organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1041

1-(2-Chloro­phenyl)-6-fluoro-2-methyl-1H-indole-3-carbo­nitrile

aTeaching & Research Center, Tianjin Medical University, Tianjin 300070, People's Republic of China, and bPharmacy Department, Tianjin Medical College, Tianjin 300222, People's Republic of China
*Correspondence e-mail: tijmu@tijmu.edu.cn, austinmm@126.com

(Received 24 March 2011; accepted 25 March 2011; online 7 April 2011)

In the title compound, C16H10ClFN2, the dihedral angle between the indole ring system and the benzyl ring is 80.91 (5)°. The crystal packing features C—H⋯Cl, C—H⋯F and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Du et al. (2006[Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919-5922.]). For its precursor, see: Jin et al. (2009[Jin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.]). For related structures, see: Li & Huang (2009[Li, J.-S. & Huang, P.-M. (2009). Acta Cryst. E65, o1759.]); Li et al. (2009[Li, P., Wang, W., Li, C. & Bian, X. (2009). Acta Cryst. E65, o1284.], 2010a[Li, J.-S., He, Q.-X. & Li, P.-Y. (2010a). Acta Cryst. E66, o111.],b[Li, J.-S., He, Q.-X. & Li, P.-Y. (2010b). Acta Cryst. E66, o97.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10ClFN2

  • Mr = 284.71

  • Orthorhombic, P b c a

  • a = 7.4581 (9) Å

  • b = 16.8480 (15) Å

  • c = 21.356 (2) Å

  • V = 2683.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 113 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.929, Tmax = 0.945

  • 28426 measured reflections

  • 3893 independent reflections

  • 3219 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.11

  • 3893 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F1i 0.95 2.54 3.1638 (16) 123
C7—H7⋯Cl1ii 0.95 2.73 3.5296 (14) 142
C15—H15⋯Cg1iii 0.95 2.92 3.7246 (14) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Indoles are an important compound possessing pharmaceutical properties. Extensive investigation on the crystal structures of indoles helps disclose their structure-activity relationship. For continuing our reseach, herein, we reported the crystal structure of the title indole derivative.

In the molecular structure, (I) (Fig. 1), the indole ring system is almost planar with a dihedral angle of 0.85 (6)° between its pyrrole ring and fused benzene ring. The indole ring forms an angle of 80.91 (5)° with the chlorobenzene ring.

Related literature top

For the synthesis of the title compound, see: Du et al. (2006). For its precursor, see: Jin et al. (2009). For related structures, see: Li & Huang (2009); Li et al. (2009, 2010a,b).

Experimental top

The title compound was prepared according to the method of the literature (Du, et al., 2006). Colourless prisms were grown from a mixture of ethyl actate and petroleum ether.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å)and refined as riding with Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.
1-(2-Chlorophenyl)-6-fluoro-2-methyl-1H-indole-3-carbonitrile top
Crystal data top
C16H10ClFN2F(000) = 1168
Mr = 284.71Dx = 1.409 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 10281 reflections
a = 7.4581 (9) Åθ = 1.5–31.4°
b = 16.8480 (15) ŵ = 0.29 mm1
c = 21.356 (2) ÅT = 113 K
V = 2683.5 (5) Å3Prism, colorless
Z = 80.26 × 0.22 × 0.20 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3893 independent reflections
Radiation source: rotating anode3219 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.034
Detector resolution: 14.222 pixels mm-1θmax = 30.0°, θmin = 1.9°
ω scansh = 109
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 2323
Tmin = 0.929, Tmax = 0.945l = 3030
28426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.1004P]
where P = (Fo2 + 2Fc2)/3
3893 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H10ClFN2V = 2683.5 (5) Å3
Mr = 284.71Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4581 (9) ŵ = 0.29 mm1
b = 16.8480 (15) ÅT = 113 K
c = 21.356 (2) Å0.26 × 0.22 × 0.20 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3893 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
3219 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.945Rint = 0.034
28426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.11Δρmax = 0.39 e Å3
3893 reflectionsΔρmin = 0.20 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50520 (4)0.220294 (19)0.641958 (16)0.03226 (11)
F10.61121 (11)0.54670 (5)0.76153 (4)0.0480 (2)
N10.39260 (12)0.37712 (5)0.59488 (4)0.0236 (2)
N20.79477 (16)0.43384 (7)0.42798 (6)0.0420 (3)
C10.45553 (17)0.36559 (7)0.53489 (5)0.0258 (2)
C20.60108 (16)0.41469 (7)0.52619 (6)0.0271 (3)
C30.63160 (15)0.45816 (7)0.58328 (6)0.0265 (3)
C40.49938 (14)0.43272 (7)0.62558 (6)0.0237 (2)
C50.48747 (16)0.46061 (7)0.68659 (6)0.0280 (3)
H50.39860.44270.71510.034*
C60.61408 (17)0.51607 (7)0.70243 (6)0.0337 (3)
C70.74735 (17)0.54359 (8)0.66235 (7)0.0361 (3)
H70.83150.58190.67650.043*
C80.75667 (16)0.51503 (7)0.60210 (7)0.0318 (3)
H80.84600.53360.57400.038*
C90.36953 (19)0.30813 (8)0.49124 (6)0.0333 (3)
H9A0.38120.25430.50810.040*
H9B0.42860.31090.45030.040*
H9C0.24230.32130.48660.040*
C100.70533 (17)0.42350 (7)0.47083 (6)0.0317 (3)
C110.25337 (16)0.33290 (7)0.62467 (5)0.0223 (2)
C120.28935 (15)0.25756 (7)0.64802 (5)0.0230 (2)
C130.15588 (16)0.21330 (7)0.67690 (5)0.0271 (3)
H130.18000.16120.69180.032*
C140.01309 (16)0.24642 (8)0.68363 (6)0.0277 (3)
H140.10520.21690.70370.033*
C150.04958 (18)0.32238 (7)0.66141 (6)0.0295 (3)
H150.16580.34460.66640.035*
C160.08411 (16)0.36557 (7)0.63194 (6)0.0276 (3)
H160.05980.41750.61670.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02051 (19)0.02941 (18)0.0468 (2)0.00492 (11)0.00001 (12)0.00824 (12)
F10.0450 (5)0.0454 (5)0.0535 (5)0.0100 (4)0.0018 (4)0.0201 (4)
N10.0198 (5)0.0213 (4)0.0298 (5)0.0031 (4)0.0030 (4)0.0022 (4)
N20.0363 (7)0.0436 (7)0.0461 (6)0.0006 (5)0.0128 (5)0.0089 (5)
C10.0240 (6)0.0243 (5)0.0290 (5)0.0016 (5)0.0019 (5)0.0054 (4)
C20.0218 (6)0.0250 (5)0.0344 (6)0.0014 (4)0.0040 (5)0.0079 (5)
C30.0199 (6)0.0210 (5)0.0385 (6)0.0020 (4)0.0007 (5)0.0081 (4)
C40.0178 (6)0.0181 (5)0.0353 (6)0.0001 (4)0.0013 (4)0.0036 (4)
C50.0234 (6)0.0230 (6)0.0376 (6)0.0001 (4)0.0013 (5)0.0006 (5)
C60.0311 (7)0.0253 (6)0.0446 (7)0.0007 (5)0.0046 (6)0.0057 (5)
C70.0267 (7)0.0220 (6)0.0597 (8)0.0050 (5)0.0061 (6)0.0016 (6)
C80.0199 (6)0.0225 (6)0.0528 (7)0.0007 (4)0.0011 (6)0.0100 (5)
C90.0349 (7)0.0345 (7)0.0304 (6)0.0037 (6)0.0011 (5)0.0007 (5)
C100.0259 (7)0.0291 (6)0.0402 (6)0.0026 (5)0.0047 (5)0.0088 (5)
C110.0194 (6)0.0216 (5)0.0259 (5)0.0029 (4)0.0004 (4)0.0022 (4)
C120.0188 (6)0.0235 (5)0.0267 (5)0.0008 (4)0.0021 (4)0.0014 (4)
C130.0263 (6)0.0255 (5)0.0295 (5)0.0022 (5)0.0015 (5)0.0070 (4)
C140.0230 (6)0.0324 (6)0.0275 (5)0.0069 (5)0.0020 (5)0.0031 (5)
C150.0199 (6)0.0318 (6)0.0369 (6)0.0006 (5)0.0032 (5)0.0002 (5)
C160.0229 (6)0.0241 (6)0.0358 (6)0.0015 (5)0.0009 (5)0.0041 (5)
Geometric parameters (Å, º) top
Cl1—C121.7328 (12)C7—C81.375 (2)
F1—C61.3636 (15)C7—H70.9500
N1—C11.3780 (15)C8—H80.9500
N1—C41.3934 (14)C9—H9A0.9800
N1—C111.4276 (14)C9—H9B0.9800
N2—C101.1457 (16)C9—H9C0.9800
C1—C21.3775 (16)C11—C161.3857 (16)
C1—C91.4892 (17)C11—C121.3900 (15)
C2—C101.4227 (17)C12—C131.3883 (16)
C2—C31.4404 (18)C13—C141.3857 (17)
C3—C81.3963 (17)C13—H130.9500
C3—C41.4045 (16)C14—C151.3918 (18)
C4—C51.3879 (18)C14—H140.9500
C5—C61.3708 (17)C15—C161.3855 (17)
C5—H50.9500C15—H150.9500
C6—C71.3914 (19)C16—H160.9500
C1—N1—C4109.73 (9)C3—C8—H8120.8
C1—N1—C11126.05 (10)C1—C9—H9A109.5
C4—N1—C11123.83 (9)C1—C9—H9B109.5
C2—C1—N1108.01 (10)H9A—C9—H9B109.5
C2—C1—C9130.19 (11)C1—C9—H9C109.5
N1—C1—C9121.80 (11)H9A—C9—H9C109.5
C1—C2—C10127.27 (12)H9B—C9—H9C109.5
C1—C2—C3108.40 (10)N2—C10—C2176.12 (15)
C10—C2—C3124.33 (11)C16—C11—C12119.89 (10)
C8—C3—C4119.56 (12)C16—C11—N1120.35 (10)
C8—C3—C2134.28 (11)C12—C11—N1119.73 (10)
C4—C3—C2106.16 (10)C13—C12—C11120.76 (11)
C5—C4—N1129.26 (11)C13—C12—Cl1120.31 (9)
C5—C4—C3123.06 (11)C11—C12—Cl1118.91 (9)
N1—C4—C3107.68 (11)C14—C13—C12118.81 (11)
C6—C5—C4114.73 (11)C14—C13—H13120.6
C6—C5—H5122.6C12—C13—H13120.6
C4—C5—H5122.6C13—C14—C15120.85 (11)
F1—C6—C5118.39 (12)C13—C14—H14119.6
F1—C6—C7117.04 (11)C15—C14—H14119.6
C5—C6—C7124.57 (13)C16—C15—C14119.80 (12)
C8—C7—C6119.68 (12)C16—C15—H15120.1
C8—C7—H7120.2C14—C15—H15120.1
C6—C7—H7120.2C15—C16—C11119.86 (11)
C7—C8—C3118.39 (12)C15—C16—H16120.1
C7—C8—H8120.8C11—C16—H16120.1
C4—N1—C1—C21.08 (13)C4—C5—C6—C70.48 (18)
C11—N1—C1—C2174.11 (10)F1—C6—C7—C8179.81 (11)
C4—N1—C1—C9178.91 (11)C5—C6—C7—C80.4 (2)
C11—N1—C1—C95.89 (17)C6—C7—C8—C30.63 (18)
N1—C1—C2—C10178.61 (11)C4—C3—C8—C70.91 (17)
C9—C1—C2—C101.4 (2)C2—C3—C8—C7178.87 (13)
N1—C1—C2—C30.59 (13)C1—C2—C10—N2177 (100)
C9—C1—C2—C3179.40 (12)C3—C2—C10—N22 (2)
C1—C2—C3—C8179.90 (13)C1—N1—C11—C16104.36 (13)
C10—C2—C3—C80.9 (2)C4—N1—C11—C1683.56 (14)
C1—C2—C3—C40.10 (13)C1—N1—C11—C1277.42 (15)
C10—C2—C3—C4179.33 (11)C4—N1—C11—C1294.66 (13)
C1—N1—C4—C5178.37 (12)C16—C11—C12—C132.09 (17)
C11—N1—C4—C55.16 (18)N1—C11—C12—C13179.69 (10)
C1—N1—C4—C31.15 (13)C16—C11—C12—Cl1176.62 (9)
C11—N1—C4—C3174.36 (10)N1—C11—C12—Cl11.61 (15)
C8—C3—C4—C51.03 (17)C11—C12—C13—C141.76 (17)
C2—C3—C4—C5178.81 (11)Cl1—C12—C13—C14176.93 (9)
C8—C3—C4—N1179.41 (10)C12—C13—C14—C150.59 (18)
C2—C3—C4—N10.75 (12)C13—C14—C15—C160.24 (19)
N1—C4—C5—C6179.77 (11)C14—C15—C16—C110.07 (19)
C3—C4—C5—C60.78 (17)C12—C11—C16—C151.22 (17)
C4—C5—C6—F1179.77 (11)N1—C11—C16—C15179.44 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···F1i0.952.543.1638 (16)123
C7—H7···Cl1ii0.952.733.5296 (14)142
C15—H15···Cg1iii0.952.923.7246 (14)143
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y+1/2, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H10ClFN2
Mr284.71
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)7.4581 (9), 16.8480 (15), 21.356 (2)
V3)2683.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.929, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
28426, 3893, 3219
Rint0.034
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.11
No. of reflections3893
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.20

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···F1i0.952.543.1638 (16)123
C7—H7···Cl1ii0.952.733.5296 (14)142
C15—H15···Cg1iii0.952.923.7246 (14)143
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y+1/2, z; (iii) x1, y, z.
 

References

First citationDu, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919–5922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., He, Q.-X. & Li, P.-Y. (2010a). Acta Cryst. E66, o111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., He, Q.-X. & Li, P.-Y. (2010b). Acta Cryst. E66, o97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S. & Huang, P.-M. (2009). Acta Cryst. E65, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, P., Wang, W., Li, C. & Bian, X. (2009). Acta Cryst. E65, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1041
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds