metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1$, N^4 , N^8 , N^{11}) copper(II) didodecanoate dihydrate

Nur Syamimi Ahmad Tajidi, Norbani Abdullah* and Zainudin Arifin

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: nursyamimi@crackberry.com

Received 31 March 2011; accepted 6 April 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.129; data-to-parameter ratio = 21.5.

The title compound, $[Cu(C_{10}H_{24}N_4)(H_2O)_2][CH_3(CH_2)_{10}-CO_2]_2\cdot 2H_2O$, consists of one cationic copper(II) complex, two dodecanoate anions and two water solvent molecules. The Cu^{II} atom is located on an inversion center and is chelated by the four aza N atoms of the neutral 1,4,8,11-tetraazacyclotetradecane (cyclam) ligand and by two water molecules in axial positions, giving an octahedral coordination geometry, distorted as a consequence of the Jahn–Teller effect. The uncoordinated water molecules link the complex cations and the dodecanoate counter-ions through O–H···O hydrogen bonding, forming a layer structure parallel to (001). Intermolecular N–H···O interactions also occur.

Related literature

For the complexation of cyclam with transition metals, see: Ahmad Tajidi *et al.* (2010*a*,*b*,*c*,*d*); Lindoy *et al.* (2003); Holanda *et al.* (2007); Sreedaran *et al.* (2008); Zgolli *et al.* (2010).

 $\beta = 99.137 (3)^{\circ}$

 $\gamma = 98.329 \ (3)^{\circ}$

Z = 1

V = 1024.13 (10) Å³

 $0.41 \times 0.41 \times 0.08 \text{ mm}$

7085 measured reflections

4623 independent reflections

4138 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.58 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.045$

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{10}H_{24}N_4)(H_2O)_2 \end{bmatrix} - (C_{12}H_{23}O_2)_2 \cdot 2H_2O \\ M_r = 734.54 \\ \text{Triclinic, } P\overline{1} \\ a = 6.9972 \ (4) \\ b = 8.8164 \ (5) \\ c = 17.1495 \ (10) \\ A \\ c = 96.218 \ (3)^\circ \end{bmatrix}$

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
T_{\rm min} = 0.796, T_{\rm max} = 0.955
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & 215 \text{ parameters} \\ wR(F^2) &= 0.129 & \text{H-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} = 0.54 \text{ e } \text{\AA}^{-3} \\ 4623 \text{ reflections} & \Delta\rho_{\text{min}} = -0.52 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WB\cdots O2$	0.90	1.91	2.774 (2)	160
$O1W-H1WA\cdots O2^{i}$	0.90	1.81	2.694 (2)	168
$O2W - H2WB \cdots O1W$	0.90	1.93	2.8037 (19)	164
$O2W - H2WA \cdots O1^{ii}$	0.90	1.89	2.777 (2)	168
$N2-H2 \cdot \cdot \cdot O1^{i}$	0.93	2.25	3.030 (2)	141
$N1 - H1 \cdots O1W^{iii}$	0.93	2.12	2.982 (2)	153

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y - 1, z; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

ORTEPIII (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This project was financed by the University of Malaya (grant No. A-50101-DA000-B21519). The authors thank Mr Harry Adams for his support and cooperation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2672).

References

- Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010a). Acta Cryst. E66, m887.
- Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010b). Acta Cryst. E66, m888.

- Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, m889.
- Ahmad Tajidi, N. S., Abdullah, N., Arifin, Z., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, m890.
- Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Holanda, A. K. M., da Silva, F. O. N., Carvalho, I. M. M., Batista, A. A., Ellena, J., Castellano, E. E., Moreira, I. S. & Lopes, L. G. F. (2007). *Polyhedron*, 26, 4653–4658.
- Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203–1213.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sreedaran, S., Bharathi, K. S., Rahiman, A. K., Rajesh, K., Nirmala, G. & Narayanan, V. (2008). J. Coord. Chem. 22, 3594–3609.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zgolli, D. Z., Boughzala, H. & Driss, A. (2010). Acta Cryst. E66, m265-m266.

supporting information

Acta Cryst. (2011). E67, m588-m589 [doi:10.1107/S1600536811012773]

Diaqua(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1$, N^4 , N^8 , N^{11}) copper(II) didodecanoate dihydrate

Nur Syamimi Ahmad Tajidi, Norbani Abdullah and Zainudin Arifin

S1. Comment

Copper(II) cyclam complexes are potential functional materials in the field of molecular electronic, photonics and spintronics whose properties may be tuned by steric and electronic effects. The present complex represents our attempt to synthesize a functional material that possesses metallomesogenic properties for such applications. Several cyclam complexes with copper(II) (Ahmad Tajidi *et al.*, 2010*a*,*b*,*c*,*d*) and other transition metals (Lindoy *et al.*, 2003; Holanda *et al.*, 2007; Sreedaran *et al.*, 2008; Zgolli *et al.*, 2010) have been reported.

In the complex, the Cu^{II} atom, located on an inversion center, is coordinated to the 1,4,8,11-tetraazacyclotetradecane through the four aza-N atoms forming the basal plane of a distorted octahedra whose apices are occupy by two water molecules. Two solvate water molecules link anion and cations through O-H…O hydrogen bondings (Fig. 1, Table 1). The relatively long Cu-O(water) distance, 2.455 (1)Å, is a consequence of the Jahn-Teller effect resulting in the distorted octahedron coordination geometry.

O-H…O and N-H…O Hydrogen bonds involving the coordinated and non coordinated water molecules, the carboxylate O atoms as well as the N atoms of the cyclam build up a two dimensionnal network forming a layer parallel to the (0 0 1) plane (Table 1, Fig. 2).

S2. Experimental

An ethanolic solution of cyclam (2.50 mmol, 50 ml) was added to a warm ethanolic solution of dimeric copper(II) dodecanoate (1.25 mmol, 100 ml), forming a clear purple solution. The solution was then gently heated for 2 h. Purple plates formed upon cooling to room temperature. The yield was 60%.

S3. Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding on their parent atoms with C —H = 0.98 Å (methyl) or 0.99 Å (methylene) and N—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ or $U_{iso}(H) = 1.5U_{eq}(C \text{ methyl})$. H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.89 (1)Å and H…H= 1.42 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. In the last cycles of refinement they were treated as riding on their parent O atoms.

Figure 1

View of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x+2, -y, -z+2]

Figure 2

Partial packing view showing the formation of layer through O-H···O and N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (ii) - x+1, -y+1, -z+2; (iii) x, y-1, z; (iv) x+1, y, z]

Diaqua(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$) copper(II) didodecanoate dihydrate

Crystal data	
$[Cu(C_{10}H_{24}N_4)(H_2O)_2](C_{12}H_{23}O_2)_2 \cdot 2H_2O$ $M_r = 734.54$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.9972 (4) Å b = 8.8164 (5) Å c = 17.1495 (10) Å a = 96.218 (3)° $\beta = 99.137$ (3)° $\gamma = 98.329$ (3)° V = 1024.13 (10) Å ³	Z = 1 F(000) = 403 $D_x = 1.191 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2586 reflections $\theta = 2.8-27.6^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 150 K Plate, violet $0.41 \times 0.41 \times 0.08 \text{ mm}$
Data collectionBruker SMART CCD area-detector diffractometerRadiation source: fine-focus sealed tubeGraphite monochromator φ and ω scansAbsorption correction: multi-scan (SADABS; Sheldrick, 2008) $T_{min} = 0.796, T_{max} = 0.955$	7085 measured reflections 4623 independent reflections 4138 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -9 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = 0 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 1.07	H-atom parameters constrained
4623 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.109P]$
215 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	1.0000	0.0000	1.0000	0.01254 (12)
O2W	0.6641 (2)	0.00995 (16)	0.93529 (9)	0.0230 (3)
H2WA	0.5631	-0.0637	0.9110	0.034*
H2WB	0.6086	0.0954	0.9319	0.034*
N1	1.1080 (2)	0.18383 (18)	0.95170 (10)	0.0151 (3)
H1	1.2439	0.1913	0.9617	0.018*
N2	0.9722 (2)	0.15474 (18)	1.09264 (9)	0.0159 (3)
H2	0.8416	0.1686	1.0853	0.019*
C1	1.1016 (3)	0.0404 (3)	0.81813 (12)	0.0234 (5)
H1A	1.0855	0.0541	0.7610	0.028*
H1B	1.2416	0.0352	0.8367	0.028*
C2	1.0491 (3)	0.1814 (2)	0.86470 (12)	0.0210 (4)
H2A	1.1157	0.2767	0.8484	0.025*
H2B	0.9057	0.1799	0.8518	0.025*
C3	1.0621 (3)	0.3232 (2)	0.99684 (13)	0.0203 (4)
H3A	0.9248	0.3356	0.9778	0.024*
H3B	1.1501	0.4166	0.9888	0.024*
C4	1.0903 (3)	0.3035 (2)	1.08367 (13)	0.0207 (4)
H4A	1.2308	0.3037	1.1043	0.025*
H4B	1.0478	0.3902	1.1145	0.025*
C5	1.0207 (3)	0.1110 (3)	1.17381 (12)	0.0221 (4)
H5A	0.9975	0.1934	1.2135	0.027*
H5B	1.1615	0.1019	1.1851	0.027*
01	0.3901 (2)	0.76965 (15)	0.84556 (8)	0.0201 (3)
O2	0.3977 (3)	0.54859 (17)	0.89662 (9)	0.0277 (4)

C6	1.5268 (4)	0.8928 (3)	0.31756 (16)	0.0379 (6)
H6A	1.6020	0.9753	0.3585	0.057*
H6B	1.5357	0.9224	0.2646	0.057*
H6C	1.5804	0.7970	0.3229	0.057*
C7	1.3129 (3)	0.8673 (3)	0.32783 (13)	0.0302 (5)
H7A	1.2590	0.9636	0.3204	0.036*
H7B	1.2380	0.7852	0.2856	0.036*
C8	1.2814 (3)	0.8219 (3)	0.40846 (12)	0.0216 (4)
H8A	1.3601	0.9020	0.4509	0.026*
H8B	1.3301	0.7233	0.4151	0.026*
C9	1.0669 (3)	0.8029 (3)	0.41888 (12)	0.0217 (4)
H9A	1.0194	0.9024	0.4136	0.026*
H9B	0.9879	0.7250	0.3755	0.026*
C10	1.0328 (3)	0.7534 (3)	0.49849 (12)	0.0227 (4)
H10A	1.1154	0.8293	0.5420	0.027*
H10B	1.0755	0.6520	0.5030	0.027*
C11	0.8192 (3)	0.7402 (3)	0.50970 (12)	0.0223 (4)
H11A	0.7362	0.6671	0.4652	0.027*
H11B	0.7779	0.8426	0.5069	0.027*
C12	0.7825 (3)	0.6855 (3)	0.58845 (13)	0.0241 (5)
H12A	0.8202	0.5819	0.5907	0.029*
H12B	0.8676	0.7572	0.6330	0.029*
C13	0.5699 (3)	0.6768 (3)	0.59969 (12)	0.0225 (4)
H13A	0.4846	0.6099	0.5534	0.027*
H13B	0.5348	0.7817	0.6002	0.027*
C14	0.5274 (3)	0.6143 (2)	0.67581 (12)	0.0214 (4)
H14A	0.6137	0.6802	0.7222	0.026*
H14B	0.5598	0.5086	0.6750	0.026*
C15	0.3140 (3)	0.6090 (2)	0.68655 (12)	0.0202 (4)
H15A	0.2270	0.5519	0.6379	0.024*
H15B	0.2853	0.7160	0.6928	0.024*
C16	0.2673 (3)	0.5319 (2)	0.75860 (11)	0.0192 (4)
H16A	0.3117	0.4302	0.7555	0.023*
H16B	0.1231	0.5128	0.7554	0.023*
C17	0.3612 (3)	0.6252 (2)	0.83941 (11)	0.0154 (4)
O1W	0.5329 (2)	0.29510 (16)	0.95510 (9)	0.0208 (3)
H1WA	0.5554	0.3337	1.0070	0.031*
H1WB	0.4965	0.3679	0.9255	0.031*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01428 (19)	0.01012 (17)	0.01465 (18)	0.00220 (12)	0.00653 (13)	0.00193 (12)
O2W	0.0123 (7)	0.0189 (7)	0.0358 (9)	0.0048 (6)	0.0002 (6)	-0.0017 (6)
N1	0.0121 (8)	0.0136 (8)	0.0210 (8)	0.0032 (6)	0.0051 (6)	0.0044 (6)
N2	0.0122 (8)	0.0170 (8)	0.0185 (8)	0.0028 (6)	0.0044 (6)	-0.0010 (6)
C1	0.0183 (11)	0.0389 (12)	0.0173 (10)	0.0080 (9)	0.0088 (8)	0.0097 (9)
C2	0.0174 (10)	0.0254 (10)	0.0231 (10)	0.0038 (8)	0.0059 (8)	0.0122 (8)

C3	0.0161 (10)	0.0101 (8)	0.0367 (12)	0.0022 (7)	0.0100 (9)	0.0036 (8)
C4	0.0175 (10)	0.0136 (9)	0.0298 (11)	-0.0002 (8)	0.0080 (8)	-0.0042 (8)
C5	0.0207 (11)	0.0306 (11)	0.0149 (9)	0.0069 (9)	0.0037 (8)	-0.0024 (8)
01	0.0231 (8)	0.0157 (7)	0.0213 (7)	0.0048 (6)	0.0033 (6)	0.0001 (5)
O2	0.0426 (10)	0.0209 (8)	0.0188 (7)	0.0039 (7)	0.0029 (7)	0.0052 (6)
C6	0.0286 (14)	0.0546 (17)	0.0364 (14)	0.0053 (12)	0.0196 (11)	0.0141 (12)
C7	0.0229 (12)	0.0478 (14)	0.0213 (11)	0.0013 (10)	0.0098 (9)	0.0090 (10)
C8	0.0182 (11)	0.0290 (11)	0.0185 (10)	0.0018 (8)	0.0077 (8)	0.0037 (8)
C9	0.0189 (11)	0.0281 (11)	0.0170 (10)	-0.0017 (8)	0.0059 (8)	0.0020 (8)
C10	0.0204 (11)	0.0292 (11)	0.0196 (10)	0.0018 (9)	0.0086 (8)	0.0030 (8)
C11	0.0203 (11)	0.0272 (11)	0.0191 (10)	-0.0008 (8)	0.0089 (8)	0.0000 (8)
C12	0.0216 (11)	0.0313 (12)	0.0215 (11)	0.0041 (9)	0.0100 (9)	0.0044 (9)
C13	0.0225 (11)	0.0275 (11)	0.0190 (10)	0.0017 (9)	0.0104 (8)	0.0025 (8)
C14	0.0201 (11)	0.0271 (11)	0.0182 (10)	0.0040 (8)	0.0072 (8)	0.0028 (8)
C15	0.0214 (11)	0.0253 (10)	0.0137 (9)	0.0019 (8)	0.0065 (8)	-0.0002 (8)
C16	0.0220 (11)	0.0189 (10)	0.0160 (9)	-0.0008 (8)	0.0063 (8)	0.0006 (7)
C17	0.0127 (9)	0.0180 (9)	0.0178 (9)	0.0046 (7)	0.0076 (7)	0.0019 (7)
O1W	0.0201 (8)	0.0195 (7)	0.0234 (7)	0.0054 (6)	0.0033 (6)	0.0025 (6)

Geometric parameters (Å, °)

Cu1—N1 ⁱ	2.0048 (16)	С7—С8	1.521 (3)	
Cu1—N1	2.0048 (16)	С7—Н7А	0.9900	
Cu1—N2 ⁱ	2.0319 (15)	С7—Н7В	0.9900	
Cu1—N2	2.0319 (15)	C8—C9	1.527 (3)	
O2W—H2WA	0.8998	C8—H8A	0.9900	
O2W—H2WB	0.8994	C8—H8B	0.9900	
N1-C2	1.481 (2)	C9—C10	1.521 (3)	
N1-C3	1.483 (2)	С9—Н9А	0.9900	
N1—H1	0.9300	С9—Н9В	0.9900	
N2-C4	1.482 (3)	C10—C11	1.527 (3)	
N2—C5	1.485 (2)	C10—H10A	0.9900	
N2—H2	0.9300	C10—H10B	0.9900	
C1–C5 ⁱ	1.510 (3)	C11—C12	1.529 (3)	
C1—C2	1.526 (3)	C11—H11A	0.9900	
C1—H1A	0.9900	C11—H11B	0.9900	
C1—H1B	0.9900	C12—C13	1.523 (3)	
C2—H2A	0.9900	C12—H12A	0.9900	
C2—H2B	0.9900	C12—H12B	0.9900	
C3—C4	1.503 (3)	C13—C14	1.526 (3)	
С3—НЗА	0.9900	C13—H13A	0.9900	
С3—Н3В	0.9900	C13—H13B	0.9900	
C4—H4A	0.9900	C14—C15	1.528 (3)	
C4—H4B	0.9900	C14—H14A	0.9900	
C5–C1 ⁱ	1.510(3)	C14—H14B	0.9900	
C5—H5A	0.9900	C15—C16	1.530 (3)	
С5—Н5В	0.9900	C15—H15A	0.9900	
O1—C17	1.250 (2)	C15—H15B	0.9900	

O2—C17	1.264 (2)	C16—C17	1.529 (3)
C6—C7	1.522 (3)	C16—H16A	0.9900
С6—Н6А	0.9800	C16—H16B	0.9900
С6—Н6В	0.9800	O1W—H1WA	0.8986
С6—Н6С	0.9800	O1W—H1WB	0.9006
N1 ⁱ —Cu1—N1	180.0	H7A—C7—H7B	107.6
N1 ⁱ —Cu1—N2 ⁱ	86.18 (7)	C7—C8—C9	113.37 (18)
N1—Cu1—N2 ⁱ	93.82 (7)	С7—С8—Н8А	108.9
N1 ⁱ —Cu1—N2	93.82 (7)	С9—С8—Н8А	108.9
N1—Cu1—N2	86.18 (7)	С7—С8—Н8В	108.9
N2 ⁱ —Cu1—N2	180.000 (1)	С9—С8—Н8В	108.9
H2WA—O2W—H2WB	100.8	H8A—C8—H8B	107.7
C2—N1—C3	111.39 (15)	С10—С9—С8	113.87 (17)
C2—N1—Cu1	117.57 (13)	С10—С9—Н9А	108.8
C3—N1—Cu1	107.35 (12)	С8—С9—Н9А	108.8
C2—N1—H1	106.6	С10—С9—Н9В	108.8
C3—N1—H1	106.6	С8—С9—Н9В	108.8
Cu1—N1—H1	106.6	H9A—C9—H9B	107.7
C4—N2—C5	112.33 (16)	C9—C10—C11	113.57 (17)
C4—N2—Cu1	106.22 (12)	С9—С10—Н10А	108.9
C5—N2—Cu1	116.78 (12)	C11—C10—H10A	108.9
C4—N2—H2	107.0	C9-C10-H10B	108.9
C5—N2—H2	107.0	C11—C10—H10B	108.9
Cu1—N2—H2	107.0	H10A—C10—H10B	107.7
C5 ⁱ —C1—C2	114.02 (17)	C10-C11-C12	113.90 (18)
C5 ⁱ —C1—H1A	108.7	C10-C11-H11A	108.8
C2—C1—H1A	108.7	C12—C11—H11A	108.8
C5 ⁱ —C1—H1B	108.7	C10-C11-H11B	108.8
C2—C1—H1B	108.7	C12—C11—H11B	108.8
H1A—C1—H1B	107.6	H11A—C11—H11B	107.7
N1—C2—C1	111.41 (15)	C13—C12—C11	113.29 (18)
N1—C2—H2A	109.3	C13—C12—H12A	108.9
C1—C2—H2A	109.3	C11—C12—H12A	108.9
N1—C2—H2B	109.3	C13—C12—H12B	108.9
C1—C2—H2B	109.3	C11—C12—H12B	108.9
H2A—C2—H2B	108.0	H12A—C12—H12B	107.7
N1—C3—C4	108.34 (15)	C12—C13—C14	114.26 (18)
N1—C3—H3A	110.0	С12—С13—Н13А	108.7
С4—С3—Н3А	110.0	C14—C13—H13A	108.7
N1—C3—H3B	110.0	C12—C13—H13B	108.7
С4—С3—Н3В	110.0	C14—C13—H13B	108.7
НЗА—СЗ—НЗВ	108.4	H13A—C13—H13B	107.6
N2—C4—C3	108.71 (16)	C13—C14—C15	113.37 (17)
N2—C4—H4A	109.9	C13—C14—H14A	108.9
C3—C4—H4A	109.9	C15—C14—H14A	108.9
N2—C4—H4B	109.9	C13—C14—H14B	108.9
C3—C4—H4B	109.9	C15—C14—H14B	108.9

H4A—C4—H4B	108.3	H14A—C14—H14B	107.7
N2-C5-C1 ⁱ	111.54 (17)	C14—C15—C16	113.17 (17)
N2—C5—H5A	109.3	C14—C15—H15A	108.9
C1 ⁱ —C5—H5A	109.3	C16—C15—H15A	108.9
N2—C5—H5B	109.3	C14—C15—H15B	108.9
C1 ⁱ —C5—H5B	109.3	C16—C15—H15B	108.9
H5A—C5—H5B	108.0	H15A—C15—H15B	107.8
С7—С6—Н6А	109.5	C15—C16—C17	114.68 (17)
С7—С6—Н6В	109.5	C15—C16—H16A	108.6
H6A—C6—H6B	109.5	C17—C16—H16A	108.6
С7—С6—Н6С	109.5	C15—C16—H16B	108.6
H6A—C6—H6C	109.5	C17—C16—H16B	108.6
H6B—C6—H6C	109.5	H16A—C16—H16B	107.6
C8—C7—C6	114.1 (2)	O1—C17—O2	124.53 (19)
С8—С7—Н7А	108.7	O1—C17—C16	118.96 (17)
С6—С7—Н7А	108.7	O2—C17—C16	116.46 (17)
С8—С7—Н7В	108.7	H1WA—O1W—H1WB	109.5
С6—С7—Н7В	108.7		
C3—N1—C2—C1	178.39 (16)	C7—C8—C9—C10	178.49 (19)
Cu1—N1—C2—C1	-57.1 (2)	C8—C9—C10—C11	177.93 (18)
C5 ⁱ —C1—C2—N1	70.0 (2)	C9—C10—C11—C12	178.14 (18)
C2—N1—C3—C4	169.59 (16)	C10-C11-C12-C13	178.57 (17)
Cu1—N1—C3—C4	39.57 (18)	C11—C12—C13—C14	176.93 (18)
C5—N2—C4—C3	168.83 (15)	C12—C13—C14—C15	179.07 (18)
Cu1—N2—C4—C3	40.02 (17)	C13—C14—C15—C16	174.42 (17)
N1-C3-C4-N2	-53.9 (2)	C14—C15—C16—C17	70.0 (2)
$C4$ — $N2$ — $C5$ — $C1^{i}$	179.78 (15)	C15—C16—C17—O1	30.9 (3)
$Cu1$ — $N2$ — $C5$ — $C1^i$	-57.2 (2)	C15—C16—C17—O2	-151.66 (19)
C6—C7—C8—C9	177.8 (2)		

Symmetry code: (i) -x+2, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>WB</i> ···O2	0.90	1.91	2.774 (2)	160
O1 <i>W</i> —H1 <i>WA</i> ···O2 ⁱⁱ	0.90	1.81	2.694 (2)	168
O2W— $H2WB$ ···O1 W	0.90	1.93	2.8037 (19)	164
O2W— $H2WA$ ···O1 ⁱⁱⁱ	0.90	1.89	2.777 (2)	168
N2—H2···O1 ⁱⁱ	0.93	2.25	3.030 (2)	141
N1—H1···O1 W^{iv}	0.93	2.12	2.982 (2)	153

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*, *y*-1, *z*; (iv) *x*+1, *y*, *z*.