organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Methoxybenzyl)-4,6-diphenyl-2,5diazabicyclo[2.2.2]oct-5-en-3-one

Jo Alen,^a Liliana Dobrzańska,^a* Luc Van Meervelt^b and Wim M. De Borggraeve^a

^aMolecular Design & Synthesis, Department of Chemistry, Katholieke Universiteit Leuven, Celestiinenlaan 200F - box 2404, B-3001 Leuven, Belgium, and ^bBiomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F - box 2404, B-3001 Leuven, Belgium Correspondence e-mail: lianger@chem.kuleuven.be

Received 29 March 2011; accepted 31 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.105; data-to-parameter ratio = 12.8.

In the crystal structure of the title compound, $C_{26}H_{24}N_2O_2$, weak intermolecular $C-H \cdots \pi$ interactions involving the benzene of the *p*-methoxy benzyl group and one of the phenyl rings result in the formation of chains consisting of alternating enantiomers. Weak $C-H \cdots O$ interactions with the methoxy O atom lead to the formation of layers, which are interlinked by further C-H···O interactions into a three-dimensional assembly.

Related literature

For our studies on pyrazinone chemistry, see: De Borggraeve et al. (2004); Azzam et al. (2004); Alen et al. (2007a); Rombouts et al. (2003). For a crystal structure with a 2,5-diazabicvclo[2.2.2]oct-5-en-3-one core, see: Rusinov et al. (2009). For crystal structures with a similar 2,5-diazabicyclo[2.2.2]octane-3,6-dione core, see: Alen et al. (2007b); Holl et al. (2008).

a = 6.2770 (1) Å

b = 11.5684 (2) Å

c = 14.1443 (2) Å

Experimental

Crystal data C26H24N2O2 $M_r = 396.47$ Triclinic, P1

$\alpha = 85.497 \ (1)^{\circ}$	
$\beta = 89.900 \ (1)^{\circ}$	
$\gamma = 76.144 \ (1)^{\circ}$	
V = 993.97 (3) Å ³	
Z = 2	

Data collection

Bruker SMART 6000	10093 measured reflections
diffractometer	3473 independent reflections
Absorption correction: multi-scan	2894 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1997)	$R_{\rm int} = 0.028$
$T_{\min} = 0.805, T_{\max} = 0.907$	

Cu $K\alpha$ radiation $\mu = 0.67 \text{ mm}^{-1}$

 $0.34 \times 0.18 \times 0.15 \text{ mm}$

T = 100 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	272 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
3473 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C22-C27 and C9-C14 rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8A\cdots Cg2^{i}$	0.99	2.96	3.906 (2)	159
$C21 - H21A \cdots Cg1^{ii}$	0.99	2.56	3.411 (2)	144
C19−H19···O28 ⁱⁱⁱ	0.95	2.51	3.457 (2)	172
$C13-H13\cdots O30^{iv}$	0.95	2.56	3.368 (2)	143
$C29-H29A\cdots O30^{v}$	0.98	2.50	3.383 (2)	150

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y, z; (v) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5019).

References

- Alen, J., Dobrzańska, L., De Borggraeve, W. M. & Compernolle, F. (2007a). J. Org. Chem. 72, 1055-1057.
- Alen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007b). Eur. J. Org. Chem. 6, 965-971.
- Azzam, R., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron Lett. 45, 1885-1888.
- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597-11612.
- Holl, R., Dykstra, M., Schneiders, M., Fröhlich, R., Kitamura, M., Würthwein, E.-U. & Wünsch, B. (2008). Aust. J. Chem. 61, 914-919.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Rombouts, F. J. R., De Borggraeve, W. M., Delaere, D., Froeyen, M., Toppet, S. M., Compernolle, F. & Hoornaert, G. J. (2003). Eur. J. Org. Chem. 10, 1868-1878.

- Rusinov, G. L., Verbitsky, E. V., Slepukhin, P. A., Zabelina, O. N., Ganebnykh, I. N., Kalinin, V. N., Ol'shevskaya, V. A. & Charushin, V. N. (2009). *Mendeleev Commun.* 19, 243–245.
- Sheldrick, G. M. (1997). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

supporting information

Acta Cryst. (2011). E67, o1070-o1071 [doi:10.1107/S1600536811012165]

2-(4-Methoxybenzyl)-4,6-diphenyl-2,5-diazabicyclo[2.2.2]oct-5-en-3-one

Jo Alen, Liliana Dobrzańska, Luc Van Meervelt and Wim M. De Borggraeve

S1. Comment

During the course of our studies on 3,5-dichloropyrazinones (Azzam *et al.*, 2004; Alen *et al.*, 2007*a*) and their conversion to aminopiperidinone carboxylate systems (Rombouts *et al.*, 2003; De Borggraeve *et al.*, 2004), we have isolated the title compound. Although quite a few studies deal with bicyclo[2.2.2]octane systems, only one structure with the 2,5-diazabicyclo[2.2.2]oct-5-en-3-one core (Rusinov *et al.*, 2009) has been reported till now. Quite a few structures contain the similar 2,5-diazabicyclo[2.2.2]octane-3,6-dione core. Of those, two have very close resemblance to the title molecule due to a benzyl substituent on N4. One of those was obtained by us (Alen *et al.*, 2007*b*) and the other one was published by Wünsch and co-workers (Holl *et al.*, 2008).

The presented structure crystallizes in the triclinic space group $P\overline{1}$ with one molecule in the asymmetric unit (Fig. 1). All three aromatic rings participate in weak C—H··· π interactions, acting as a donor (C15–C20) or acceptors (C9–C14 and C22–C27). Intramolecular interactions C20—H20···*Cg*1, (where *Cg*1 is the centroid of the C22–C27 ring; the C20···*Cg*1 distance is 3.790 (2) Å, and the C20—H20···*Cg*1 angle is 149°) influence the orientation of these two rings towards each other. The dihedral angle between their planes is 52.75 (4)°. Rings C9–C14 and C22–C27, with dihedral angles 12.77 (9)° between their corresponding planes and -117.75 (1)° between C9–C4–C21–C22, are involved in weak intermolecular C—H··· π interactions. These interactions, namely C8—H8A···*Cg*2ⁱ (where *Cg*1 is the centroid of C9–C14, the C8···*Cg*2 distance is 3.906 (2) Å; symmetry operation (i): -*x*,1 - *y*,2 - *z*) and C21—H21A···*Cg*1ⁱⁱ (the C21···*Cg*1 distance is 3.411 (2) Å; symmetry code (ii): 1 - *x*,1 - *y*,1 - *z*), lead to the formation of chains of alternating enantiomers along [-1 0 1] (Fig. 2). These chains are interlinked by C19—H19···O28 interactions to form layers, which are expanded in the third dimension through a number of C—H···O interactions involving O30 (Fig. 3, Table 1).

S2. Experimental

1-(4-methoxybenzyl)-3,5-diphenylpyrazin-2(1*H*)-one (5 mmol) was dissolved in toluene and heated at 145 °C in a stainless steel bomb under ethene pressure (35 atm) for 4 h. The progress of the Diels-Alder cycloaddition was monitored on TLC, by the disappearance of the starting pyrazinone. After evaporation of the solvent, the crude residue was purified by column chromatography to yield the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation from a chloroform solution.

S3. Refinement

All H atoms were positioned geometrically (C—H = 0.95, 0.98, 0.99 and 1 Å) and constrained to ride on their parent atoms with U_{iso} (H) values set at 1.2 x U_{eq} (C) and 1.5 x U_{eq} (methyl-C).

Figure 1

The molecular structure of the title molecule; displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Fragment of the chain formed by C—H··· π interactions; red centroids derive from C22–C27 ring (*Cg*1), blue from C9–C14 (*Cg*2).

Figure 3

Representation of the packing viewed down the *a* axis; weak C19—H19···O28 interactions facilitating the formation of layers are indicated by blue dashed lines; C13—H13···O30 and C29—H29A···O30 interactions stabilizing the three-dimensional assembly are presented in orange. Symmetry codes are listed in Table 1.

2-(4-Methoxybenzyl)-4,6-diphenyl-2,5-diazabicyclo[2.2.2]oct-5-en-3-one

Crystal data

 $C_{26}H_{24}N_{2}O_{2}$ $M_{r} = 396.47$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.2770 (1) Å b = 11.5684 (2) Å c = 14.1443 (2) Å a = 85.497 (1)° $\beta = 89.900$ (1)° $\gamma = 76.144$ (1)° V = 993.97 (3) Å³

Data collection

Bruker SMART 6000 diffractometer Radiation source: fine-focus sealed tube Crossed Göbel mirrors monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{\min} = 0.805, T_{\max} = 0.907$ Z = 2 F(000) = 420 $D_x = 1.325 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3657 reflections $\theta = 4.0-68.4^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 100 K Block, colorless $0.34 \times 0.18 \times 0.15 \text{ mm}$

10093 measured reflections 3473 independent reflections 2894 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 68.5^{\circ}, \theta_{min} = 4.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
S = 1.05	H-atom parameters constrained
3473 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.2042P]$
272 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.27$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3365 (2)	0.39618 (12)	0.79614 (10)	0.0184 (3)
H1	0.4452	0.3253	0.7747	0.022*
N2	0.30988 (19)	0.50050 (10)	0.72762 (8)	0.0182 (3)
C3	0.1528 (2)	0.59721 (12)	0.74710 (9)	0.0169 (3)
C4	0.0393 (2)	0.57044 (12)	0.84081 (9)	0.0162 (3)
N5	-0.04137 (19)	0.46034 (10)	0.83215 (8)	0.0167 (3)
C6	0.1113 (2)	0.37223 (12)	0.80940 (9)	0.0167 (3)
C7	0.2259 (2)	0.54041 (12)	0.91838 (9)	0.0181 (3)
H7B	0.2907	0.6099	0.9226	0.022*
H7A	0.1645	0.5227	0.9809	0.022*
C8	0.4036 (2)	0.43205 (13)	0.89272 (10)	0.0195 (3)
H8A	0.4150	0.3651	0.9420	0.023*
H8B	0.5477	0.4527	0.8881	0.023*
С9	-0.1499 (2)	0.67346 (12)	0.86188 (10)	0.0170 (3)
C10	-0.1369 (3)	0.74953 (13)	0.93157 (10)	0.0242 (3)
H10	-0.0042	0.7384	0.9670	0.029*
C11	-0.3152 (3)	0.84182 (13)	0.95039 (11)	0.0278 (4)
H11	-0.3041	0.8920	0.9992	0.033*
C12	-0.5084 (3)	0.86085 (13)	0.89838 (11)	0.0252 (3)
H12	-0.6301	0.9239	0.9113	0.030*
C13	-0.5227 (2)	0.78717 (13)	0.82731 (11)	0.0252 (3)
H13	-0.6542	0.8000	0.7907	0.030*
C14	-0.3449 (2)	0.69462 (12)	0.80964 (11)	0.0219 (3)
H14	-0.3566	0.6445	0.7608	0.026*
C15	0.0681 (2)	0.25323 (12)	0.79874 (10)	0.0184 (3)

C16	-0.1056 (2)	0.22043 (12)	0.84705 (10)	0.0200 (3)
H16	-0.1934	0.2741	0.8872	0.024*
C17	-0.1512 (2)	0.11049 (13)	0.83698 (11)	0.0256 (3)
H17	-0.2689	0.0889	0.8705	0.031*
C18	-0.0242 (3)	0.03196 (13)	0.77777 (12)	0.0282 (4)
H18	-0.0539	-0.0439	0.7714	0.034*
C19	0.1452 (3)	0.06430 (13)	0.72808 (11)	0.0273 (4)
H19	0.2291	0.0116	0.6862	0.033*
C20	0.1933 (2)	0.17386 (13)	0.73923 (10)	0.0230 (3)
H20	0.3122	0.1947	0.7061	0.028*
C21	0.4620 (2)	0.49909 (13)	0.64896 (10)	0.0200 (3)
H21B	0.6110	0.4935	0.6746	0.024*
H21A	0.4168	0.5750	0.6086	0.024*
C22	0.4685 (2)	0.39600 (12)	0.58928 (9)	0.0185 (3)
C23	0.2800 (2)	0.38246 (12)	0.54412 (10)	0.0200 (3)
H23	0.1450	0.4391	0.5516	0.024*
C24	0.2841 (2)	0.28809 (12)	0.48822 (10)	0.0206 (3)
H24	0.1534	0.2800	0.4584	0.025*
C25	0.4826 (2)	0.20556 (12)	0.47653 (10)	0.0204 (3)
C26	0.6727 (2)	0.21824 (13)	0.52098 (10)	0.0215 (3)
H26	0.8082	0.1624	0.5128	0.026*
C27	0.6647 (2)	0.31205 (13)	0.57704 (10)	0.0204 (3)
H27	0.7950	0.3193	0.6076	0.024*
O28	0.50771 (17)	0.10994 (9)	0.42322 (7)	0.0259 (3)
C29	0.3127 (3)	0.08362 (14)	0.38884 (12)	0.0289 (4)
H29B	0.2193	0.0710	0.4424	0.043*
H29C	0.3514	0.0112	0.3547	0.043*
H29A	0.2334	0.1506	0.3458	0.043*
O30	0.10832 (16)	0.69324 (8)	0.69944 (7)	0.0208 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0169 (7)	0.0183 (7)	0.0186 (7)	-0.0017 (5)	0.0005 (5)	-0.0013 (5)
N2	0.0193 (6)	0.0193 (6)	0.0159 (6)	-0.0043 (5)	0.0026 (5)	-0.0015 (5)
C3	0.0166 (7)	0.0202 (7)	0.0155 (7)	-0.0064 (5)	-0.0013 (5)	-0.0041 (5)
C4	0.0177 (7)	0.0169 (7)	0.0151 (7)	-0.0060(5)	-0.0002(5)	-0.0025 (5)
N5	0.0178 (6)	0.0171 (6)	0.0156 (6)	-0.0047 (5)	-0.0003(4)	-0.0018 (4)
C6	0.0178 (7)	0.0186 (7)	0.0126 (6)	-0.0026 (5)	-0.0012 (5)	0.0002 (5)
C7	0.0174 (7)	0.0235 (7)	0.0142 (7)	-0.0069 (6)	-0.0005 (5)	-0.0010 (5)
C8	0.0170 (8)	0.0245 (7)	0.0169 (7)	-0.0054 (6)	-0.0006(5)	0.0002 (6)
C9	0.0189 (8)	0.0159 (7)	0.0171 (7)	-0.0065 (5)	0.0026 (5)	0.0001 (5)
C10	0.0262 (8)	0.0232 (8)	0.0229 (8)	-0.0042 (6)	-0.0026 (6)	-0.0045 (6)
C11	0.0383 (10)	0.0211 (8)	0.0228 (8)	-0.0030 (6)	-0.0013 (7)	-0.0077 (6)
C12	0.0263 (8)	0.0164 (7)	0.0304 (8)	-0.0001 (6)	0.0059 (6)	-0.0030 (6)
C13	0.0192 (8)	0.0201 (7)	0.0363 (9)	-0.0044 (6)	-0.0024 (6)	-0.0030 (6)
C14	0.0225 (8)	0.0173 (7)	0.0268 (8)	-0.0049 (6)	-0.0013 (6)	-0.0070 (6)
C15	0.0187 (8)	0.0172 (7)	0.0177 (7)	-0.0015 (5)	-0.0055 (5)	-0.0004 (5)

C16	0.0176 (8)	0.0190 (7)	0.0225 (7)	-0.0023 (5)	-0.0050 (5)	-0.0021 (6)	
C17	0.0198 (8)	0.0238 (8)	0.0333 (8)	-0.0064 (6)	-0.0054 (6)	0.0003 (6)	
C18	0.0304 (9)	0.0172 (7)	0.0365 (9)	-0.0043 (6)	-0.0121 (7)	-0.0033 (6)	
C19	0.0312 (9)	0.0199 (7)	0.0274 (8)	0.0024 (6)	-0.0051 (6)	-0.0074 (6)	
C20	0.0232 (8)	0.0208 (7)	0.0225 (7)	-0.0004 (6)	-0.0017 (6)	-0.0013 (6)	
C21	0.0198 (8)	0.0227 (7)	0.0189 (7)	-0.0074 (6)	0.0040 (5)	-0.0034 (6)	
C22	0.0214 (8)	0.0212 (7)	0.0140 (7)	-0.0074 (6)	0.0023 (5)	0.0002 (5)	
C23	0.0190 (8)	0.0207 (7)	0.0196 (7)	-0.0034 (6)	0.0018 (5)	-0.0006 (6)	
C24	0.0209 (8)	0.0230 (7)	0.0193 (7)	-0.0082 (6)	-0.0012 (6)	-0.0005 (6)	
C25	0.0268 (8)	0.0184 (7)	0.0171 (7)	-0.0075 (6)	0.0019 (6)	-0.0020 (5)	
C26	0.0192 (8)	0.0205 (7)	0.0235 (7)	-0.0021 (6)	0.0019 (6)	-0.0026 (6)	
C27	0.0187 (8)	0.0239 (7)	0.0192 (7)	-0.0069 (6)	-0.0007 (5)	-0.0008 (6)	
O28	0.0269 (6)	0.0229 (5)	0.0293 (6)	-0.0059 (4)	-0.0015 (4)	-0.0096 (4)	
C29	0.0319 (9)	0.0225 (8)	0.0340 (9)	-0.0083 (7)	-0.0084 (7)	-0.0067 (7)	
O30	0.0241 (6)	0.0189 (5)	0.0191 (5)	-0.0053 (4)	0.0002 (4)	0.0013 (4)	

Geometric parameters (Å, °)

C1—N2	1.4641 (18)	C15—C20	1.394 (2)
C1—C6	1.5129 (19)	C15—C16	1.398 (2)
C1—C8	1.5460 (18)	C16—C17	1.386 (2)
C1—H1	1.0000	C16—H16	0.9500
N2—C3	1.3485 (18)	C17—C18	1.390 (2)
N2-C21	1.4633 (17)	C17—H17	0.9500
C3—O30	1.2252 (17)	C18—C19	1.383 (2)
C3—C4	1.5489 (19)	C18—H18	0.9500
C4—N5	1.4922 (17)	C19—C20	1.392 (2)
С4—С9	1.5149 (19)	C19—H19	0.9500
C4—C7	1.5641 (18)	C20—H20	0.9500
N5—C6	1.2820 (18)	C21—C22	1.5070 (19)
C6—C15	1.4843 (19)	C21—H21B	0.9900
С7—С8	1.5322 (19)	C21—H21A	0.9900
С7—Н7В	0.9900	C22—C23	1.393 (2)
С7—Н7А	0.9900	C22—C27	1.394 (2)
C8—H8A	0.9900	C23—C24	1.393 (2)
C8—H8B	0.9900	С23—Н23	0.9500
C9—C10	1.387 (2)	C24—C25	1.395 (2)
C9—C14	1.391 (2)	C24—H24	0.9500
C10-C11	1.391 (2)	C25—O28	1.3653 (17)
C10—H10	0.9500	C25—C26	1.393 (2)
C11—C12	1.382 (2)	C26—C27	1.385 (2)
C11—H11	0.9500	C26—H26	0.9500
C12—C13	1.384 (2)	C27—H27	0.9500
С12—Н12	0.9500	O28—C29	1.4250 (18)
C13—C14	1.387 (2)	C29—H29B	0.9800
С13—Н13	0.9500	C29—H29C	0.9800
C14—H14	0.9500	C29—H29A	0.9800

N2—C1—C6	106.68 (11)	C9—C14—H14	119.3
N2—C1—C8	107.79 (11)	C20—C15—C16	118.74 (13)
C6—C1—C8	106.12 (11)	C20—C15—C6	121.48 (13)
N2—C1—H1	112.0	C16—C15—C6	119.75 (12)
С6—С1—Н1	112.0	C17—C16—C15	120.75 (14)
C8—C1—H1	112.0	С17—С16—Н16	119.6
$C_3 - N_2 - C_2 I$	123.95 (12)	C15—C16—H16	119.6
$C_3 - N_2 - C_1$	115 85 (11)	C_{16} $-C_{17}$ $-C_{18}$	119.89 (15)
$C_{21} = N_{2} = C_{1}$	119.96 (11)	C_{16} C_{17} H_{17}	120.1
030-03-N2	125 58 (12)	C_{18} C_{17} H_{17}	120.1
030 - 03 - 04	12451(12)	C19 - C18 - C17	119.93 (14)
$N_2 - C_3 - C_4$	109.89(11)	C19-C18-H18	120.0
$N_2 = C_3 = C_4$ $N_5 = C_4 = C_9$	110 11 (11)	C_{17} C_{18} H_{18}	120.0
N5-C4-C3	108.07(10)	C_{18} C_{19} C_{20}	120.0
C_{0} C_{4} C_{3}	100.07(10) 111.77(11)	$C_{18} = C_{19} = C_{20}$	110.0
$C_{2} = C_{1} = C_{2}$	107.65(10)	$C_{10} = C_{10} = H_{10}$	119.9
$N_3 = C_4 = C_7$	107.03(10) 112.68(11)	$C_{20} = C_{19} = 1119$	119.9
$C_{2} = C_{4} = C_{7}$	115.08(11) 105.25(11)	C19 - C20 - C13	120.42 (13)
C_{5}	103.23(11) 112.20(11)	C15 C20 H20	119.0
$C_0 - N_0 - C_4$	112.30(11)	C13-C20-H20	119.8
N5-C6-C15	121.31(12)	$N_2 = C_2 I = C_2 Z$	112.07 (11)
	110.20(12)	$N_2 = C_2 I = H_2 I B$	109.2
	122.43 (12)	C22—C21—H21B	109.2
	109.57 (11)	N2—C21—H2IA	109.2
C8—C/—H/B	109.8	C22—C21—H21A	109.2
С4—С7—Н7В	109.8	H21B—C21—H21A	107.9
С8—С7—Н7А	109.8	C23—C22—C27	118.15 (13)
С4—С7—Н7А	109.8	C23—C22—C21	121.17 (12)
Н7В—С7—Н7А	108.2	C27—C22—C21	120.68 (12)
C7—C8—C1	107.33 (11)	C24—C23—C22	121.73 (13)
С7—С8—Н8А	110.2	C24—C23—H23	119.1
C1—C8—H8A	110.2	C22—C23—H23	119.1
C7—C8—H8B	110.2	C23—C24—C25	119.11 (13)
C1—C8—H8B	110.2	C23—C24—H24	120.4
H8A—C8—H8B	108.5	C25—C24—H24	120.4
C10—C9—C14	117.80 (13)	O28—C25—C26	115.66 (13)
C10—C9—C4	122.53 (13)	O28—C25—C24	124.54 (13)
C14—C9—C4	119.66 (12)	C26—C25—C24	119.80 (13)
C9—C10—C11	121.05 (14)	C27—C26—C25	120.19 (13)
С9—С10—Н10	119.5	С27—С26—Н26	119.9
C11—C10—H10	119.5	С25—С26—Н26	119.9
C12—C11—C10	120.35 (14)	C26—C27—C22	121.01 (13)
C12—C11—H11	119.8	С26—С27—Н27	119.5
C10-C11-H11	119.8	С22—С27—Н27	119.5
C11—C12—C13	119.34 (14)	C25—O28—C29	117.06 (11)
C11—C12—H12	100.2	018 C10 U10D	100 5
	120.3	028—029—п29Б	109.5
C13—C12—H12	120.3	O28—C29—H29B O28—C29—H29C	109.5
C13—C12—H12 C12—C13—C14	120.3 120.3 119.95 (14)	O28—C29—H29B O28—C29—H29C H29B—C29—H29C	109.5 109.5 109.5

C14—C13—H13	120.0	H29B—C29—H29A	109.5
C13—C14—C9	121.49 (13)	H29C—C29—H29A	109.5
C13—C14—H14	119.3		
C6-C1-N2-C3	51.84 (15)	C4-C9-C10-C11	-178.69 (13)
C8—C1—N2—C3	-61.78 (15)	C9-C10-C11-C12	-1.2 (2)
C6-C1-N2-C21	-133.60 (12)	C10-C11-C12-C13	0.0 (2)
C8—C1—N2—C21	112.78 (13)	C11—C12—C13—C14	0.7 (2)
C21—N2—C3—O30	4.4 (2)	C12—C13—C14—C9	-0.1 (2)
C1—N2—C3—O30	178.72 (12)	C10-C9-C14-C13	-1.1 (2)
C21—N2—C3—C4	-174.13 (11)	C4—C9—C14—C13	179.33 (13)
C1—N2—C3—C4	0.19 (16)	N5-C6-C15-C20	153.12 (13)
O30—C3—C4—N5	126.98 (13)	C1—C6—C15—C20	-28.10 (19)
N2-C3-C4-N5	-54.46 (14)	N5-C6-C15-C16	-25.04 (19)
O30—C3—C4—C9	5.66 (18)	C1—C6—C15—C16	153.74 (13)
N2—C3—C4—C9	-175.79 (11)	C20-C15-C16-C17	0.8 (2)
O30—C3—C4—C7	-118.21 (14)	C6-C15-C16-C17	178.97 (13)
N2—C3—C4—C7	60.35 (13)	C15—C16—C17—C18	-0.4 (2)
C9—C4—N5—C6	176.59 (11)	C16—C17—C18—C19	-0.9 (2)
C3—C4—N5—C6	54.24 (14)	C17—C18—C19—C20	1.9 (2)
C7—C4—N5—C6	-58.98 (14)	C18—C19—C20—C15	-1.5 (2)
C4—N5—C6—C15	178.84 (11)	C16—C15—C20—C19	0.2 (2)
C4—N5—C6—C1	-0.01 (16)	C6-C15-C20-C19	-177.95 (13)
N2-C1-C6-N5	-53.75 (15)	C3—N2—C21—C22	-129.16 (13)
C8—C1—C6—N5	61.00 (15)	C1—N2—C21—C22	56.75 (16)
N2-C1-C6-C15	127.41 (13)	N2-C21-C22-C23	59.17 (17)
C8—C1—C6—C15	-117.83 (13)	N2-C21-C22-C27	-121.48 (14)
N5-C4-C7-C8	55.29 (14)	C27—C22—C23—C24	0.2 (2)
C9—C4—C7—C8	177.54 (11)	C21—C22—C23—C24	179.53 (12)
C3—C4—C7—C8	-59.81 (13)	C22—C23—C24—C25	-0.5 (2)
C4—C7—C8—C1	2.67 (14)	C23—C24—C25—O28	-179.64 (13)
N2-C1-C8-C7	56.69 (14)	C23—C24—C25—C26	0.3 (2)
C6—C1—C8—C7	-57.31 (13)	O28—C25—C26—C27	-179.72 (12)
N5-C4-C9-C10	134.06 (13)	C24—C25—C26—C27	0.3 (2)
C3—C4—C9—C10	-105.81 (15)	C25—C26—C27—C22	-0.7 (2)
C7—C4—C9—C10	13.18 (18)	C23—C22—C27—C26	0.5 (2)
N5-C4-C9-C14	-46.41 (16)	C21—C22—C27—C26	-178.88 (13)
C3—C4—C9—C14	73.72 (15)	C26—C25—O28—C29	170.61 (13)
C7—C4—C9—C14	-167.29 (12)	C24—C25—O28—C29	-9.5 (2)
C14—C9—C10—C11	1.8 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C22–C27 and C9–C14 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
C19—H19…O28 ⁱ	0.95	2.51	3.457 (2)	172
C13—H13…O30 ⁱⁱ	0.95	2.56	3.368 (2)	143
C29—H29A…O30 ⁱⁱⁱ	0.98	2.50	3.383 (2)	150

supporting information

C8—H8 A ··· $Cg2^{iv}$	0.99	2.96	3.906 (2)	159	
C21—H21 A ···Cg1 ^v	0.99	2.56	3.411 (2)	144	

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+1.