organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1269-o1270

rac-Ethyl (2Z)-3-{2-[(Z)-4-eth­­oxy-4-oxobut-2-en-2-yl­amino]­cyclo­hexyl­amino}­but-2-enoate

aEquipe de Chimie de Coordination et Catalyse, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43124 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 20 April 2011; accepted 22 April 2011; online 29 April 2011)

The asymmetric unit of the title compound, C18H30N2O4, contains two independent mol­ecules. In each mol­ecule, the cyclo­hexane ring adopts a chair conformation with equatorial orientation of the substituents, and the conformation is stabilized by two intra­molecular N—H⋯O hydrogen bonds, forming rings of S(6) graph-set motif. One eth­oxy group and one ethyl group are disordered over two sets of sites with refined occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. In the crystal, a weak inter­molecular C—H⋯O hydrogen inter­action is observed, involving the O atom of the major component of the disordered eth­oxy group.

Related literature

For the synthesis and applications of β-enamino­esters, see: Spivey et al. (2003[Spivey, A. C., Srikaran, R., Diaper, C. M. & Turner, D. J. (2003). Org. Biomol. Chem. 1, 1638-1840.]); Eddington et al. (2003[Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49-64.]); Elaridi, Thaqi et al. (2005[Elaridi, J., Thaqi, A., Prosser, A., Jackson, W. R. & Robinson, A. J. (2005). Tetrahedron Asymmetry, 16, 1309-1319.]); Cornils & Herrmann (1996[Cornils, B. & Herrmann, W. A. (1996). Editors. Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412-413. Weinheim: VCH.]); Venter et al. (2009[Venter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1606-m1607.]); Elaridi, Jackson & Robinson (2005[Elaridi, J., Jackson, W. R. & Robinson, A. J. (2005). Tetrahedron Asymmetry, 16, 2025-2029.]); Harrad et al. (2010[Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442-446.]). For related structures, see: McCann et al. (2001[McCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799-2806.]); Huang et al. (2008)[Huang, C.-H., Hsueh, L.-F., Kuo, P.-C., Lee, H. M., Uno, C.-L., Huang, J.-H., Tu, C.-Y., Hu, C.-H., Lee, G.-H. & Hung, C.-H. (2008). Eur. J. Inorg. Chem. pp. 3000-3008.]. For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H30N2O4

  • Mr = 338.44

  • Triclinic, [P \overline 1]

  • a = 11.1424 (9) Å

  • b = 12.7445 (6) Å

  • c = 16.3298 (11) Å

  • α = 90.904 (6)°

  • β = 109.222 (6)°

  • γ = 114.048 (5)°

  • V = 1969.1 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 294 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Siemens AED diffractometer

  • 7461 measured reflections

  • 7189 independent reflections

  • 5826 reflections with I > 2σ(I)

  • Rint = 0.006

  • 3 standard reflections every 100 reflections intensity decay: 0.02%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.106

  • S = 1.16

  • 7189 reflections

  • 467 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.850 (13) 2.048 (14) 2.754 (2) 140.1 (12)
N2—H2N⋯O3 0.865 (12) 2.009 (12) 2.720 (2) 138.7 (13)
N3—H3N⋯O5 0.846 (17) 2.018 (15) 2.724 (2) 140.3 (12)
N4—H4N⋯O7 0.811 (17) 2.112 (15) 2.754 (2) 136.1 (14)
C4—H4A⋯O6Ai 0.97 2.48 3.400 (3) 158
Symmetry code: (i) x+1, y+1, z.

Data collection: AED (Belletti et al., 1993[Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.]); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

β-Enaminoesters have been extensively studied because of their applications in pharmaceutical, biochemical, biomedical and immunochemical research (Spivey et al., 2003; Eddington et al., 2003). These compounds are also used as precursors for the preparation of a large number of heterocyclic derivatives (Elaridi, Thaqi et al., 2005) and novel organometallic complexes (Cornils & Herrmann, 1996; Venter et al., 2009). Furthermore, chiral β-amino acid derivatives were prepared by enantioselective hydrogenation of β-enaminoesters (Elaridi, Jackson & Robinson, 2005). In the course of our studies in this field, we have recently reported an efficient method for the synthesis of various β-enaminoesters (Harrad et al., 2010). Following our catalysis objective on the coupling of amines and keto-ester compounds, we describe herein the crystal structure of a new β-enaminoester which has been prepared using our previously mentioned method by the dicondensation of trans-cyclohexane-1,2-diamine with 3-oxo-butyric acid ethyl ester under solvent-free conditions.

The asymmetric unit of the title compound (Fig. 1) consists of two independent molecules differing mainly in the orientation of the aminobutenoate groups (Fig. 2), as indicated by the dihedral angles of 82.23 (3) and 51.57 (3)° between the mean planes through N1/O1/O2/C8—C10 and N2/O3/O4/C13—C16 in one molecule, and through N3/O5/O6A/O6B/C25—C28 and N4/O7/O8/C31—C24 in the other molecule. The molecular conformations, where the substituents are equatorially oriented with respect to the cyclohexane rings, are similar to those observed for the related compound trans-N,N'-bis(4-oxopent-2-en-2-yl)-1,2-diaminocyclohexane (McCann et al., 2001; Huang et al., 2009). In each aminobutenoate group an intramolecular N—H···O hydrogen bond (Table 1) is present, forming a ring of S(6) graph-set motif (Bernstein et al., 1995). The cyclohexane rings adopt a chair conformations with puckering parameters Q, θ and ϕ (Cremer & Pople, 1975) of 0.5691 (11) Å, 179.21 (19)°, -105 (8)° and 0.5723 (15) Å, 178.86 (15)°, -67 (8)° for rings C1–C6 and C19–C24, respectively. In one molecule, the O6/C29–C30 ethoxy group and the C35–C36 ethyl group are disordered over two orientations with refined site occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. In the crystal structure (Fig. 3), one weak C—H···O hydrogen bond (Table 1) is observed, involving the oxygen atom of the major component of the disordered ethoxy group as acceptor.

Related literature top

For the synthesis and applications of β-enaminoesters, see: Spivey et al. (2003); Eddington et al. (2003); Elaridi, Thaqi et al. (2005); Cornils & Herrmann (1996); Venter et al. (2009); Elaridi, Jackson & Robinson (2005); Harrad et al. (2010). For related structures, see: McCann et al. (2001); Huang et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a stirred mixture of 3-oxo-butyric acid ethyl ester (1.7 mmol), trans-cyclohexane-1,2-diamine (0.85 mmol) and Ca(CF3COO)2 (0.17 mmol) at room temperature 10 ml of distilled water was added, and the residue extracted with diethyl ether (3 × 25 ml). The organic layer was dried over Na2SO4 and the solvent removed under reduced pressure. The title β-enaminoester was obtained by column chromatography over silica gel using a mixture of n-hexane/ethyl acetate (5:95 v/v) as eluent (yield 90%; m. p. 160 °C). Crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent at room temperature.

Refinement top

The amine H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. One ethoxy group (O6/C29–C30) and one ethyl group (C35–C36) are disordered over two orientations (called A and B) with refined site occupancy ratios of 0.704 (2):0.296 (2) and 0.505 (3):0.495 (3), respectively. During the refinement, the O—C and C—C bond distances within the disordered groups were restrained to be 1.45 (1) and 1.49 (1) Å, respectively, and the anisotropic displacement parameters of the pairs of the disordered atoms were set equal by the command EADP (Sheldrick, 2008).

Computing details top

Data collection: AED (Belletti et al., 1993); cell refinement: AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Only the major components of disorder are shown.
[Figure 2] Fig. 2. Comparison of the conformations of the two independent molecules of the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound with intra- and intermolecular hydrogen bonds shown as dashed lines.
rac-Ethyl (2Z)-3-{2-[(Z)-4-ethoxy- 4-oxobut-2-en-2-ylamino]cyclohexylamino}but-2-enoate top
Crystal data top
C18H30N2O4Z = 4
Mr = 338.44F(000) = 736
Triclinic, P1Dx = 1.142 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 11.1424 (9) ÅCell parameters from 48 reflections
b = 12.7445 (6) Åθ = 18.4–29.8°
c = 16.3298 (11) ŵ = 0.65 mm1
α = 90.904 (6)°T = 294 K
β = 109.222 (6)°Irregular block, colourless
γ = 114.048 (5)°0.18 × 0.15 × 0.10 mm
V = 1969.1 (3) Å3
Data collection top
Siemens AED
diffractometer
Rint = 0.006
Radiation source: fine-focus sealed tubeθmax = 68.0°, θmin = 2.9°
Graphite monochromatorh = 1312
θ/2θ scansk = 159
7461 measured reflectionsl = 1819
7189 independent reflections3 standard reflections every 100 reflections
5826 reflections with I > 2σ(I) intensity decay: 0.02%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0296P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
7189 reflectionsΔρmax = 0.19 e Å3
467 parametersΔρmin = 0.14 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0100 (5)
Crystal data top
C18H30N2O4γ = 114.048 (5)°
Mr = 338.44V = 1969.1 (3) Å3
Triclinic, P1Z = 4
a = 11.1424 (9) ÅCu Kα radiation
b = 12.7445 (6) ŵ = 0.65 mm1
c = 16.3298 (11) ÅT = 294 K
α = 90.904 (6)°0.18 × 0.15 × 0.10 mm
β = 109.222 (6)°
Data collection top
Siemens AED
diffractometer
Rint = 0.006
7461 measured reflections3 standard reflections every 100 reflections
7189 independent reflections intensity decay: 0.02%
5826 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0348 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.19 e Å3
7189 reflectionsΔρmin = 0.14 e Å3
467 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.65218 (9)0.84797 (6)0.08853 (5)0.0814 (2)
O20.58185 (10)0.74147 (7)0.04449 (5)0.0864 (2)
O30.11165 (8)0.64888 (7)0.18740 (5)0.0774 (2)
O40.03250 (9)0.73472 (8)0.13437 (6)0.0912 (3)
O50.19007 (10)0.18776 (8)0.38766 (5)0.0895 (3)
O6A0.1211 (2)0.10330 (16)0.50344 (14)0.0829 (5)0.704 (2)
O6B0.0647 (6)0.1425 (4)0.5121 (4)0.0829 (5)0.296 (2)
O70.34330 (8)0.27768 (7)0.26921 (6)0.0846 (2)
O80.52581 (9)0.38869 (8)0.39309 (7)0.0963 (3)
N10.55037 (10)0.72198 (8)0.20595 (6)0.0684 (2)
H1N0.5994 (13)0.7854 (12)0.1927 (8)0.082 (4)*
N20.38841 (10)0.79819 (8)0.27442 (7)0.0727 (2)
H2N0.3211 (14)0.7281 (12)0.2553 (8)0.084 (4)*
N30.13927 (10)0.13606 (8)0.24363 (6)0.0687 (2)
H3N0.1697 (13)0.1707 (11)0.2705 (8)0.080 (4)*
N40.11045 (10)0.32223 (9)0.23049 (6)0.0719 (2)
H4N0.1472 (13)0.2852 (11)0.2165 (8)0.082 (4)*
C10.55684 (11)0.71559 (9)0.29601 (6)0.0635 (2)
H10.48290.64000.29600.076*
C20.69934 (12)0.72291 (10)0.35581 (8)0.0756 (3)
H2A0.71310.65920.33380.091*
H2B0.77440.79550.35420.091*
C30.70863 (14)0.71697 (11)0.45078 (8)0.0846 (3)
H3A0.63950.64150.45360.102*
H3B0.80180.72560.48710.102*
C40.68137 (14)0.81250 (11)0.48572 (8)0.0863 (3)
H4A0.75650.88790.48900.104*
H4B0.68160.80450.54470.104*
C50.53939 (13)0.80654 (11)0.42641 (8)0.0819 (3)
H5A0.46390.73460.42850.098*
H5B0.52720.87100.44870.098*
C60.52777 (11)0.81168 (9)0.33084 (7)0.0664 (2)
H60.59870.88760.32850.080*
C70.48965 (10)0.63196 (8)0.13905 (6)0.0608 (2)
C80.40309 (15)0.51312 (10)0.15353 (9)0.0937 (4)
H8A0.46280.48960.19870.141*
H8B0.36090.45820.09980.141*
H8C0.33020.51550.17140.141*
C90.50447 (10)0.64528 (9)0.05978 (7)0.0648 (2)
H90.45860.57930.01620.078*
C100.58526 (11)0.75309 (9)0.03918 (7)0.0655 (2)
C110.65923 (17)0.84598 (13)0.07360 (9)0.0971 (4)
H11A0.65100.91130.04880.117*
H11B0.61760.83580.13720.117*
C120.80899 (19)0.87259 (17)0.04739 (13)0.1255 (6)
H12A0.85660.94260.06740.188*
H12B0.81770.80910.07320.188*
H12C0.85080.88360.01560.188*
C130.34359 (13)0.88097 (10)0.25392 (8)0.0779 (3)
C140.45322 (18)1.00673 (12)0.28361 (13)0.1315 (7)
H14A0.40721.05720.27070.197*
H14B0.51751.02240.25310.197*
H14C0.50461.02040.34590.197*
C150.20513 (13)0.85458 (10)0.20757 (7)0.0795 (3)
H150.18050.91570.19510.095*
C160.09706 (12)0.73879 (10)0.17749 (7)0.0699 (3)
C170.15032 (13)0.61954 (12)0.10095 (8)0.0878 (4)
H17A0.12130.56890.07570.105*
H17B0.22720.62520.05440.105*
C180.20206 (15)0.56635 (16)0.17051 (10)0.1087 (5)
H18A0.27980.49070.14520.163*
H18B0.23270.61530.19500.163*
H18C0.12700.55870.21610.163*
C190.13341 (11)0.16744 (9)0.15936 (7)0.0646 (2)
H190.09790.12020.13540.077*
C200.28197 (12)0.14077 (10)0.09474 (7)0.0760 (3)
H20A0.34260.05790.08560.091*
H20B0.32140.18240.11970.091*
C210.27846 (14)0.17667 (11)0.00643 (8)0.0837 (3)
H21A0.24670.13020.02090.100*
H21B0.37300.16160.03240.100*
C220.18062 (14)0.30461 (12)0.01838 (8)0.0833 (3)
H22A0.21690.35130.04100.100*
H22B0.17760.32450.03820.100*
C230.03151 (13)0.33309 (12)0.08190 (8)0.0817 (3)
H23A0.02760.41620.09080.098*
H23B0.00850.29260.05650.098*
C240.03252 (11)0.29689 (9)0.17064 (7)0.0652 (2)
H240.06650.34320.19710.078*
C250.07559 (10)0.07824 (8)0.29520 (7)0.0607 (2)
C260.00907 (14)0.01806 (11)0.25829 (8)0.0788 (3)
H26A0.06470.07460.24270.118*
H26B0.07930.03810.20690.118*
H26C0.03000.02090.30170.118*
C270.07262 (11)0.07126 (9)0.37959 (7)0.0654 (2)
H270.03170.02670.41140.078*
C280.12888 (13)0.12870 (9)0.42072 (7)0.0725 (3)
C29A0.1870 (3)0.14951 (19)0.54811 (14)0.0902 (5)0.704 (2)
H29A0.21600.09930.58880.108*0.704 (2)
H29B0.27070.15050.50520.108*0.704 (2)
C30A0.0877 (3)0.2695 (2)0.59710 (16)0.1157 (7)0.704 (2)
H30A0.13330.29850.62590.174*0.704 (2)
H30B0.05980.31940.55680.174*0.704 (2)
H30C0.00560.26830.64030.174*0.704 (2)
C29B0.0883 (6)0.2124 (5)0.5686 (3)0.0902 (5)0.296 (2)
H29C0.06990.28800.55090.108*0.296 (2)
H29D0.02420.22460.62880.108*0.296 (2)
C30B0.2357 (7)0.1538 (6)0.5640 (4)0.1157 (7)0.296 (2)
H30D0.25090.20130.60200.174*0.296 (2)
H30E0.25320.07960.58240.174*0.296 (2)
H30F0.29880.14240.50450.174*0.296 (2)
C310.18551 (11)0.39366 (9)0.30854 (7)0.0653 (2)
C320.11850 (15)0.45730 (13)0.34209 (8)0.0911 (4)
H32A0.08760.50000.29870.137*
H32B0.18630.51050.39550.137*
H32C0.03890.40200.35350.137*
C330.32099 (11)0.41186 (9)0.35799 (7)0.0692 (3)
H330.36890.46590.41010.083*
C340.39224 (11)0.35293 (9)0.33421 (8)0.0701 (3)
C35A0.6064 (10)0.3370 (8)0.3684 (8)0.1107 (14)0.505 (3)
H35A0.56250.30520.30590.133*0.505 (3)
H35B0.60790.27390.40050.133*0.505 (3)
C36A0.7530 (4)0.4278 (3)0.3891 (3)0.1138 (9)0.505 (3)
H36A0.80690.39380.37360.171*0.505 (3)
H36B0.79580.45910.45090.171*0.505 (3)
H36C0.75100.48910.35610.171*0.505 (3)
C35B0.6115 (10)0.3321 (9)0.3864 (8)0.1107 (14)0.495 (3)
H35C0.55350.24910.36550.133*0.495 (3)
H35D0.68320.34340.44350.133*0.495 (3)
C36B0.6779 (4)0.3848 (3)0.3239 (3)0.1138 (9)0.495 (3)
H36D0.73100.34540.31480.171*0.495 (3)
H36E0.74010.46580.34720.171*0.495 (3)
H36F0.60620.37770.26880.171*0.495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0996 (6)0.0589 (4)0.0826 (5)0.0259 (4)0.0411 (4)0.0138 (4)
O20.1099 (6)0.0779 (5)0.0716 (5)0.0353 (5)0.0407 (4)0.0190 (4)
O30.0683 (4)0.0726 (5)0.0910 (5)0.0352 (4)0.0234 (4)0.0129 (4)
O40.0796 (5)0.0919 (6)0.0928 (6)0.0482 (5)0.0072 (4)0.0111 (4)
O50.1190 (7)0.1038 (6)0.0856 (5)0.0769 (6)0.0486 (5)0.0328 (5)
O6A0.1189 (17)0.0739 (12)0.0744 (7)0.0502 (11)0.0471 (12)0.0226 (9)
O6B0.1189 (17)0.0739 (12)0.0744 (7)0.0502 (11)0.0471 (12)0.0226 (9)
O70.0722 (5)0.0796 (5)0.0976 (6)0.0342 (4)0.0253 (4)0.0048 (4)
O80.0653 (5)0.0818 (5)0.1212 (7)0.0336 (4)0.0085 (4)0.0023 (5)
N10.0743 (5)0.0544 (5)0.0685 (5)0.0177 (4)0.0301 (4)0.0123 (4)
N20.0631 (5)0.0594 (5)0.0851 (6)0.0232 (4)0.0194 (4)0.0076 (4)
N30.0763 (6)0.0798 (6)0.0707 (5)0.0477 (5)0.0340 (4)0.0227 (4)
N40.0635 (5)0.0806 (6)0.0752 (6)0.0370 (5)0.0231 (4)0.0075 (5)
C10.0623 (5)0.0550 (5)0.0642 (5)0.0178 (4)0.0227 (4)0.0114 (4)
C20.0709 (6)0.0699 (6)0.0818 (7)0.0314 (5)0.0220 (5)0.0158 (5)
C30.0831 (8)0.0752 (7)0.0766 (7)0.0302 (6)0.0122 (6)0.0179 (6)
C40.0909 (8)0.0780 (7)0.0644 (6)0.0235 (6)0.0152 (6)0.0080 (5)
C50.0844 (8)0.0805 (7)0.0737 (7)0.0289 (6)0.0302 (6)0.0055 (5)
C60.0609 (5)0.0579 (5)0.0688 (6)0.0187 (4)0.0194 (5)0.0080 (4)
C70.0515 (5)0.0560 (5)0.0645 (5)0.0194 (4)0.0144 (4)0.0089 (4)
C80.1030 (9)0.0618 (7)0.0816 (8)0.0023 (6)0.0360 (7)0.0035 (5)
C90.0624 (6)0.0586 (5)0.0640 (6)0.0223 (4)0.0173 (4)0.0070 (4)
C100.0709 (6)0.0646 (6)0.0658 (6)0.0342 (5)0.0248 (5)0.0148 (5)
C110.1316 (12)0.0907 (9)0.0856 (8)0.0509 (9)0.0557 (8)0.0361 (7)
C120.1146 (13)0.1228 (13)0.1317 (14)0.0328 (10)0.0597 (11)0.0457 (11)
C130.0854 (7)0.0616 (6)0.0734 (7)0.0286 (5)0.0176 (6)0.0133 (5)
C140.1176 (12)0.0606 (8)0.1555 (15)0.0270 (8)0.0074 (11)0.0155 (8)
C150.0893 (8)0.0714 (7)0.0753 (7)0.0441 (6)0.0156 (6)0.0138 (5)
C160.0733 (6)0.0781 (7)0.0618 (6)0.0411 (6)0.0186 (5)0.0114 (5)
C170.0700 (7)0.1016 (9)0.0771 (7)0.0386 (7)0.0084 (6)0.0057 (6)
C180.0777 (8)0.1517 (14)0.0942 (9)0.0514 (9)0.0268 (7)0.0191 (9)
C190.0687 (6)0.0691 (6)0.0656 (6)0.0388 (5)0.0250 (5)0.0139 (5)
C200.0694 (6)0.0742 (7)0.0768 (7)0.0324 (5)0.0167 (5)0.0085 (5)
C210.0901 (8)0.0898 (8)0.0687 (6)0.0505 (7)0.0123 (6)0.0086 (6)
C220.0974 (8)0.0956 (8)0.0738 (7)0.0589 (7)0.0297 (6)0.0291 (6)
C230.0850 (8)0.0902 (8)0.0843 (7)0.0467 (7)0.0369 (6)0.0329 (6)
C240.0631 (6)0.0708 (6)0.0684 (6)0.0358 (5)0.0237 (5)0.0129 (5)
C250.0551 (5)0.0535 (5)0.0707 (6)0.0238 (4)0.0196 (4)0.0098 (4)
C260.0933 (8)0.0823 (7)0.0818 (7)0.0561 (7)0.0344 (6)0.0194 (6)
C270.0709 (6)0.0588 (5)0.0686 (6)0.0329 (5)0.0223 (5)0.0141 (4)
C280.0880 (7)0.0653 (6)0.0714 (6)0.0385 (6)0.0314 (5)0.0177 (5)
C29A0.1123 (16)0.0960 (15)0.0813 (11)0.0553 (12)0.0459 (12)0.0170 (10)
C30A0.1343 (18)0.1182 (16)0.1043 (15)0.0694 (14)0.0388 (13)0.0099 (12)
C29B0.1123 (16)0.0960 (15)0.0813 (11)0.0553 (12)0.0459 (12)0.0170 (10)
C30B0.1343 (18)0.1182 (16)0.1043 (15)0.0694 (14)0.0388 (13)0.0099 (12)
C310.0716 (6)0.0657 (6)0.0641 (6)0.0310 (5)0.0297 (5)0.0196 (5)
C320.0950 (9)0.1066 (10)0.0821 (8)0.0563 (8)0.0301 (7)0.0042 (7)
C330.0715 (6)0.0686 (6)0.0658 (6)0.0298 (5)0.0238 (5)0.0167 (5)
C340.0623 (6)0.0603 (6)0.0805 (7)0.0228 (5)0.0225 (5)0.0189 (5)
C35A0.0754 (10)0.0835 (10)0.157 (4)0.0428 (8)0.0135 (18)0.0046 (19)
C36A0.102 (2)0.0986 (19)0.163 (3)0.0561 (17)0.0601 (18)0.0378 (19)
C35B0.0754 (10)0.0835 (10)0.157 (4)0.0428 (8)0.0135 (18)0.0046 (19)
C36B0.102 (2)0.0986 (19)0.163 (3)0.0561 (17)0.0601 (18)0.0378 (19)
Geometric parameters (Å, º) top
O1—C101.2273 (12)C15—H150.9300
O2—C101.3584 (13)C17—C181.490 (2)
O2—C111.4482 (15)C17—H17A0.9700
O3—C161.2272 (13)C17—H17B0.9700
O4—C161.3605 (13)C18—H18A0.9600
O4—C171.4520 (16)C18—H18B0.9600
O5—C281.2294 (13)C18—H18C0.9600
O6A—C281.377 (2)C19—C201.5327 (14)
O6A—C29A1.453 (3)C19—C241.5368 (15)
O6B—C281.398 (6)C19—H190.9800
O6B—C29B1.429 (6)C20—C211.5277 (16)
O7—C341.2264 (14)C20—H20A0.9700
O8—C341.3558 (13)C20—H20B0.9700
O8—C35B1.439 (7)C21—C221.5121 (19)
O8—C35A1.455 (7)C21—H21A0.9700
N1—C71.3448 (13)C21—H21B0.9700
N1—C11.4538 (13)C22—C231.5264 (17)
N1—H1N0.850 (13)C22—H22A0.9700
N2—C131.3435 (14)C22—H22B0.9700
N2—C61.4577 (13)C23—C241.5298 (14)
N2—H2N0.865 (13)C23—H23A0.9700
N3—C251.3446 (13)C23—H23B0.9700
N3—C191.4537 (13)C24—H240.9800
N3—H3N0.847 (13)C25—C271.3727 (14)
N4—C311.3392 (14)C25—C261.4979 (14)
N4—C241.4639 (13)C26—H26A0.9600
N4—H4N0.811 (13)C26—H26B0.9600
C1—C21.5293 (14)C26—H26C0.9600
C1—C61.5332 (15)C27—C281.4197 (15)
C1—H10.9800C27—H270.9300
C2—C31.5251 (16)C29A—C30A1.484 (3)
C2—H2A0.9700C29A—H29A0.9700
C2—H2B0.9700C29A—H29B0.9700
C3—C41.5145 (18)C30A—H30A0.9600
C3—H3A0.9700C30A—H30B0.9600
C3—H3B0.9700C30A—H30C0.9600
C4—C51.5288 (18)C29B—C30B1.475 (7)
C4—H4A0.9700C29B—H29C0.9700
C4—H4B0.9700C29B—H29D0.9700
C5—C61.5277 (15)C30B—H30D0.9600
C5—H5A0.9700C30B—H30E0.9600
C5—H5B0.9700C30B—H30F0.9600
C6—H60.9800C31—C331.3751 (15)
C7—C91.3626 (14)C31—C321.5048 (15)
C7—C81.5003 (15)C32—H32A0.9600
C8—H8A0.9600C32—H32B0.9600
C8—H8B0.9600C32—H32C0.9600
C8—H8C0.9600C33—C341.4231 (15)
C9—C101.4202 (14)C33—H330.9300
C9—H90.9300C35A—C36A1.485 (9)
C11—C121.465 (2)C35A—H35A0.9700
C11—H11A0.9700C35A—H35B0.9700
C11—H11B0.9700C36A—H36A0.9600
C12—H12A0.9600C36A—H36B0.9600
C12—H12B0.9600C36A—H36C0.9600
C12—H12C0.9600C35B—C36B1.468 (9)
C13—C151.3662 (17)C35B—H35C0.9700
C13—C141.5119 (18)C35B—H35D0.9700
C14—H14A0.9600C36B—H36D0.9600
C14—H14B0.9600C36B—H36E0.9600
C14—H14C0.9600C36B—H36F0.9600
C15—C161.4172 (16)
C10—O2—C11117.28 (10)C20—C19—H19108.5
C16—O4—C17116.58 (9)C24—C19—H19108.5
C28—O6A—C29A117.05 (18)C21—C20—C19111.11 (10)
C28—O6B—C29B119.8 (5)C21—C20—H20A109.4
C34—O8—C35B121.2 (5)C19—C20—H20A109.4
C34—O8—C35A114.2 (5)C21—C20—H20B109.4
C7—N1—C1126.83 (9)C19—C20—H20B109.4
C7—N1—H1N111.8 (8)H20A—C20—H20B108.0
C1—N1—H1N120.6 (8)C22—C21—C20111.03 (10)
C13—N2—C6128.79 (10)C22—C21—H21A109.4
C13—N2—H2N113.1 (8)C20—C21—H21A109.4
C6—N2—H2N117.7 (8)C22—C21—H21B109.4
C25—N3—C19128.67 (9)C20—C21—H21B109.4
C25—N3—H3N112.5 (8)H21A—C21—H21B108.0
C19—N3—H3N117.2 (8)C21—C22—C23111.17 (10)
C31—N4—C24128.22 (9)C21—C22—H22A109.4
C31—N4—H4N115.3 (9)C23—C22—H22A109.4
C24—N4—H4N116.3 (9)C21—C22—H22B109.4
N1—C1—C2111.09 (9)C23—C22—H22B109.4
N1—C1—C6110.54 (8)H22A—C22—H22B108.0
C2—C1—C6110.93 (8)C22—C23—C24111.12 (9)
N1—C1—H1108.0C22—C23—H23A109.4
C2—C1—H1108.0C24—C23—H23A109.4
C6—C1—H1108.0C22—C23—H23B109.4
C3—C2—C1111.95 (9)C24—C23—H23B109.4
C3—C2—H2A109.2H23A—C23—H23B108.0
C1—C2—H2A109.2N4—C24—C23110.76 (9)
C3—C2—H2B109.2N4—C24—C19110.83 (8)
C1—C2—H2B109.2C23—C24—C19111.46 (9)
H2A—C2—H2B107.9N4—C24—H24107.9
C4—C3—C2110.45 (10)C23—C24—H24107.9
C4—C3—H3A109.6C19—C24—H24107.9
C2—C3—H3A109.6N3—C25—C27121.75 (9)
C4—C3—H3B109.6N3—C25—C26118.67 (9)
C2—C3—H3B109.6C27—C25—C26119.57 (9)
H3A—C3—H3B108.1C25—C26—H26A109.5
C3—C4—C5111.02 (10)C25—C26—H26B109.5
C3—C4—H4A109.4H26A—C26—H26B109.5
C5—C4—H4A109.4C25—C26—H26C109.5
C3—C4—H4B109.4H26A—C26—H26C109.5
C5—C4—H4B109.4H26B—C26—H26C109.5
H4A—C4—H4B108.0C25—C27—C28123.28 (9)
C6—C5—C4112.53 (10)C25—C27—H27118.4
C6—C5—H5A109.1C28—C27—H27118.4
C4—C5—H5A109.1O5—C28—O6A120.10 (13)
C6—C5—H5B109.1O5—C28—O6B121.0 (2)
C4—C5—H5B109.1O5—C28—C27126.94 (10)
H5A—C5—H5B107.8O6A—C28—C27112.70 (12)
N2—C6—C5111.60 (9)O6B—C28—C27108.9 (3)
N2—C6—C1109.13 (8)O6A—C29A—C30A110.8 (2)
C5—C6—C1110.09 (9)O6A—C29A—H29A109.5
N2—C6—H6108.7C30A—C29A—H29A109.5
C5—C6—H6108.7O6A—C29A—H29B109.5
C1—C6—H6108.7C30A—C29A—H29B109.5
N1—C7—C9122.42 (9)H29A—C29A—H29B108.1
N1—C7—C8118.00 (10)C29A—C30A—H30A109.5
C9—C7—C8119.59 (9)C29A—C30A—H30B109.5
C7—C8—H8A109.5H30A—C30A—H30B109.5
C7—C8—H8B109.5C29A—C30A—H30C109.5
H8A—C8—H8B109.5H30A—C30A—H30C109.5
C7—C8—H8C109.5H30B—C30A—H30C109.5
H8A—C8—H8C109.5O6B—C29B—C30B109.9 (5)
H8B—C8—H8C109.5O6B—C29B—H29C109.7
C7—C9—C10124.40 (9)C30B—C29B—H29C109.7
C7—C9—H9117.8O6B—C29B—H29D109.7
C10—C9—H9117.8C30B—C29B—H29D109.7
O1—C10—O2121.51 (10)H29C—C29B—H29D108.2
O1—C10—C9126.35 (10)C29B—C30B—H30D109.5
O2—C10—C9112.14 (9)C29B—C30B—H30E109.5
O2—C11—C12112.02 (12)H30D—C30B—H30E109.5
O2—C11—H11A109.2C29B—C30B—H30F109.5
C12—C11—H11A109.2H30D—C30B—H30F109.5
O2—C11—H11B109.2H30E—C30B—H30F109.5
C12—C11—H11B109.2N4—C31—C33122.59 (10)
H11A—C11—H11B107.9N4—C31—C32118.16 (10)
C11—C12—H12A109.5C33—C31—C32119.25 (10)
C11—C12—H12B109.5C31—C32—H32A109.5
H12A—C12—H12B109.5C31—C32—H32B109.5
C11—C12—H12C109.5H32A—C32—H32B109.5
H12A—C12—H12C109.5C31—C32—H32C109.5
H12B—C12—H12C109.5H32A—C32—H32C109.5
N2—C13—C15122.28 (11)H32B—C32—H32C109.5
N2—C13—C14117.39 (11)C31—C33—C34123.87 (10)
C15—C13—C14120.33 (11)C31—C33—H33118.1
C13—C14—H14A109.5C34—C33—H33118.1
C13—C14—H14B109.5O7—C34—O8121.61 (10)
H14A—C14—H14B109.5O7—C34—C33126.26 (10)
C13—C14—H14C109.5O8—C34—C33112.13 (10)
H14A—C14—H14C109.5O8—C35A—C36A109.2 (6)
H14B—C14—H14C109.5O8—C35A—H35A109.8
C13—C15—C16123.31 (10)C36A—C35A—H35A109.8
C13—C15—H15118.3O8—C35A—H35B109.8
C16—C15—H15118.3C36A—C35A—H35B109.8
O3—C16—O4120.92 (10)H35A—C35A—H35B108.3
O3—C16—C15126.59 (10)C35A—C36A—H36A109.5
O4—C16—C15112.49 (10)C35A—C36A—H36B109.5
O4—C17—C18112.64 (11)H36A—C36A—H36B109.5
O4—C17—H17A109.1C35A—C36A—H36C109.5
C18—C17—H17A109.1H36A—C36A—H36C109.5
O4—C17—H17B109.1H36B—C36A—H36C109.5
C18—C17—H17B109.1O8—C35B—C36B107.3 (7)
H17A—C17—H17B107.8O8—C35B—H35C110.3
C17—C18—H18A109.5C36B—C35B—H35C110.3
C17—C18—H18B109.5O8—C35B—H35D110.3
H18A—C18—H18B109.5C36B—C35B—H35D110.3
C17—C18—H18C109.5H35C—C35B—H35D108.5
H18A—C18—H18C109.5C35B—C36B—H36D109.5
H18B—C18—H18C109.5C35B—C36B—H36E109.5
N3—C19—C20109.91 (9)H36D—C36B—H36E109.5
N3—C19—C24110.78 (8)C35B—C36B—H36F109.5
C20—C19—C24110.58 (8)H36D—C36B—H36F109.5
N3—C19—H19108.5H36E—C36B—H36F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.850 (13)2.048 (14)2.754 (2)140.1 (12)
N2—H2N···O30.865 (12)2.009 (12)2.720 (2)138.7 (13)
N3—H3N···O50.846 (17)2.018 (15)2.724 (2)140.3 (12)
N4—H4N···O70.811 (17)2.112 (15)2.754 (2)136.1 (14)
C4—H4A···O6Ai0.972.483.400 (3)158
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H30N2O4
Mr338.44
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)11.1424 (9), 12.7445 (6), 16.3298 (11)
α, β, γ (°)90.904 (6), 109.222 (6), 114.048 (5)
V3)1969.1 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerSiemens AED
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7461, 7189, 5826
Rint0.006
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.106, 1.16
No. of reflections7189
No. of parameters467
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.850 (13)2.048 (14)2.754 (2)140.1 (12)
N2—H2N···O30.865 (12)2.009 (12)2.720 (2)138.7 (13)
N3—H3N···O50.846 (17)2.018 (15)2.724 (2)140.3 (12)
N4—H4N···O70.811 (17)2.112 (15)2.754 (2)136.1 (14)
C4—H4A···O6Ai0.972.483.400 (3)158
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCornils, B. & Herrmann, W. A. (1996). Editors. Applied Homogeneous Catalysis with Organometallic Compounds. A Comprehensive Handbook, pp. 412–413. Weinheim: VCH.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElaridi, J., Jackson, W. R. & Robinson, A. J. (2005). Tetrahedron Asymmetry, 16, 2025–2029.  CrossRef CAS Google Scholar
First citationElaridi, J., Thaqi, A., Prosser, A., Jackson, W. R. & Robinson, A. J. (2005). Tetrahedron Asymmetry, 16, 1309–1319.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.  Web of Science CrossRef CAS Google Scholar
First citationHuang, C.-H., Hsueh, L.-F., Kuo, P.-C., Lee, H. M., Uno, C.-L., Huang, J.-H., Tu, C.-Y., Hu, C.-H., Lee, G.-H. & Hung, C.-H. (2008). Eur. J. Inorg. Chem. pp. 3000–3008.  CrossRef Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationMcCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799–2806.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpivey, A. C., Srikaran, R., Diaper, C. M. & Turner, D. J. (2003). Org. Biomol. Chem. 1, 1638–1840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009). Acta Cryst. E65, m1606–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1269-o1270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds