metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4′-hy­dr­oxy­bi­phenyl-4-carboxyl­ato-κO1)(1,10-phenanthroline-κ2N,N′)zinc

aSchool of Chemistry and Pharmaceutical Engineering, Institute of Functionalized Materials, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: wuweipingzg@126.com

(Received 30 March 2011; accepted 1 April 2011; online 13 April 2011)

In the title compound, [Zn(C13H9O3)2(C12H8N2)], the ZnII atom is located on a twofold rotation axis and has a distorted tetra­hedral coordination with two N atoms from the phenanthroline ligand arranged around the twofold axis and two O atoms from two symmetry-related 4′-hy­droxy­biphenyl-4-carboxyl­ate ligands. The mol­ecules are linked by O—H⋯O hydrogen bonds, forming a chain developing parallel to [101].

Related literature

For background to crystal engineering, see: Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For the related carb­oxy­lic acid, see: Song et al. (2004[Song, J. L., Lei, C. & Mao, J. G. (2004). Inorg. Chem. 43, 5630-5634.]); Liu et al. (2011a[Liu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011a). Cryst. Growth Des. 11, 569-574.]). For the related phenanthroline and its derivative complexes, see: Breneman et al. (1993[Breneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891-895.]); Liu et al. (2011b[Liu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011b). J. Mol. Struct. 987, 126-131.]); Zhang et al. (2011[Zhang, S.-S., Chen, L.-J. & Han, Y.-F. (2011). Acta Cryst. E67, m398.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H9O3)2(C12H8N2)]

  • Mr = 671.98

  • Monoclinic, C 2/c

  • a = 15.378 (8) Å

  • b = 10.616 (5) Å

  • c = 17.816 (9) Å

  • β = 90.702 (9)°

  • V = 2908 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.21 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.774, Tmax = 0.833

  • 10508 measured reflections

  • 2605 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.092

  • S = 1.06

  • 2605 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 1.81 2.622 (2) 173
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past years, many supramolecular motifs based on hydrogen bonds have been achieved by using transition metal centers and organic ligands (Aakeroy et al., 1993). The 4'-hydroxybiphenyl-4-carboxylic acid (H2L) has inspired great research interest for assembling coordination architectures. As a versatile ligand, it contains two sulfonic groups and two hydroxyl groups, which may be partially or completely deprotonated and normally serves as linkage to construct diverse metallosupramolecular systems (Song et al., 2004; Liu et al., 2011a). On the other hand, 1, 10-Phenanthroline, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as monomers(Breneman et al. 1993; Liu et al., 2011b, Zhang et al., 2011). Herein, we are interested in self-assemblies of ZnII ion with H2L and phen, which led to the title compound.

The title compound, {[Zn(L)2(phen)] (H2L=4'-hydroxybiphenyl-4-carboxylic acid), is built up from a distorted tetrahedral ZnII located on a two fold axis and surrounded by two O atoms of two 4'-hydroxybiphenyl-4-carboxylate ligands and the two N atoms of the phenanthroline ligand (Fig. 1).

The molecules are linked by O-H···O hydrogen bonds, forming a one-dimensional chain parallel to the [1 0 1] direction (Fig. 2, Table 1).

Related literature top

For backgroup to crystal engineering, see: Aakeroy & Seddon (1993). For the related carboxylic acid, see Song et al. (2004); Liu et al. (2011a). For the related phenanthroline and its derivative complexes, see Breneman et al. (1993); Liu et al. (2011b); Zhang et al. (2011).

Experimental top

A mixture of Zn(AC)2.H2O(25mg, 0.1mmol), H2L(26mg, 0.1mmol), phen(19mg, 0.1mmol), NaOH(0.1mmol) and 5mL H2O and CH3OH(2mL) was stirred for 3h, and then the mixture was transferred to an 25mL Teflon-lined reactor and kept under autogenous pressure at 423k for 3 days,then cooled down to room temperature. Single crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms attached to C and O (hydroxyl group) atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. [Symmetry code: (i) -x+1, y, -z+1/2]
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through O-H···O hydrogen bonds which are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) x-1/2, -y+3/2, z-1/2]
Bis(4'-hydroxybiphenyl-4-carboxylato-κO1)(1,10-phenanthroline- κ2N,N')zinc top
Crystal data top
[Zn(C13H9O3)2(C12H8N2)]F(000) = 1384
Mr = 671.98Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2606 reflections
a = 15.378 (8) Åθ = 2.3–25.2°
b = 10.616 (5) ŵ = 0.90 mm1
c = 17.816 (9) ÅT = 298 K
β = 90.702 (9)°Block, colourless
V = 2908 (2) Å30.30 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2605 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.774, Tmax = 0.833k = 012
10508 measured reflectionsl = 021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.3191P]
where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn(C13H9O3)2(C12H8N2)]V = 2908 (2) Å3
Mr = 671.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.378 (8) ŵ = 0.90 mm1
b = 10.616 (5) ÅT = 298 K
c = 17.816 (9) Å0.30 × 0.27 × 0.21 mm
β = 90.702 (9)°
Data collection top
Bruker APEXII area-detector
diffractometer
2605 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2273 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.833Rint = 0.027
10508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2605 reflectionsΔρmin = 0.32 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.35249 (3)0.25000.04222 (15)
O10.50786 (11)0.45044 (15)0.16187 (8)0.0515 (4)
O20.61479 (12)0.59120 (16)0.16290 (10)0.0650 (5)
O30.20326 (10)1.04044 (13)0.23778 (9)0.0462 (4)
H3A0.17930.99480.26890.069*
N10.56738 (11)0.20478 (17)0.29840 (9)0.0419 (4)
C10.49614 (12)0.62166 (18)0.07931 (10)0.0338 (4)
C20.53096 (13)0.73018 (19)0.04826 (12)0.0396 (5)
H20.58580.75770.06370.047*
C30.48521 (12)0.79735 (19)0.00498 (11)0.0380 (4)
H30.50960.87000.02490.046*
C40.40291 (12)0.75884 (18)0.02979 (10)0.0313 (4)
C50.36906 (12)0.64957 (18)0.00116 (12)0.0373 (5)
H50.31450.62140.01450.045*
C60.41457 (13)0.58227 (19)0.05454 (11)0.0382 (5)
H60.39040.50940.07440.046*
C70.35300 (12)0.83181 (18)0.08651 (10)0.0317 (4)
C80.35415 (13)0.96324 (18)0.08772 (11)0.0392 (5)
H80.38891.00620.05310.047*
C90.30532 (13)1.03091 (19)0.13874 (12)0.0406 (5)
H90.30801.11840.13870.049*
C100.25204 (12)0.96926 (18)0.19028 (11)0.0346 (4)
C110.25167 (12)0.83874 (18)0.19150 (11)0.0349 (4)
H110.21780.79610.22690.042*
C120.30139 (12)0.77208 (18)0.14041 (10)0.0340 (4)
H120.30040.68450.14200.041*
C130.54446 (14)0.55089 (19)0.13953 (11)0.0388 (5)
C140.53520 (14)0.09192 (19)0.27718 (12)0.0423 (5)
C150.56745 (16)0.0227 (2)0.30488 (15)0.0569 (7)
C160.63435 (18)0.0157 (3)0.35882 (16)0.0687 (8)
H160.65680.08890.38010.082*
C170.66621 (18)0.0979 (3)0.37981 (15)0.0672 (8)
H170.71130.10270.41490.081*
C180.63158 (15)0.2074 (3)0.34886 (13)0.0533 (6)
H180.65410.28480.36400.064*
C190.53160 (19)0.1375 (2)0.27629 (18)0.0741 (9)
H190.55250.21390.29450.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0656 (3)0.0293 (2)0.0316 (2)0.0000.00514 (15)0.000
O10.0671 (10)0.0459 (9)0.0411 (9)0.0079 (8)0.0141 (7)0.0139 (7)
O20.0700 (11)0.0529 (10)0.0711 (12)0.0120 (8)0.0427 (9)0.0165 (9)
O30.0560 (9)0.0363 (8)0.0458 (9)0.0032 (7)0.0224 (7)0.0020 (6)
N10.0476 (10)0.0396 (10)0.0387 (9)0.0014 (8)0.0050 (8)0.0047 (8)
C10.0414 (10)0.0318 (9)0.0279 (10)0.0009 (8)0.0060 (8)0.0014 (8)
C20.0381 (10)0.0369 (11)0.0433 (11)0.0089 (8)0.0153 (9)0.0021 (9)
C30.0393 (10)0.0346 (10)0.0399 (11)0.0099 (8)0.0079 (8)0.0053 (9)
C40.0334 (9)0.0331 (10)0.0274 (9)0.0019 (7)0.0027 (7)0.0017 (8)
C50.0332 (10)0.0401 (11)0.0384 (11)0.0093 (8)0.0070 (8)0.0037 (8)
C60.0417 (10)0.0358 (11)0.0369 (11)0.0094 (8)0.0014 (8)0.0051 (9)
C70.0322 (9)0.0335 (10)0.0293 (9)0.0039 (7)0.0030 (7)0.0007 (8)
C80.0450 (11)0.0328 (10)0.0395 (11)0.0068 (8)0.0151 (9)0.0028 (8)
C90.0472 (11)0.0278 (10)0.0464 (12)0.0025 (8)0.0127 (9)0.0008 (8)
C100.0353 (9)0.0362 (10)0.0321 (10)0.0009 (8)0.0045 (8)0.0013 (8)
C110.0372 (10)0.0350 (10)0.0323 (10)0.0047 (8)0.0088 (8)0.0038 (8)
C120.0381 (10)0.0283 (10)0.0355 (10)0.0047 (8)0.0043 (8)0.0016 (8)
C130.0508 (12)0.0327 (10)0.0328 (10)0.0023 (9)0.0095 (9)0.0013 (8)
C140.0490 (12)0.0332 (11)0.0453 (12)0.0032 (9)0.0177 (9)0.0044 (9)
C150.0637 (15)0.0422 (13)0.0657 (16)0.0161 (11)0.0328 (13)0.0134 (11)
C160.0699 (17)0.0684 (18)0.0684 (18)0.0340 (15)0.0241 (14)0.0281 (15)
C170.0565 (15)0.090 (2)0.0555 (16)0.0228 (15)0.0038 (12)0.0197 (15)
C180.0527 (13)0.0625 (15)0.0448 (13)0.0041 (11)0.0010 (10)0.0089 (11)
C190.088 (2)0.0331 (12)0.103 (3)0.0104 (11)0.0473 (17)0.0107 (13)
Geometric parameters (Å, º) top
Zn1—O1i1.8884 (16)C7—C121.391 (2)
Zn1—O11.8884 (16)C7—C81.396 (3)
Zn1—N1i2.0626 (19)C8—C91.375 (3)
Zn1—N12.0626 (19)C8—H80.9300
O1—C131.272 (3)C9—C101.387 (3)
O2—C131.231 (3)C9—H90.9300
O3—C101.354 (2)C10—C111.386 (3)
O3—H3A0.8200C11—C121.377 (3)
N1—C181.327 (3)C11—H110.9300
N1—C141.349 (3)C12—H120.9300
C1—C21.388 (3)C14—C151.401 (3)
C1—C61.389 (3)C14—C14i1.444 (5)
C1—C131.499 (3)C15—C161.401 (4)
C2—C31.374 (3)C15—C191.429 (4)
C2—H20.9300C16—C171.352 (4)
C3—C41.397 (3)C16—H160.9300
C3—H30.9300C17—C181.390 (4)
C4—C51.388 (3)C17—H170.9300
C4—C71.480 (3)C18—H180.9300
C5—C61.374 (3)C19—C19i1.342 (7)
C5—H50.9300C19—H190.9300
C6—H60.9300
O1i—Zn1—O1113.17 (11)C7—C8—H8119.1
O1i—Zn1—N1i136.83 (7)C8—C9—C10120.30 (19)
O1—Zn1—N1i96.20 (7)C8—C9—H9119.8
O1i—Zn1—N196.20 (7)C10—C9—H9119.8
O1—Zn1—N1136.83 (7)O3—C10—C11123.09 (17)
N1i—Zn1—N181.03 (10)O3—C10—C9117.94 (18)
C13—O1—Zn1139.02 (14)C11—C10—C9118.97 (18)
C10—O3—H3A109.5C12—C11—C10120.08 (17)
C18—N1—C14118.4 (2)C12—C11—H11120.0
C18—N1—Zn1129.27 (17)C10—C11—H11120.0
C14—N1—Zn1112.17 (14)C11—C12—C7121.96 (18)
C2—C1—C6118.32 (17)C11—C12—H12119.0
C2—C1—C13120.73 (17)C7—C12—H12119.0
C6—C1—C13120.93 (18)O2—C13—O1125.17 (18)
C3—C2—C1120.62 (17)O2—C13—C1119.56 (18)
C3—C2—H2119.7O1—C13—C1115.27 (17)
C1—C2—H2119.7N1—C14—C15123.1 (2)
C2—C3—C4121.40 (19)N1—C14—C14i117.24 (12)
C2—C3—H3119.3C15—C14—C14i119.70 (15)
C4—C3—H3119.3C16—C15—C14116.7 (2)
C5—C4—C3117.49 (17)C16—C15—C19124.5 (2)
C5—C4—C7120.96 (16)C14—C15—C19118.8 (3)
C3—C4—C7121.54 (17)C17—C16—C15119.8 (2)
C6—C5—C4121.26 (17)C17—C16—H16120.1
C6—C5—H5119.4C15—C16—H16120.1
C4—C5—H5119.4C16—C17—C18120.0 (3)
C5—C6—C1120.90 (18)C16—C17—H17120.0
C5—C6—H6119.5C18—C17—H17120.0
C1—C6—H6119.5N1—C18—C17122.0 (3)
C12—C7—C8116.89 (17)N1—C18—H18119.0
C12—C7—C4121.29 (17)C17—C18—H18119.0
C8—C7—C4121.81 (17)C19i—C19—C15121.45 (16)
C9—C8—C7121.72 (18)C19i—C19—H19119.3
C9—C8—H8119.1C15—C19—H19119.3
O1i—Zn1—O1—C1339.5 (2)O3—C10—C11—C12178.50 (18)
N1i—Zn1—O1—C13172.9 (2)C9—C10—C11—C122.2 (3)
N1—Zn1—O1—C1389.4 (3)C10—C11—C12—C70.0 (3)
O1i—Zn1—N1—C1840.1 (2)C8—C7—C12—C111.7 (3)
O1—Zn1—N1—C1893.8 (2)C4—C7—C12—C11177.16 (18)
N1i—Zn1—N1—C18176.7 (2)Zn1—O1—C13—O231.0 (4)
O1i—Zn1—N1—C14135.31 (14)Zn1—O1—C13—C1149.79 (17)
O1—Zn1—N1—C1490.72 (16)C2—C1—C13—O21.7 (3)
N1i—Zn1—N1—C141.20 (10)C6—C1—C13—O2176.6 (2)
C6—C1—C2—C30.7 (3)C2—C1—C13—O1177.54 (19)
C13—C1—C2—C3177.7 (2)C6—C1—C13—O14.1 (3)
C1—C2—C3—C40.3 (3)C18—N1—C14—C151.2 (3)
C2—C3—C4—C50.3 (3)Zn1—N1—C14—C15177.23 (17)
C2—C3—C4—C7179.28 (19)C18—N1—C14—C14i179.4 (2)
C3—C4—C5—C60.4 (3)Zn1—N1—C14—C14i3.4 (3)
C7—C4—C5—C6179.15 (19)N1—C14—C15—C162.1 (3)
C4—C5—C6—C10.0 (3)C14i—C14—C15—C16178.5 (2)
C2—C1—C6—C50.6 (3)N1—C14—C15—C19177.1 (2)
C13—C1—C6—C5177.78 (19)C14i—C14—C15—C192.2 (4)
C5—C4—C7—C1236.7 (3)C14—C15—C16—C172.0 (4)
C3—C4—C7—C12143.7 (2)C19—C15—C16—C17177.2 (3)
C5—C4—C7—C8142.1 (2)C15—C16—C17—C181.1 (4)
C3—C4—C7—C837.4 (3)C14—N1—C18—C170.2 (3)
C12—C7—C8—C91.3 (3)Zn1—N1—C18—C17175.43 (18)
C4—C7—C8—C9177.63 (19)C16—C17—C18—N10.2 (4)
C7—C8—C9—C100.9 (3)C16—C15—C19—C19i178.9 (3)
C8—C9—C10—O3178.0 (2)C14—C15—C19—C19i0.2 (5)
C8—C9—C10—C112.7 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.821.812.622 (2)173
Symmetry code: (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C13H9O3)2(C12H8N2)]
Mr671.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.378 (8), 10.616 (5), 17.816 (9)
β (°) 90.702 (9)
V3)2908 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.27 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.774, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
10508, 2605, 2273
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.092, 1.06
No. of reflections2605
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.812.622 (2)173
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial assistance from Sichuan University of Science and Engineering, the Institute of Functionalized Materials (grant Nos. 2009xjkpL003 and 2010XJKYL005), the Education Committee of Sichuan Province (No. 09ZA057) and the Committee of Science and Technology of Sichuan Province (No. 2010GZ0130).

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationBreneman, G. L. & Parker, O. J. (1993). Polyhedron, 12, 891–895.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J. Q., Huang, Y. S., Zhao, Y. Y. & Jia, Z. B. (2011a). Cryst. Growth Des. 11, 569–574.  CrossRef CAS Google Scholar
First citationLiu, J. Q., Jia, Z. B. & Wang, Y. Y. (2011b). J. Mol. Struct. 987, 126–131.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. L., Lei, C. & Mao, J. G. (2004). Inorg. Chem. 43, 5630–5634.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-S., Chen, L.-J. & Han, Y.-F. (2011). Acta Cryst. E67, m398.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds