metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m608-m609

Di­chlorido{N-[2-(di­phenyl­phosphan­yl)benzyl­­idene]iso­propyl­amine-κ2N,P}palladium(II) di­methyl sulfoxide monosolvate

aDepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7707, South Africa, and bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 5 April 2011; accepted 13 April 2011; online 16 April 2011)

In the title PdII complex, [PdCl2(C22H22NP)]·(CH3)2SO, the PdII atom is coordinated in an NPCl2 coordination sphere by the N(imino) and P(phosphane) atoms of the ligand and by two Cl ions in a slightly distorted square-planar geometry [r.m.s. deviation = 0.081 (3) Å, plane defined by the four atoms around the Pd atom]. The dimethyl sulfoxide solvent mol­ecules form centrosymmetric dimers due to an inter­molecular C—H⋯O inter­action. The crystal structure is further stabilized through two inter­molecular C—H⋯π inter­actions.

Related literature

For structures with related ligands, see: Ghilardi et al. (1992[Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371-3376.]); Sanchez et al. (1998[Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165-169.], 2001[Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100-104.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C22H22NP)]·C2H6OS

  • Mr = 586.8

  • Triclinic, [P \overline 1]

  • a = 8.9935 (2) Å

  • b = 10.0413 (2) Å

  • c = 13.9439 (3) Å

  • α = 91.189 (1)°

  • β = 97.957 (1)°

  • γ = 94.869 (1)°

  • V = 1241.93 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 173 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.806, Tmax = 0.946

  • 45019 measured reflections

  • 6342 independent reflections

  • 5437 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.04

  • 6342 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N24 2.0725 (17)
Pd1—P4 2.2188 (5)
Pd1—Cl3 2.2826 (5)
Pd1—Cl2 2.3838 (5)

Table 2
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C11–C16 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O29i 0.98 2.50 3.481 (4) 174
C10—H10⋯Cg3ii 0.95 2.84 3.643 (2) 146
C8—H8⋯Cg4iii 0.95 2.74 3.577 (3) 147
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, palladium complexes with iminophosphane ligands of the N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalysts (or catalyst precursors) in a variety organic reactions. To the best of our knowledge, only a few structures have been determined so far, concerning the free ligand (2-diphenylphosphanyl-benzylidene)-isopropyl-amine, where the potentially bidentate ligand is chelated to the metal through the phosphorus and imino nitrogen atoms (Fig. 1). The title compound (I) has been synthesized earlier but there have been no reports of the crystal structure: the PdII center adopts a slightly distorted square planar geometry in with an r.m.s. deviation of 0.081 (3) Å from the planar geometry. Selected bond lengths are given in table 1.

In the structure of (I) the (CH3)2SO molecules are connected through a weak C—H···O intermolecular interaction forming centrosymmetric dimers (Fig. 2). In addition, the crystal lattice is further stabilized through two C—H···π intermolecular interactions (Fig 3). C10—H10···π (Cg of C11 to C16 atoms ring) joins two of the complex molecules into centrosymmetric dimers. Those combined with the C8—H8···π (Cg of C17 to C22 atoms ring) interaction, make additional rings composed of four complex molecules for further stabilization of the crystal lattice.

Related literature top

For structures with related ligands, see: Ghilardi et al. (1992); Sanchez et al. (1998, 2001).

Experimental top

To a dry CH2Cl2 (10 ml) solution of the precursor [Pd(COD)Cl2] (0.095 g, 0.3 mmol) was added isopropylamine (0.018 g, 0.3 mmol) in CH2Cl2 (10 ml) solution, and the reaction was stirred at room temperature for 1 hr. The yellow solution was concentrated under reduced pressure to half volume and the addition of ca 10 ml hexane caused precipitation of the complex, which was filtered off, washed with Et2O and dried under vacuum for 4 hrs. Yellow crystals used in the X-ray diffraction studies were grown by slow evaporation of a solution of the compound in a CH2Cl2/(CH3)2SO (1:1) solution at room temperature.

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for iPr CH, C—H = 0.95 Å for CH and C—H = 0.98 for Me groups.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids).
[Figure 2] Fig. 2. A perspective view of (I) showing intermolecular interactions between centrosymetric dimers of between solvent molecules [Symmetry operators: i = 2-x, 1-y, 1-z].
[Figure 3] Fig. 3. A perspective view of (I) showing molecules connected through C—H···π intermolecular interactions [Symmetry operators: i = x-1, y, z; ii = 1-x, 2-y, 2-z].
Dichlorido{N-[2-(diphenylphosphanyl)benzylidene]isopropylamine- κ2N,P}palladium(II) dimethyl sulfoxide monosolvate top
Crystal data top
[PdCl2(C22H22NP)]·C2H6OSZ = 2
Mr = 586.8F(000) = 596
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9935 (2) ÅCell parameters from 45103 reflections
b = 10.0413 (2) Åθ = 3.0–28.7°
c = 13.9439 (3) ŵ = 1.13 mm1
α = 91.189 (1)°T = 173 K
β = 97.957 (1)°Block, yellow
γ = 94.869 (1)°0.2 × 0.1 × 0.05 mm
V = 1241.93 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
5437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
1.0° ω scans, 60sθmax = 28.7°, θmin = 3.0°
Absorption correction: multi-scan
(XPREP; Sheldrick, 2008)
h = 1212
Tmin = 0.806, Tmax = 0.946k = 1313
45019 measured reflectionsl = 1818
6342 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.3328P]
where P = (Fo2 + 2Fc2)/3
6342 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[PdCl2(C22H22NP)]·C2H6OSγ = 94.869 (1)°
Mr = 586.8V = 1241.93 (5) Å3
Triclinic, P1Z = 2
a = 8.9935 (2) ÅMo Kα radiation
b = 10.0413 (2) ŵ = 1.13 mm1
c = 13.9439 (3) ÅT = 173 K
α = 91.189 (1)°0.2 × 0.1 × 0.05 mm
β = 97.957 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6342 independent reflections
Absorption correction: multi-scan
(XPREP; Sheldrick, 2008)
5437 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.946Rint = 0.057
45019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
6342 reflectionsΔρmin = 0.59 e Å3
284 parameters
Special details top

Experimental. The intensity data was collected on a Nonius Kappa CCD diffractometer using an exposure time of 60 sec/per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. >>> The Following Model and Quality ALERTS were generated - (Acta-Mode) <<< Format: alert-number_ALERT_alert-type_alert-level text 910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ···.. 8 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S28 912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 42 Noted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.692464 (17)0.906752 (15)0.782015 (11)0.01442 (5)
Cl20.81013 (7)1.03910 (5)0.66893 (4)0.02557 (12)
Cl30.79546 (6)1.05312 (5)0.90562 (4)0.02177 (11)
P40.60198 (6)0.76339 (5)0.88308 (4)0.01342 (10)
C50.3985 (2)0.7298 (2)0.86142 (14)0.0160 (4)
C60.3297 (2)0.6002 (2)0.84559 (16)0.0211 (4)
H60.38940.52670.84450.025*
C70.1734 (3)0.5788 (2)0.83137 (17)0.0267 (5)
H70.12630.49040.82080.032*
C80.0863 (3)0.6857 (3)0.83255 (17)0.0278 (5)
H80.02050.67050.8220.033*
C90.1537 (3)0.8148 (3)0.84904 (18)0.0276 (5)
H90.09340.88780.85060.033*
C100.3099 (2)0.8373 (2)0.86331 (16)0.0215 (4)
H100.35640.92580.87440.026*
C110.6521 (2)0.7857 (2)1.01311 (14)0.0157 (4)
C120.5403 (2)0.7771 (2)1.07331 (16)0.0198 (4)
H120.43730.7611.04610.024*
C130.5799 (3)0.7923 (2)1.17326 (17)0.0253 (5)
H130.50380.78681.21440.03*
C140.7297 (3)0.8155 (2)1.21262 (16)0.0248 (5)
H140.75630.82561.28090.03*
C150.8418 (3)0.8241 (2)1.15317 (17)0.0232 (5)
H150.94460.83951.18090.028*
C160.8037 (2)0.8101 (2)1.05361 (16)0.0199 (4)
H160.88020.81721.01290.024*
C170.6770 (2)0.6088 (2)0.84994 (15)0.0159 (4)
C180.7437 (2)0.5266 (2)0.91970 (16)0.0192 (4)
H180.75010.55090.98650.023*
C190.8007 (2)0.4098 (2)0.89261 (17)0.0223 (5)
H190.84820.3560.94090.027*
C200.7890 (3)0.3707 (2)0.79583 (17)0.0233 (5)
H200.8270.28990.77760.028*
C210.7210 (2)0.4511 (2)0.72572 (17)0.0215 (4)
H210.71130.4240.65930.026*
C220.6667 (2)0.5713 (2)0.75165 (15)0.0172 (4)
C230.5949 (2)0.6484 (2)0.67202 (15)0.0181 (4)
H230.54850.59920.61520.022*
N240.58919 (19)0.77410 (17)0.67214 (12)0.0151 (3)
C250.5053 (2)0.8390 (2)0.58773 (16)0.0213 (4)
H250.57920.90310.56120.026*
C260.4340 (3)0.7429 (2)0.50560 (17)0.0295 (5)
H26A0.51250.69570.48080.044*
H26B0.38210.79290.45340.044*
H26C0.36130.6780.52950.044*
C270.3888 (3)0.9202 (3)0.62503 (19)0.0332 (6)
H27A0.31690.86050.65420.05*
H27B0.3350.96580.57110.05*
H27C0.43950.98670.67390.05*
S280.84672 (7)0.69728 (7)0.47504 (5)0.03166 (14)
O290.7727 (2)0.5699 (2)0.50672 (16)0.0482 (5)
C300.9867 (4)0.7594 (4)0.5719 (3)0.0637 (10)
H30A0.93810.7840.62770.096*
H30B1.04430.83830.55130.096*
H30C1.05470.69010.59020.096*
C310.9725 (4)0.6499 (3)0.3950 (2)0.0425 (7)
H31A1.04120.58890.42760.064*
H31B1.03090.72980.37650.064*
H31C0.91460.60480.33690.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01427 (8)0.01327 (8)0.01514 (8)0.00108 (5)0.00121 (6)0.00175 (5)
Cl20.0312 (3)0.0234 (3)0.0205 (3)0.0086 (2)0.0039 (2)0.0057 (2)
Cl30.0260 (3)0.0174 (2)0.0203 (3)0.0042 (2)0.0015 (2)0.00139 (19)
P40.0126 (2)0.0129 (2)0.0144 (2)0.00071 (18)0.00179 (19)0.00119 (19)
C50.0129 (9)0.0209 (10)0.0138 (9)0.0019 (8)0.0021 (7)0.0012 (8)
C60.0201 (10)0.0199 (10)0.0230 (11)0.0014 (8)0.0035 (9)0.0005 (9)
C70.0218 (11)0.0273 (12)0.0284 (12)0.0099 (9)0.0018 (9)0.0030 (10)
C80.0139 (10)0.0409 (14)0.0271 (12)0.0034 (9)0.0008 (9)0.0019 (10)
C90.0191 (11)0.0315 (12)0.0330 (13)0.0060 (9)0.0036 (10)0.0035 (10)
C100.0177 (10)0.0204 (10)0.0264 (11)0.0007 (8)0.0033 (9)0.0019 (9)
C110.0177 (10)0.0144 (9)0.0150 (10)0.0006 (8)0.0025 (8)0.0015 (7)
C120.0180 (10)0.0211 (10)0.0197 (10)0.0017 (8)0.0028 (8)0.0013 (8)
C130.0290 (12)0.0274 (12)0.0211 (11)0.0008 (9)0.0094 (9)0.0019 (9)
C140.0329 (13)0.0253 (11)0.0156 (10)0.0058 (10)0.0008 (9)0.0017 (9)
C150.0209 (11)0.0224 (11)0.0242 (11)0.0029 (9)0.0054 (9)0.0024 (9)
C160.0185 (10)0.0193 (10)0.0220 (11)0.0018 (8)0.0029 (8)0.0019 (8)
C170.0132 (9)0.0139 (9)0.0213 (10)0.0008 (7)0.0053 (8)0.0017 (8)
C180.0198 (10)0.0192 (10)0.0186 (10)0.0011 (8)0.0048 (8)0.0021 (8)
C190.0212 (11)0.0187 (10)0.0277 (12)0.0034 (8)0.0042 (9)0.0073 (9)
C200.0230 (11)0.0166 (10)0.0322 (12)0.0037 (8)0.0096 (9)0.0011 (9)
C210.0221 (11)0.0197 (10)0.0234 (11)0.0002 (8)0.0073 (9)0.0027 (8)
C220.0133 (9)0.0164 (10)0.0219 (11)0.0016 (7)0.0038 (8)0.0027 (8)
C230.0170 (10)0.0195 (10)0.0175 (10)0.0012 (8)0.0028 (8)0.0006 (8)
N240.0143 (8)0.0180 (8)0.0124 (8)0.0014 (6)0.0011 (6)0.0029 (7)
C250.0230 (11)0.0217 (11)0.0174 (10)0.0005 (9)0.0027 (8)0.0044 (8)
C260.0326 (13)0.0304 (13)0.0219 (12)0.0032 (10)0.0089 (10)0.0006 (10)
C270.0346 (14)0.0353 (14)0.0294 (13)0.0144 (11)0.0034 (11)0.0033 (11)
S280.0291 (3)0.0336 (3)0.0343 (3)0.0071 (3)0.0082 (3)0.0067 (3)
O290.0432 (12)0.0504 (13)0.0560 (13)0.0020 (10)0.0234 (10)0.0197 (10)
C300.056 (2)0.070 (2)0.061 (2)0.0167 (18)0.0100 (18)0.0245 (19)
C310.0501 (17)0.0439 (16)0.0398 (16)0.0093 (14)0.0240 (14)0.0124 (13)
Geometric parameters (Å, º) top
Pd1—N242.0725 (17)C18—C191.385 (3)
Pd1—P42.2188 (5)C18—H180.95
Pd1—Cl32.2826 (5)C19—C201.385 (3)
Pd1—Cl22.3838 (5)C19—H190.95
P4—C111.811 (2)C20—C211.390 (3)
P4—C51.814 (2)C20—H200.95
P4—C171.820 (2)C21—C221.399 (3)
C5—C61.392 (3)C21—H210.95
C5—C101.397 (3)C22—C231.473 (3)
C6—C71.390 (3)C23—N241.268 (3)
C6—H60.95C23—H230.95
C7—C81.383 (4)N24—C251.500 (3)
C7—H70.95C25—C261.516 (3)
C8—C91.385 (3)C25—C271.520 (3)
C8—H80.95C25—H251
C9—C101.389 (3)C26—H26A0.98
C9—H90.95C26—H26B0.98
C10—H100.95C26—H26C0.98
C11—C121.394 (3)C27—H27A0.98
C11—C161.401 (3)C27—H27B0.98
C12—C131.392 (3)C27—H27C0.98
C12—H120.95S28—O291.495 (2)
C13—C141.381 (3)S28—C301.777 (3)
C13—H130.95S28—C311.781 (3)
C14—C151.390 (3)C30—H30A0.98
C14—H140.95C30—H30B0.98
C15—C161.384 (3)C30—H30C0.98
C15—H150.95C31—H31A0.98
C16—H160.95C31—H31B0.98
C17—C181.395 (3)C31—H31C0.98
C17—C221.402 (3)
N24—Pd1—P486.13 (5)C17—C18—H18119.7
N24—Pd1—Cl3177.29 (5)C18—C19—C20120.6 (2)
P4—Pd1—Cl392.308 (19)C18—C19—H19119.7
N24—Pd1—Cl291.07 (5)C20—C19—H19119.7
P4—Pd1—Cl2172.60 (2)C19—C20—C21119.2 (2)
Cl3—Pd1—Cl290.74 (2)C19—C20—H20120.4
C11—P4—C5106.03 (9)C21—C20—H20120.4
C11—P4—C17106.11 (9)C20—C21—C22120.9 (2)
C5—P4—C17105.72 (9)C20—C21—H21119.5
C11—P4—Pd1121.52 (7)C22—C21—H21119.5
C5—P4—Pd1113.83 (7)C21—C22—C17119.37 (19)
C17—P4—Pd1102.26 (7)C21—C22—C23116.68 (19)
C6—C5—C10119.75 (19)C17—C22—C23123.88 (19)
C6—C5—P4121.68 (16)N24—C23—C22126.2 (2)
C10—C5—P4118.55 (16)N24—C23—H23116.9
C7—C6—C5119.8 (2)C22—C23—H23116.9
C7—C6—H6120.1C23—N24—C25120.52 (18)
C5—C6—H6120.1C23—N24—Pd1125.16 (15)
C8—C7—C6120.2 (2)C25—N24—Pd1114.31 (13)
C8—C7—H7119.9N24—C25—C26114.55 (18)
C6—C7—H7119.9N24—C25—C27108.31 (18)
C7—C8—C9120.4 (2)C26—C25—C27111.5 (2)
C7—C8—H8119.8N24—C25—H25107.4
C9—C8—H8119.8C26—C25—H25107.4
C8—C9—C10119.8 (2)C27—C25—H25107.4
C8—C9—H9120.1C25—C26—H26A109.5
C10—C9—H9120.1C25—C26—H26B109.5
C9—C10—C5120.0 (2)H26A—C26—H26B109.5
C9—C10—H10120C25—C26—H26C109.5
C5—C10—H10120H26A—C26—H26C109.5
C12—C11—C16119.77 (19)H26B—C26—H26C109.5
C12—C11—P4120.23 (16)C25—C27—H27A109.5
C16—C11—P4119.99 (16)C25—C27—H27B109.5
C13—C12—C11119.9 (2)H27A—C27—H27B109.5
C13—C12—H12120C25—C27—H27C109.5
C11—C12—H12120H27A—C27—H27C109.5
C14—C13—C12120.0 (2)H27B—C27—H27C109.5
C14—C13—H13120O29—S28—C30107.28 (18)
C12—C13—H13120O29—S28—C31106.12 (13)
C13—C14—C15120.5 (2)C30—S28—C3196.87 (17)
C13—C14—H14119.7S28—C30—H30A109.5
C15—C14—H14119.7S28—C30—H30B109.5
C16—C15—C14120.0 (2)H30A—C30—H30B109.5
C16—C15—H15120S28—C30—H30C109.5
C14—C15—H15120H30A—C30—H30C109.5
C15—C16—C11119.8 (2)H30B—C30—H30C109.5
C15—C16—H16120.1S28—C31—H31A109.5
C11—C16—H16120.1S28—C31—H31B109.5
C18—C17—C22119.21 (19)H31A—C31—H31B109.5
C18—C17—P4121.73 (16)S28—C31—H31C109.5
C22—C17—P4119.06 (15)H31A—C31—H31C109.5
C19—C18—C17120.6 (2)H31B—C31—H31C109.5
C19—C18—H18119.7
N24—Pd1—P4—C11173.54 (9)C12—C11—C16—C150.8 (3)
Cl3—Pd1—P4—C118.68 (8)P4—C11—C16—C15178.52 (16)
N24—Pd1—P4—C557.78 (9)C11—P4—C17—C185.77 (19)
Cl3—Pd1—P4—C5120.00 (8)C5—P4—C17—C18106.56 (18)
N24—Pd1—P4—C1755.74 (8)Pd1—P4—C17—C18134.06 (16)
Cl3—Pd1—P4—C17126.48 (7)C11—P4—C17—C22174.50 (16)
C11—P4—C5—C699.04 (18)C5—P4—C17—C2273.16 (17)
C17—P4—C5—C613.3 (2)Pd1—P4—C17—C2246.22 (17)
Pd1—P4—C5—C6124.78 (16)C22—C17—C18—C190.6 (3)
C11—P4—C5—C1079.32 (18)P4—C17—C18—C19179.64 (16)
C17—P4—C5—C10168.29 (17)C17—C18—C19—C201.7 (3)
Pd1—P4—C5—C1056.85 (18)C18—C19—C20—C210.9 (3)
C10—C5—C6—C70.3 (3)C19—C20—C21—C221.0 (3)
P4—C5—C6—C7178.61 (17)C20—C21—C22—C172.0 (3)
C5—C6—C7—C80.3 (3)C20—C21—C22—C23179.3 (2)
C6—C7—C8—C90.8 (4)C18—C17—C22—C211.2 (3)
C7—C8—C9—C100.8 (4)P4—C17—C22—C21178.53 (15)
C8—C9—C10—C50.3 (4)C18—C17—C22—C23178.23 (19)
C6—C5—C10—C90.2 (3)P4—C17—C22—C231.5 (3)
P4—C5—C10—C9178.65 (18)C21—C22—C23—N24152.1 (2)
C5—P4—C11—C120.86 (19)C17—C22—C23—N2430.8 (3)
C17—P4—C11—C12112.97 (17)C22—C23—N24—C25176.85 (19)
Pd1—P4—C11—C12131.15 (15)C22—C23—N24—Pd14.3 (3)
C5—P4—C11—C16178.44 (16)P4—Pd1—N24—C2345.47 (17)
C17—P4—C11—C1666.32 (18)Cl2—Pd1—N24—C23127.68 (17)
Pd1—P4—C11—C1649.55 (19)P4—Pd1—N24—C25135.59 (13)
C16—C11—C12—C130.3 (3)Cl2—Pd1—N24—C2551.26 (13)
P4—C11—C12—C13179.01 (17)C23—N24—C25—C261.0 (3)
C11—C12—C13—C140.2 (3)Pd1—N24—C25—C26177.99 (16)
C12—C13—C14—C150.1 (4)C23—N24—C25—C27124.1 (2)
C13—C14—C15—C160.4 (3)Pd1—N24—C25—C2756.9 (2)
C14—C15—C16—C110.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids ofthe C11-C16 and C17-C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C31—H31A···O29i0.982.503.481 (4)174
C10—H10···Cg3ii0.952.843.643 (2)146
C8—H8···Cg4iii0.952.743.577 (3)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C22H22NP)]·C2H6OS
Mr586.8
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9935 (2), 10.0413 (2), 13.9439 (3)
α, β, γ (°)91.189 (1), 97.957 (1), 94.869 (1)
V3)1241.93 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(XPREP; Sheldrick, 2008)
Tmin, Tmax0.806, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
45019, 6342, 5437
Rint0.057
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.04
No. of reflections6342
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.59

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Pd1—N242.0725 (17)Pd1—Cl32.2826 (5)
Pd1—P42.2188 (5)Pd1—Cl22.3838 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids ofthe C11-C16 and C17-C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C31—H31A···O29i0.982.503.481 (4)174
C10—H10···Cg3ii0.952.843.643 (2)146
C8—H8···Cg4iii0.952.743.577 (3)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge Mintek and Project AuTEK for funding this project.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. pp. 3371–3376.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.  CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages m608-m609
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds