organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1164

3-{(E)-[1-(2-Hy­dr­oxy­phen­yl)ethyl­­idene]amino}-1-(2-methyl­phen­yl)thio­urea

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 April 2011; accepted 12 April 2011; online 16 April 2011)

In the title thio­urea derivative, C16H17N3OS, the hy­droxy- and methyl-substituted benzene rings form dihedral angles of 9.62 (12) and 55.69 (6)°, respectively, with the central CN3S chromophore (r.m.s. deviation = 0.0117 Å). An intra­molecular O—H⋯N hydrogen bond ensures the coplanarity of the central atoms. The H atoms of the NH groups are syn and the conformation about the N=C double bond [1.295 (4) Å] is E. In the crystal, helical supra­molecular chains sustained primarily by N—H⋯S hydrogen bonds are found. Additional stabilization is provided by C—H⋯π and ππ [ring centroid(hy­droxy­benzene)⋯ring centroid(methyl­benzene) = 3.8524 (18) Å] inter­actions.

Related literature

For pharmaceutical applications of thio­ruea derivatives, see: Venkatachalam et al. (2004[Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275-4284.]); Bruce et al. (2007[Bruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647-1653.]). For related thio­urea structures, see: Normaya et al. (2011[Normaya, E., Farina, Y., Halim, S. N. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o943-o944.]); Salam et al. (2011[Salam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.]); Dzulkifli et al. (2011[Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3OS

  • Mr = 299.39

  • Monoclinic, P 21 /c

  • a = 14.6966 (8) Å

  • b = 7.3586 (4) Å

  • c = 14.0926 (8) Å

  • β = 94.358 (5)°

  • V = 1519.66 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.419, Tmax = 1.000

  • 7614 measured reflections

  • 3375 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.174

  • S = 1.00

  • 3375 reflections

  • 201 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 1.81 (2) 2.551 (3) 145 (3)
N2—H2n⋯S1i 0.88 (1) 2.51 (2) 3.323 (2) 154 (3)
N3—H3n⋯S1i 0.88 (1) 2.49 (2) 3.286 (3) 151 (2)
C8—H8b⋯Cg1i 0.98 2.59 3.501 (3) 155
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of structural investigations into the conformation and hydrogen bonding patterns in thiourea derivatives (Normaya et al. 2011; Salam et al., 2011; Dzulkifli et al., 2011), and also motivated by their pharmacological potential (Venkatachalam et al. 2004; Bruce et al., 2007), the title compound, (I), was investigated.

With respect to the planar (r.m.s. = 0.0117 Å) central CN3S chromophore in (I), Fig. 1, the OH– and Me-benzene rings are twisted as seen in the respective dihedral angles of 9.62 (12) and 55.69 (6) °. The almost co-planarity of the central atoms is ascribed to the formation of an intramolecular hydroxyl-OH···N-imine hydrogen bond, Table 1. The H atoms of the NH groups are syn, and the conformation about the N1C7 double bond [1.295 (4) Å] is E. The syn arrangement in (I) contrast the anti arrangement often seen in such derivatives but is readily explained in terms of the intramolecular OH···N-imine hydrogen bond in (I) by contrast to the normally observed intramolecular NH···N-imine hydrogen bond (Normaya et al. 2011; Salam et al., 2011; Dzulkifli et al., 2011).

Helical supramolecular chains along the b axis dominate the crystal packing, Fig. 2 and Table 1. These arise as a result of the thione-S interacting with both N—H atoms of a neighbouring molecule thereby forming six-membered hydrogen bond mediated rings. Chains are stabilized by C—H..π, Table 1, and ππ [ring centroid(C1···C6)···ring centroid(C10···C15)i = 3.8524 (18) Å, dihedral angle = 2.37 (15) ° for i: 1 - x, -1/2 + y, 1/2 - z] interactions, Fig. 3.

Related literature top

For pharmaceutical applications of thioruea derivatives, see: Venkatachalam et al. (2004); Bruce et al. (2007). For related thiourea structures, see: Normaya et al. (2011); Salam et al. (2011); Dzulkifli et al. (2011).

Experimental top

2-Methylphenylisothiocyanate (0.746 g, 5 mmol) and hydrazine hydrate (0.253 g, 5 mmol), each dissolved in 10 ml e thanol, were mixed with constant stirring. The stirring was continued for 30 min and the white product formed was washed with ethanol and dried in vacuo. A solution of the isolated 2-methylphenylthiosemicarbazide (0.540 g, 3 mmol) in 10 ml me thanol was then refluxed with a methanolic solution of 2-hydroxyacetophenone (0.408 g, 3 mmol) for 5 h after adding 1–2 drops of glacial acetic acid. On cooling, the solution to room temperature, a light-yellow powder separated and washed with methanol. The powder was recrystallized from methanol and dried in vacuo over silica gel. (M.pt. 451–453 K. Yield 0.740 g (78%). Elemental analysis: Calc. for C16H17N3OS: C, 64.21; H, 5.73; N, 14.04%. Found: C, 64.17; H, 5.67; N, 14.01%. FT—IR (KBr, cm-1) νmax: 3175 (m, OH), 3000 (s, NH), 1583 (w, CN), 943 (m, N—N), 1371, 861 (w, CS).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.84±0.01 Å and N—H 0.88±0.01 Å, and with Uiso(H) = yUeq(parent atom) for y = 1.5 (O) and 1.2 (N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain aligned along the b axis in (I). The N—H···S hydrogen bonds are shown as orange dashed lines. Further stabilization to the chain is provided by C—H···π and ππ interactions, shown as blue and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the c axis of the crystal packing in (I) showing the staking of layers comprising the helical supramolecular chains shown in Fig. 2. The O—H···O and N—H···S hydrogen bonds (orange), and C—H···π (blue) and ππ (purple) interactions are shown as dashed lines.
3-{(E)-[1-(2-Hydroxyphenyl)ethylidene]amino}-1-(2-methylphenyl)thiourea top
Crystal data top
C16H17N3OSF(000) = 632
Mr = 299.39Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1905 reflections
a = 14.6966 (8) Åθ = 2.8–29.3°
b = 7.3586 (4) ŵ = 0.22 mm1
c = 14.0926 (8) ÅT = 100 K
β = 94.358 (5)°Prism, light-yellow
V = 1519.66 (15) Å30.30 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
3375 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2094 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1419
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 97
Tmin = 0.419, Tmax = 1.000l = 1815
7614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0769P)2]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H17N3OSV = 1519.66 (15) Å3
Mr = 299.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6966 (8) ŵ = 0.22 mm1
b = 7.3586 (4) ÅT = 100 K
c = 14.0926 (8) Å0.30 × 0.10 × 0.05 mm
β = 94.358 (5)°
Data collection top
Agilent Supernova Dual
diffractometer with an Atlas detector
3375 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2094 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 1.000Rint = 0.066
7614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0603 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
3375 reflectionsΔρmin = 0.34 e Å3
201 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46230 (5)0.24817 (10)0.38597 (5)0.0188 (2)
O10.21619 (14)0.2307 (3)0.31997 (15)0.0250 (5)
H1O0.2693 (11)0.261 (4)0.308 (2)0.038*
N10.33770 (15)0.3710 (3)0.22261 (17)0.0182 (6)
N20.42781 (16)0.4196 (3)0.21980 (18)0.0190 (6)
H2N0.4433 (19)0.497 (3)0.1764 (16)0.023*
N30.57409 (16)0.4362 (3)0.27942 (17)0.0197 (6)
H3N0.5801 (19)0.496 (4)0.2259 (13)0.024*
C10.1592 (2)0.2588 (4)0.2410 (2)0.0229 (7)
C20.0685 (2)0.2066 (5)0.2458 (3)0.0309 (8)
H20.04960.15440.30270.037*
C30.0062 (2)0.2298 (5)0.1692 (3)0.0331 (9)
H3A0.05530.19270.17320.040*
C40.0327 (2)0.3073 (5)0.0857 (3)0.0320 (8)
H40.01040.32360.03270.038*
C50.1220 (2)0.3603 (4)0.0806 (2)0.0260 (8)
H5A0.13960.41420.02360.031*
C60.18777 (19)0.3372 (4)0.1568 (2)0.0200 (7)
C70.28345 (19)0.3879 (4)0.1464 (2)0.0189 (7)
C80.3131 (2)0.4548 (4)0.0530 (2)0.0229 (7)
H8A0.37950.44320.05250.034*
H8B0.29570.58270.04450.034*
H8C0.28340.38240.00120.034*
C90.48965 (19)0.3751 (4)0.2920 (2)0.0174 (7)
C100.65424 (19)0.4166 (4)0.3422 (2)0.0172 (7)
C110.6563 (2)0.4776 (4)0.4351 (2)0.0201 (7)
H110.60240.52420.45920.024*
C120.7355 (2)0.4712 (4)0.4928 (2)0.0252 (7)
H12A0.73640.51120.55700.030*
C130.8147 (2)0.4057 (4)0.4568 (2)0.0253 (7)
H130.87030.40350.49600.030*
C140.8128 (2)0.3441 (4)0.3647 (2)0.0231 (7)
H140.86710.29740.34140.028*
C150.73287 (19)0.3485 (4)0.3047 (2)0.0195 (7)
C160.7318 (2)0.2841 (4)0.2034 (2)0.0260 (8)
H16A0.78150.19690.19740.039*
H16B0.74010.38820.16150.039*
H16C0.67330.22530.18510.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0225 (4)0.0163 (4)0.0179 (4)0.0009 (3)0.0039 (3)0.0001 (3)
O10.0214 (11)0.0291 (13)0.0247 (13)0.0029 (10)0.0027 (10)0.0005 (10)
N10.0150 (12)0.0148 (13)0.0247 (15)0.0010 (10)0.0019 (10)0.0010 (11)
N20.0179 (13)0.0166 (14)0.0222 (15)0.0023 (10)0.0002 (11)0.0044 (11)
N30.0187 (13)0.0205 (14)0.0199 (15)0.0006 (11)0.0016 (11)0.0052 (11)
C10.0245 (16)0.0172 (16)0.0269 (18)0.0046 (13)0.0018 (13)0.0085 (14)
C20.0234 (17)0.030 (2)0.040 (2)0.0028 (14)0.0098 (15)0.0020 (16)
C30.0198 (17)0.031 (2)0.049 (2)0.0018 (14)0.0039 (16)0.0077 (17)
C40.0248 (18)0.0298 (19)0.040 (2)0.0018 (15)0.0039 (15)0.0006 (17)
C50.0242 (17)0.0207 (17)0.032 (2)0.0010 (14)0.0026 (14)0.0014 (15)
C60.0174 (15)0.0158 (16)0.0266 (18)0.0010 (12)0.0003 (13)0.0037 (13)
C70.0209 (15)0.0104 (15)0.0250 (18)0.0038 (12)0.0004 (13)0.0030 (13)
C80.0248 (16)0.0192 (17)0.0247 (18)0.0002 (13)0.0021 (13)0.0036 (14)
C90.0180 (15)0.0151 (15)0.0197 (16)0.0034 (12)0.0045 (12)0.0028 (13)
C100.0185 (15)0.0126 (15)0.0205 (17)0.0006 (12)0.0014 (12)0.0014 (12)
C110.0272 (16)0.0095 (14)0.0239 (18)0.0015 (13)0.0045 (13)0.0009 (13)
C120.0354 (19)0.0158 (16)0.0235 (18)0.0033 (14)0.0037 (14)0.0013 (14)
C130.0249 (17)0.0192 (17)0.030 (2)0.0021 (13)0.0091 (14)0.0055 (14)
C140.0171 (15)0.0183 (16)0.034 (2)0.0001 (13)0.0034 (13)0.0026 (15)
C150.0262 (16)0.0132 (15)0.0200 (17)0.0058 (13)0.0063 (13)0.0003 (13)
C160.0275 (17)0.0240 (18)0.0276 (19)0.0018 (14)0.0094 (14)0.0020 (14)
Geometric parameters (Å, º) top
S1—C91.694 (3)C6—C71.473 (4)
O1—C11.357 (4)C7—C81.500 (4)
O1—H1O0.842 (10)C8—H8A0.9800
N1—C71.295 (4)C8—H8B0.9800
N1—N21.375 (3)C8—H8C0.9800
N2—C91.352 (4)C10—C111.383 (4)
N2—H2N0.880 (10)C10—C151.400 (4)
N3—C91.344 (3)C11—C121.369 (4)
N3—C101.426 (4)C11—H110.9500
N3—H3N0.882 (10)C12—C131.391 (4)
C1—C21.394 (4)C12—H12A0.9500
C1—C61.411 (4)C13—C141.373 (4)
C2—C31.372 (5)C13—H130.9500
C2—H20.9500C14—C151.395 (4)
C3—C41.390 (5)C14—H140.9500
C3—H3A0.9500C15—C161.503 (4)
C4—C51.376 (4)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.400 (4)C16—H16C0.9800
C5—H5A0.9500
C1—O1—H1O108 (2)H8A—C8—H8B109.5
C7—N1—N2119.0 (2)C7—C8—H8C109.5
C9—N2—N1120.6 (2)H8A—C8—H8C109.5
C9—N2—H2N119 (2)H8B—C8—H8C109.5
N1—N2—H2N119.3 (19)N3—C9—N2113.2 (2)
C9—N3—C10127.7 (2)N3—C9—S1124.3 (2)
C9—N3—H3N115.6 (19)N2—C9—S1122.4 (2)
C10—N3—H3N116.7 (19)C11—C10—C15121.0 (3)
O1—C1—C2116.8 (3)C11—C10—N3120.9 (3)
O1—C1—C6123.2 (3)C15—C10—N3117.9 (3)
C2—C1—C6120.0 (3)C12—C11—C10120.5 (3)
C3—C2—C1120.8 (3)C12—C11—H11119.7
C3—C2—H2119.6C10—C11—H11119.7
C1—C2—H2119.6C11—C12—C13119.5 (3)
C2—C3—C4120.2 (3)C11—C12—H12A120.2
C2—C3—H3A119.9C13—C12—H12A120.2
C4—C3—H3A119.9C14—C13—C12120.1 (3)
C5—C4—C3119.4 (3)C14—C13—H13120.0
C5—C4—H4120.3C12—C13—H13120.0
C3—C4—H4120.3C13—C14—C15121.5 (3)
C4—C5—C6122.1 (3)C13—C14—H14119.3
C4—C5—H5A119.0C15—C14—H14119.3
C6—C5—H5A119.0C14—C15—C10117.4 (3)
C5—C6—C1117.6 (3)C14—C15—C16121.1 (3)
C5—C6—C7120.1 (3)C10—C15—C16121.5 (3)
C1—C6—C7122.3 (3)C15—C16—H16A109.5
N1—C7—C6115.1 (3)C15—C16—H16B109.5
N1—C7—C8123.9 (3)H16A—C16—H16B109.5
C6—C7—C8120.9 (3)C15—C16—H16C109.5
C7—C8—H8A109.5H16A—C16—H16C109.5
C7—C8—H8B109.5H16B—C16—H16C109.5
C7—N1—N2—C9168.5 (3)C10—N3—C9—N2178.6 (3)
O1—C1—C2—C3179.9 (3)C10—N3—C9—S13.6 (4)
C6—C1—C2—C30.3 (5)N1—N2—C9—N3178.5 (2)
C1—C2—C3—C40.5 (5)N1—N2—C9—S13.7 (4)
C2—C3—C4—C50.1 (5)C9—N3—C10—C1156.4 (4)
C3—C4—C5—C60.6 (5)C9—N3—C10—C15129.0 (3)
C4—C5—C6—C10.8 (5)C15—C10—C11—C120.5 (4)
C4—C5—C6—C7177.0 (3)N3—C10—C11—C12174.9 (3)
O1—C1—C6—C5179.4 (3)C10—C11—C12—C131.1 (4)
C2—C1—C6—C50.3 (4)C11—C12—C13—C141.5 (5)
O1—C1—C6—C72.8 (5)C12—C13—C14—C151.2 (5)
C2—C1—C6—C7177.4 (3)C13—C14—C15—C100.6 (4)
N2—N1—C7—C6178.4 (2)C13—C14—C15—C16178.8 (3)
N2—N1—C7—C81.2 (4)C11—C10—C15—C140.2 (4)
C5—C6—C7—N1176.2 (3)N3—C10—C15—C14174.8 (3)
C1—C6—C7—N16.1 (4)C11—C10—C15—C16179.2 (3)
C5—C6—C7—C83.4 (4)N3—C10—C15—C164.6 (4)
C1—C6—C7—C8174.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.81 (2)2.551 (3)145 (3)
N2—H2n···S1i0.88 (1)2.51 (2)3.323 (2)154 (3)
N3—H3n···S1i0.88 (1)2.49 (2)3.286 (3)151 (2)
C8—H8b···Cg1i0.982.593.501 (3)155
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17N3OS
Mr299.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.6966 (8), 7.3586 (4), 14.0926 (8)
β (°) 94.358 (5)
V3)1519.66 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerAgilent Supernova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.419, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7614, 3375, 2094
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.174, 1.00
No. of reflections3375
No. of parameters201
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.842 (10)1.81 (2)2.551 (3)145 (3)
N2—H2n···S1i0.880 (10)2.508 (16)3.323 (2)154 (3)
N3—H3n···S1i0.882 (10)2.485 (17)3.286 (3)151 (2)
C8—H8b···Cg1i0.982.593.501 (3)155
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: maaffan@yahoo.com.

Acknowledgements

This work was financially supported by the Ministry of Science Technology and Innovation (MOSTI) under a research grant (No. 06–01-09-SF0046). The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruce, J. C., Revaprasadu, N. & Koch, K. R. (2007). New J. Chem. 31, 1647–1653.  Web of Science CSD CrossRef CAS Google Scholar
First citationDzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNormaya, E., Farina, Y., Halim, S. N. A. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o943–o944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalam, M. A., Affan, M. A., Ahmad, F. B., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1164
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds