2—H2	0.9300	C16—C17	1.352 (4)
C3—C4	1.397 (3)	C16—H16	0.9300
С3—Н3	0.9300	C17—C18	1.390 (4)
C4—C5	1.388 (3)	C17—H17	0.9300
C4—C7	1.480 (3)	C18—H18	0.9300
C5—C6	1.374 (3)	C19—C19 ⁱ	1.342 (7)
С5—Н5	0.9300	C19—H19	0.9300
С6—Н6	0.9300		
01 ⁱ —Zn1—O1	113.17 (11)	С7—С8—Н8	119.1
O1 ⁱ —Zn1—N1 ⁱ	136.83 (7)	C8—C9—C10	120.30 (19)
O1—Zn1—N1 ⁱ	96.20 (7)	С8—С9—Н9	119.8
O1 ⁱ —Zn1—N1	96.20 (7)	С10—С9—Н9	119.8
O1—Zn1—N1	136.83 (7)	O3—C10—C11	123.09 (17)
N1 ⁱ —Zn1—N1	81.03 (10)	O3—C10—C9	117.94 (18)
C13—O1—Zn1	139.02 (14)	C11—C10—C9	118.97 (18)
С10—О3—НЗА	109.5	C12—C11—C10	120.08 (17)
C18—N1—C14	118.4 (2)	C12—C11—H11	120.0

C18—N1—Zn1	129.27 (17)	C10—C11—H11	120.0
C14—N1—Zn1	112.17 (14)	C11—C12—C7	121.96 (18)
C2—C1—C6	118.32 (17)	C11—C12—H12	119.0
C2—C1—C13	120.73 (17)	С7—С12—Н12	119.0
C6—C1—C13	120.93 (18)	O2—C13—O1	125.17 (18)
C3—C2—C1	120.62 (17)	O2—C13—C1	119.56 (18)
С3—С2—Н2	119.7	O1—C13—C1	115.27 (17)
C1—C2—H2	119.7	N1—C14—C15	123.1 (2)
C2—C3—C4	121.40 (19)	N1-C14-C14 ⁱ	117.24 (12)
С2—С3—Н3	119.3	C15-C14-C14 ⁱ	119.70 (15)
С4—С3—Н3	119.3	C16—C15—C14	116.7 (2)
C5—C4—C3	117.49 (17)	C16—C15—C19	124.5 (2)
C5—C4—C7	120.96 (16)	C14—C15—C19	118.8 (3)
C3—C4—C7	121.54 (17)	C17—C16—C15	119.8 (2)
C6—C5—C4	121.26 (17)	C17—C16—H16	120.1
С6—С5—Н5	119.4	C15—C16—H16	120.1
C4—C5—H5	119.4	C16—C17—C18	120.0 (3)
C5—C6—C1	120.90 (18)	С16—С17—Н17	120.0
С5—С6—Н6	119.5	С18—С17—Н17	120.0
С1—С6—Н6	119.5	N1—C18—C17	122.0 (3)
C12—C7—C8	116.89 (17)	N1—C18—H18	119.0
C12—C7—C4	121.29 (17)	C17—C18—H18	119.0
C8—C7—C4	121.81 (17)	$C19^{i}$ — $C19$ — $C15$	121.45 (16)
C9—C8—C7	121.72(18)	$C19^{i}$ $-C19$ $-H19$	119.3
C9—C8—H8	119.1	C15—C19—H19	119.3
O1 ⁱ —Zn1—O1—C13	39.5 (2)	O3—C10—C11—C12	-178.50 (18)
N1 ⁱ —Zn1—O1—C13	-172.9 (2)	C9—C10—C11—C12	2.2 (3)
N1—Zn1—O1—C13	-89.4 (3)	C10—C11—C12—C7	0.0 (3)
O1 ⁱ —Zn1—N1—C18	-40.1 (2)	C8—C7—C12—C11	-1.7(3)
O1—Zn1—N1—C18	93.8 (2)	C4—C7—C12—C11	177.16 (18)
N1 ⁱ —Zn1—N1—C18	-176.7 (2)	Zn1—O1—C13—O2	31.0 (4)
$O1^{i}$ —Zn1—N1—C14	135.31 (14)	Zn1—O1—C13—C1	-149.79 (17)
O1—Zn1—N1—C14	-90.72 (16)	C2-C1-C13-O2	1.7 (3)
$N1^{i}$ — $Zn1$ — $N1$ — $C14$	-1.20 (10)	C6-C1-C13-O2	-176.6(2)
C6—C1—C2—C3	0.7 (3)	C2-C1-C13-O1	-177.54 (19)
C13—C1—C2—C3	-177.7(2)	C6-C1-C13-O1	4.1 (3)
C1—C2—C3—C4	-0.3(3)	C18—N1—C14—C15	-1.2(3)
$C_2 - C_3 - C_4 - C_5$	-0.3(3)	Zn1-N1-C14-C15	-177.23(17)
$C_2 - C_3 - C_4 - C_7$	179.28 (19)	$C18 - N1 - C14 - C14^{i}$	179.4 (2)
$C_{3}-C_{4}-C_{5}-C_{6}$	0.4 (3)	$Zn1-N1-C14-C14^{i}$	3.4 (3)
C7—C4—C5—C6	-179.15 (19)	N1-C14-C15-C16	2.1 (3)
C4-C5-C6-C1	0.0 (3)	$C14^{i}$ C14 C15 C16	-178.5 (2)
C_{2} C_{1} C_{6} C_{5}	-0.6(3)	N1-C14-C15-C19	-1771(2)
$C_{13} - C_{1} - C_{6} - C_{5}$	177 78 (19)	$C14^{i}$ C14 C15 C19	2.2.(4)
C_{5} C_{4} C_{7} C_{12}	-367(3)	C14-C15-C16-C17	-20(4)
C_{3} C_{4} C_{7} C_{12}	1437(2)	C19-C15-C16-C17	177.2(3)
$C_{5} - C_{4} - C_{7} - C_{8}$	1421(2)	$C_{15} = C_{16} = C_{17} = C_{18}$	1 (4)
	1 1 1 (-)		1,1 (7)

C3—C4—C7—C8	-37.4 (3)	C14—N1—C18—C17	0.2 (3)
C12—C7—C8—C9	1.3 (3)	Zn1—N1—C18—C17	175.43 (18)
C4—C7—C8—C9	-177.63 (19)	C16—C17—C18—N1	-0.2 (4)
C7—C8—C9—C10	0.9 (3)	C16—C15—C19—C19 ⁱ	-178.9 (3)
C8—C9—C10—O3	178.0 (2)	C14—C15—C19—C19 ⁱ	0.2 (5)
C8—C9—C10—C11	-2.7 (3)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> ···O2 ⁱⁱ	0.82	1.81	2.622 (2)	173

Symmetry code: (ii) x-1/2, -y+3/2, z-1/2.