organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1187

N-(2-Methyl­phenyl­sulfon­yl)propanamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 April 2011; accepted 15 April 2011; online 22 April 2011)

In the title compound, C10H13NO3S, the conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment are anti to each other, while the amide H atom is syn with respect to the ortho-methyl group in the benzene ring. The C—S—N—C torsion angle is −66.7 (2)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]); on the structures of N-(substitutedphenyl­sulfon­yl)-substitutedamides, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o549.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1188.]) and on the oxidative strengths of N-chloro, N-aryl­sulfonamides, see: Gowda & Kumar (2003[Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403-425.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO3S

  • Mr = 227.27

  • Monoclinic, P 21 /c

  • a = 8.3050 (8) Å

  • b = 13.339 (1) Å

  • c = 9.9948 (9) Å

  • β = 97.876 (9)°

  • V = 1096.78 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.44 × 0.32 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.886, Tmax = 0.956

  • 4277 measured reflections

  • 2241 independent reflections

  • 1607 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.108

  • S = 1.04

  • 2241 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.08 (2) 2.901 (2) 173 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures and other aspects of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2003, 2004; Shakuntala et al., 2011a,b). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-methylphenylsulfonyl)-2-methylacetamide (I) has been determined (Fig. 1). The conformations of the N—H and C=O bonds of this segment in the structure are anti to each other, similar to that observed in N-(2-methylphenylsulfonyl)-acetamide (II) (Shakuntala et al., 2011b) and N-(2-methylphenylsulfonyl)-2,2,2-trimethylacetamide (III) (Shakuntala et al., 2011a). Further, the conformation of the amide H atom is syn to the ortho-methyl group in the benzene ring, similar to that observed between the amide H atom and the ortho-methyl group in (II) and (III).

The molecules in (I) are bent at the S-atom with a C—S—N—C torsion angle of -66.7 (2)°, compared to the values of -58.2 (2)° in (II) and -65.4 (2)° in (III).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into chains running in the direction of b-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004); on the structures of N-(substitutedphenylsulfonyl)-substitutedamides, see: Shakuntala et al. (2011a,b) and on the oxidative strengths of N-chloro, N-arylsulfonamides, see: Gowda & Kumar (2003).

Experimental top

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of propanoyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(2-Methylphenylsulfonyl)propanamide top
Crystal data top
C10H13NO3SF(000) = 480
Mr = 227.27Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1271 reflections
a = 8.3050 (8) Åθ = 2.6–27.8°
b = 13.339 (1) ŵ = 0.28 mm1
c = 9.9948 (9) ÅT = 293 K
β = 97.876 (9)°Prism, colourless
V = 1096.78 (17) Å30.44 × 0.32 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2241 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.886, Tmax = 0.956k = 1116
4277 measured reflectionsl = 127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.5309P]
where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C10H13NO3SV = 1096.78 (17) Å3
Mr = 227.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3050 (8) ŵ = 0.28 mm1
b = 13.339 (1) ÅT = 293 K
c = 9.9948 (9) Å0.44 × 0.32 × 0.16 mm
β = 97.876 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2241 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1607 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.956Rint = 0.017
4277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2241 reflectionsΔρmin = 0.35 e Å3
140 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6604 (2)0.45905 (16)0.3478 (2)0.0403 (5)
C20.5397 (3)0.38655 (18)0.3512 (2)0.0456 (6)
C30.5387 (3)0.3371 (2)0.4736 (3)0.0586 (7)
H30.45970.28860.48000.070*
C40.6499 (3)0.3571 (2)0.5856 (3)0.0622 (7)
H40.64540.32210.66550.075*
C50.7679 (3)0.4288 (2)0.5794 (2)0.0584 (7)
H50.84310.44270.65500.070*
C60.7736 (3)0.47990 (19)0.4607 (2)0.0484 (6)
H60.85300.52840.45570.058*
C70.8782 (3)0.40395 (18)0.0980 (2)0.0461 (6)
C80.9020 (3)0.34442 (19)0.0249 (2)0.0501 (6)
H8A0.91980.39030.09670.060*
H8B0.80320.30720.05480.060*
C91.0421 (3)0.2722 (2)0.0023 (3)0.0646 (7)
H9A1.02510.22590.06790.078*
H9B1.14120.30860.02370.078*
H9C1.04950.23590.08430.078*
C100.4116 (3)0.3615 (2)0.2348 (3)0.0633 (7)
H10A0.46010.35850.15300.076*
H10B0.32880.41220.22640.076*
H10C0.36410.29770.25060.076*
N10.7295 (2)0.45380 (16)0.08882 (19)0.0497 (5)
H1N0.664 (3)0.4451 (19)0.020 (2)0.060*
O10.5187 (2)0.56595 (14)0.14397 (17)0.0616 (5)
O20.8011 (2)0.60402 (13)0.23614 (19)0.0673 (5)
O30.9760 (2)0.41109 (16)0.19851 (18)0.0681 (5)
S10.67655 (7)0.53152 (5)0.20265 (6)0.04798 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0367 (11)0.0465 (13)0.0363 (11)0.0061 (10)0.0005 (9)0.0056 (10)
C20.0397 (12)0.0487 (14)0.0474 (13)0.0064 (10)0.0020 (10)0.0065 (11)
C30.0538 (14)0.0620 (16)0.0623 (17)0.0026 (13)0.0164 (12)0.0013 (14)
C40.0675 (17)0.0768 (19)0.0443 (14)0.0150 (15)0.0145 (13)0.0073 (14)
C50.0563 (15)0.0782 (19)0.0376 (13)0.0161 (14)0.0048 (11)0.0056 (13)
C60.0405 (12)0.0595 (15)0.0426 (12)0.0029 (11)0.0034 (9)0.0057 (11)
C70.0381 (11)0.0577 (15)0.0414 (12)0.0047 (11)0.0019 (10)0.0041 (11)
C80.0447 (13)0.0606 (16)0.0448 (13)0.0051 (11)0.0055 (10)0.0008 (12)
C90.0612 (16)0.0646 (17)0.0684 (18)0.0062 (14)0.0103 (14)0.0021 (15)
C100.0477 (14)0.0692 (17)0.0695 (17)0.0068 (13)0.0049 (12)0.0150 (14)
N10.0429 (11)0.0684 (14)0.0352 (10)0.0068 (10)0.0046 (8)0.0063 (10)
O10.0666 (11)0.0681 (11)0.0458 (10)0.0258 (9)0.0083 (8)0.0008 (8)
O20.0823 (13)0.0584 (11)0.0592 (11)0.0211 (10)0.0033 (9)0.0005 (9)
O30.0474 (10)0.0995 (15)0.0524 (11)0.0089 (10)0.0105 (8)0.0127 (10)
S10.0515 (3)0.0502 (4)0.0396 (3)0.0034 (3)0.0036 (2)0.0002 (3)
Geometric parameters (Å, º) top
C1—C61.394 (3)C7—C81.499 (3)
C1—C21.397 (3)C8—C91.504 (3)
C1—S11.763 (2)C8—H8A0.9700
C2—C31.391 (3)C8—H8B0.9700
C2—C101.503 (3)C9—H9A0.9600
C3—C41.377 (4)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.377 (4)C10—H10A0.9600
C4—H40.9300C10—H10B0.9600
C5—C61.375 (3)C10—H10C0.9600
C5—H50.9300N1—S11.643 (2)
C6—H60.9300N1—H1N0.822 (16)
C7—O31.206 (3)O1—S11.4363 (17)
C7—N11.395 (3)O2—S11.4219 (18)
C6—C1—C2121.7 (2)C7—C8—H8B108.8
C6—C1—S1115.96 (18)C9—C8—H8B108.8
C2—C1—S1122.38 (16)H8A—C8—H8B107.7
C3—C2—C1116.2 (2)C8—C9—H9A109.5
C3—C2—C10119.1 (2)C8—C9—H9B109.5
C1—C2—C10124.7 (2)H9A—C9—H9B109.5
C4—C3—C2122.6 (3)C8—C9—H9C109.5
C4—C3—H3118.7H9A—C9—H9C109.5
C2—C3—H3118.7H9B—C9—H9C109.5
C3—C4—C5120.0 (3)C2—C10—H10A109.5
C3—C4—H4120.0C2—C10—H10B109.5
C5—C4—H4120.0H10A—C10—H10B109.5
C6—C5—C4119.4 (2)C2—C10—H10C109.5
C6—C5—H5120.3H10A—C10—H10C109.5
C4—C5—H5120.3H10B—C10—H10C109.5
C5—C6—C1120.1 (2)C7—N1—S1125.02 (16)
C5—C6—H6120.0C7—N1—H1N117.6 (18)
C1—C6—H6120.0S1—N1—H1N117.3 (18)
O3—C7—N1120.4 (2)O2—S1—O1118.19 (12)
O3—C7—C8125.1 (2)O2—S1—N1109.70 (11)
N1—C7—C8114.42 (19)O1—S1—N1103.59 (10)
C7—C8—C9113.7 (2)O2—S1—C1108.31 (11)
C7—C8—H8A108.8O1—S1—C1110.06 (10)
C9—C8—H8A108.8N1—S1—C1106.35 (11)
C6—C1—C2—C30.3 (3)N1—C7—C8—C9166.1 (2)
S1—C1—C2—C3178.22 (17)O3—C7—N1—S14.7 (4)
C6—C1—C2—C10178.7 (2)C8—C7—N1—S1174.80 (17)
S1—C1—C2—C100.1 (3)C7—N1—S1—O250.2 (2)
C1—C2—C3—C40.4 (4)C7—N1—S1—O1177.3 (2)
C10—C2—C3—C4178.8 (2)C7—N1—S1—C166.7 (2)
C2—C3—C4—C50.3 (4)C6—C1—S1—O24.0 (2)
C3—C4—C5—C60.1 (4)C2—C1—S1—O2174.62 (18)
C4—C5—C6—C10.1 (4)C6—C1—S1—O1134.60 (17)
C2—C1—C6—C50.2 (3)C2—C1—S1—O144.0 (2)
S1—C1—C6—C5178.44 (18)C6—C1—S1—N1113.82 (18)
O3—C7—C8—C914.4 (4)C2—C1—S1—N167.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.08 (2)2.901 (2)173 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO3S
Mr227.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3050 (8), 13.339 (1), 9.9948 (9)
β (°) 97.876 (9)
V3)1096.78 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.44 × 0.32 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.886, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
4277, 2241, 1607
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.108, 1.04
No. of reflections2241
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.822 (16)2.083 (17)2.901 (2)173 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1187
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds