

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Na₃DyCl₆

Christian M. Schurz,^a Gerd Meyer^b and Thomas Schleid^a*

^aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ^bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany Correspondence e-mail: schleid@iac.uni-stuttgart.de

Received 6 April 2011; accepted 18 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Dy–Cl) = 0.001 Å; R factor = 0.019; wR factor = 0.045; data-to-parameter ratio = 24.9.

Single crystals of the title compound, trisodium hexachloridodysprosate, Na₃DyCl₆, were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na₃AlF₆) and the high-temperature structure of the Na_3MCl_6 series, with M = Eu-Lu, Y and Sc. The isolated, almost perfect [DyCl6]3- octahedra are interconnected via two crystallographically different Na⁺ cations: while one Na⁺ resides on centres of symmetry (as well as Dy^{3+}) and also builds almost perfect, isolated [NaCl₆]⁵⁻ octahedra, the other Na⁺ is surrounded by seven chloride anions forming a distorted $[NaCl_7]^{6-}$ trigonal prism with just one cap as close secondary contact.

Related literature

The first structural descriptions of the Na_3MCl_6 series (M =Eu-Lu, Y and Sc) on a single crystal in the cryolite-type structure (Hawthorne &, Ferguson, 1975) were given for M =Er by Meyer *et al.* (1987), for M = Ho by Böcker *et al.* (2001) and for M = Y by Liao & Dronskowski (2004). For the correlation between the two temperature-dependent phases, see: Meyer (1984); Meyer et al. (1987); Wickleder & Meyer (1995). For a planned synthesis of Dy₂NCl₃, compare with those for Gd₂NCl₃ (Schwanitz-Schüller & Simon, 1985) and Y₂NCl₃ (Meyer et al., 1989).

Experimental

Crystal data

Na₃DyCl₆ $M_{r} = 444.17$ Monoclinic, $P2_1/n$ a = 6.8791 (5) Åb = 7.2816 (5) A c = 10.1734 (7) Å $\beta = 90.823 \ (4)^{\circ}$

V = 509.54 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 8.96 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.15 \times 0.10 \; \mathrm{mm}$ 12026 measured reflections

 $R_{\rm int} = 0.071$

1245 independent reflections

1124 reflections with $I > 2\sigma(I)$

Data collection

Nonius Kappa-CCD diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999) $T_{\min} = 0.218, T_{\max} = 0.414$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	50 parameters
$wR(F^2) = 0.045$	$\Delta \rho_{\rm max} = 0.84 \text{ e } \text{\AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
1245 reflections	

Table 1

Selected bond lengths (Å).

Na1-Cl2 ⁱ	2.7358 (8)	Na2-Cl3 ^{vii}	3.204 (2)
Na1-Cl3 ⁱⁱⁱ	2.7902 (8)	Na2-Cl2 ^{iv}	3.325 (2)
Na1-Cl1	2.8687 (8)	Na2-Cl2	3.488 (2)
Na2-Cl1	2.8295 (19)	Dy-Cl2	2.6176 (8)
Na2—Cl2 ^{vi}	2.8341 (19)	Dy-Cl3	2.6320 (8)
Na2—Cl1 ^{iv}	2.8492 (19)	Dy-Cl1 ^{viii}	2.6447 (8)
Na2-Cl3 ⁱ	2.8612 (19)		

codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; Symmetry (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (vi) x + 1, y, z; (vii) -x + 1, -y, -z; (viii) -x, -y, -z.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

This work was supported by the German Research Foundation (DFG, Frankfurt/Main) within the funding programme Open Access Publishing and the State of Baden-Württemberg (Stuttgart). The authors thank Dr Sabine Strobel for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2006).

References

Böcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216. 19.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Hawthorne, F. C. & Ferguson, R. B. (1975). Can. Mineral. 13, 377-382.

- Liao, W. & Dronskowski, R. (2004). Acta Cryst. E60, i72-i73.
- Meyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191-197.
- Meyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554,
- 25 33Meyer, H.-J., Jones, N. L. & Corbett, J. D. (1989). Inorg. Chem. 28, 2635-2637.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Schwanitz-Schüller, U. & Simon, A. (1985). Z. Naturforsch. Teil B, 40, 279-283
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457-463.

supporting information

Acta Cryst. (2011). E67, i33 [doi:10.1107/S1600536811014498]

Na_3DyCl_6

Christian M. Schurz, Gerd Meyer and Thomas Schleid

S1. Comment

Trisodiumhexachlorodysprosate(III) belongs to a group of ternary chlorides Na₃*M*Cl₆ with M = Eu - Lu, Y and Sc (Meyer *et al.*, 1987), which crystallize in the *cryolite*-type structure (Hawthorne *et al.*, 1975). The Dy³⁺ and (Na1)⁺ occupy the 2*a* and 2*b Wyckoff* positions at centres of symmetry, whereas the three crystallographically different chloride anions and (Na2)⁺ reside at the 4*e* position with the site symmetry 1. A 11 cations have six primary contacts to Cl⁻, but the $[(Na2)Cl_6]^{5-}$ polyhedron can not only be described as distorted trigonal prism instead of the usual octahedra that are realised for $[DyCl_6]^{3-}$ and $[(Na1)Cl_6]^{5-}$, it moreover carries a seventh capping Cl⁻ anion. The isolated $[DyCl_6]^{3-}$ octahedra are interconnected to a three-dimensional texture *via* sodium cations (Fig. 1). This structure represents the high-temperature phase of the Na₃*M*Cl₆ series with M = Eu - Lu, Y and Sc. The transition into the low-temperature phase with its trigonal structure (Meyer, 1984) depends on the radius of the actual lanthanoid(III) cation (Wickleder *et al.*, 1995) and is estimated for *M* = Dy at around 290 K, hence not far below the temperature of the measurement.

S2. Experimental

Colourless and transparent single crystals of Na_3DyCl_6 were obtained as by-product from the reaction of sodium azide (NaN_3), dysprosium metal (Dy) and its the corresponding trichloride ($DyCl_3$) in presence of sodium chloride (NaCl) as flux, originally designed to produce Dy_2NCl_3 in analogy to Gd_2NCl_3 (Schwanitz-Schüller *et al.*, 1985) and Y_2NCl_3 (Meyer *et al.*, 1989) instead. The reaction mixture was placed into a torch- sealed evacuated fused-silica vessel, which was heated at 1143 K for seven days, followed by cooling to room temperature within one day.

Figure 1

Crystal structure of *cryolite*-type Na₃DyCl₆. Displacement ellipsoids are drawn at 90% probability level.

Trisodium hexachloridodysprosate

Crystal data

Na₃DyCl₆ $M_r = 444.17$ Monoclinic, $P2_1/n$ Hall symbol: -p2yn a = 6.8791 (5) Å b = 7.2816 (5) Å c = 10.1734 (7) Å $\beta = 90.823$ (4)° V = 509.54 (6) Å³ Z = 2

Data collection

Nonius KappaCCD12026 measu
diffractometerRadiation source: fine-focus sealed tube1245 indeper
1124 reflectioGraphite monochromator $R_{int} = 0.071$
charge cpouled device scans $\theta_{max} = 28.1^{\circ}$,
Absorption correction: numerical $h = -9 \rightarrow 9$
 $K = -9 \rightarrow 9$
 $T_{min} = 0.218, T_{max} = 0.414$ $l = -13 \rightarrow 13$

F(000) = 402 $D_x = 2.895 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71069 Å Cell parameters from 8457 reflections $\theta = 3.4-28.1^{\circ}$ $\mu = 8.96 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.20 \times 0.15 \times 0.10 \text{ mm}$

12026 measured reflections 1245 independent reflections 1124 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 28.1^\circ, \ \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -13 \rightarrow 13$ Refinement

F^2	Secondary atom site location: difference Fourier
matrix: full	map
= 0.019	$w = 1/[\sigma^2(F_o^2) + (0.0199P)^2 + 0.2881P]$
5	where $P = (F_o^2 + 2F_c^2)/3$
	$(\Delta/\sigma)_{\rm max} < 0.001$
18	$\Delta ho_{ m max} = 0.84 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
	Extinction correction: SHELXL97 (Sheldrick,
site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
ods	Extinction coefficient: 0.0043 (5)
ns site location: structure-invariant ods	where $r = (r_0 + 2r_c)^{1/3}$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.84 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.05 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0043 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Na1	0.0000	0.0000	0.5000	0.0291 (4)	
Na2	0.5218 (2)	-0.0749 (2)	0.24225 (18)	0.0499 (4)	
Dy	0.0000	0.0000	0.0000	0.01593 (9)	
Cl1	0.13816 (12)	0.06522 (12)	0.23941 (8)	0.02834 (18)	
Cl2	-0.31489 (12)	0.17894 (12)	0.06382 (9)	0.0358 (2)	
C13	0.16836 (13)	0.30521 (11)	-0.07742 (9)	0.0358 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0323 (11)	0.0244 (10)	0.0303 (10)	-0.0038 (7)	-0.0033 (9)	0.0027 (7)
Na2	0.0462 (9)	0.0341 (9)	0.0694 (12)	-0.0069 (7)	0.0029 (8)	0.0033 (8)
Dy	0.01762 (12)	0.01512 (12)	0.01509 (12)	-0.00060 (6)	0.00126 (7)	-0.00138 (6)
Cl1	0.0334 (4)	0.0333 (4)	0.0182 (3)	0.0032 (3)	-0.0037 (3)	-0.0035 (3)
Cl2	0.0322 (4)	0.0323 (4)	0.0431 (5)	0.0149 (3)	0.0120 (4)	0.0090 (4)
Cl3	0.0350 (4)	0.0271 (4)	0.0450 (5)	-0.0123 (3)	-0.0069 (4)	0.0122 (4)

Geometric parameters (Å, °)

Na1—Cl2 ⁱ	2.7358 (8)	Na2—Dy ^{iv}	4.0608 (17)
Na1—Cl2 ⁱⁱ	2.7358 (8)	Na2—Na1 ^x	4.2126 (17)
Na1—Cl3 ⁱⁱⁱ	2.7902 (8)	Dy—Cl2	2.6176 (8)
Na1—Cl3 ^{iv}	2.7902 (8)	Dy—Cl2 ^{xii}	2.6176 (8)
Na1—Cl1	2.8687 (8)	Dy—Cl3	2.6320 (8)
Na1—Cl1 ^v	2.8687 (8)	Dy—Cl3 ^{xii}	2.6320 (8)

Na1—Na2 ^{vi}	3.9579 (18)	Dy—Cl1 ^{xii}	2.6447 (8)
Na1—Na2 ^{vii}	3.9580 (18)	Dy—Cl1	2.6447 (8)
Na1—Na2 ^{viii}	4.2126 (17)	Dy—Na2 ^{xiii}	4.0608 (17)
Na1—Na2 ^{ix}	4.2126 (17)	Dy—Na2 ^{vi}	4.0608 (17)
Na2—Cl1	2.8295 (19)	Cl1—Na2 ^{vi}	2.8492 (19)
Na2—Cl2 ^x	2.8341 (19)	Cl2—Na1 ^{xiv}	2.7358 (8)
Na2—Cl1 ^{iv}	2.8492 (19)	Cl2—Na2 ^{viii}	2.8342 (19)
Na2—Cl3 ⁱ	2.8612 (19)	Cl2—Na2 ^{vi}	3.325 (2)
Na2—Cl3 ^{xi}	3.204 (2)	C12—Na2	3.488 (2)
Na2—Cl2 ^{iv}	3.325 (2)	Cl3—Na1 ^{vi}	2.7902 (8)
Na2—Cl2	3.488 (2)	C13—Na2 ^{xv}	2.8611 (19)
Na2—Na1 ^{iv}	3.9580 (18)	C13—Na2 ^{xi}	3.204 (2)
Cl2 ⁱ —Na1—Cl2 ⁱⁱ	180.0	Cl3 ^{xi} —Na2—Na1 ^{iv}	44.32 (3)
Cl2 ⁱ —Na1—Cl3 ⁱⁱⁱ	90.49 (3)	Cl2 ^{iv} —Na2—Na1 ^{iv}	88.01 (4)
Cl2 ⁱⁱ —Na1—Cl3 ⁱⁱⁱ	89.51 (3)	Cl1—Na2—Dy ^{iv}	103.79 (5)
Cl2 ⁱ —Na1—Cl3 ^{iv}	89.51 (3)	Cl2 ^x —Na2—Dy ^{iv}	158.34 (6)
Cl2 ⁱⁱ —Na1—Cl3 ^{iv}	90.49 (3)	Cl1 ^{iv} —Na2—Dy ^{iv}	40.43 (3)
Cl3 ⁱⁱⁱ —Na1—Cl3 ^{iv}	180.0	Cl3 ⁱ —Na2—Dy ^{iv}	97.19 (5)
Cl2 ⁱ —Na1—Cl1	85.33 (3)	Cl3 ^{xi} —Na2—Dy ^{iv}	88.29 (4)
Cl2 ⁱⁱ —Na1—Cl1	94.67 (3)	Cl2 ^{iv} —Na2—Dy ^{iv}	39.98 (2)
Cl3 ⁱⁱⁱ —Na1—Cl1	86.30 (3)	Na1 ^{iv} —Na2—Dy ^{iv}	78.73 (3)
Cl3 ^{iv} —Na1—Cl1	93.71 (3)	Cl1—Na2—Na1 ^x	132.81 (6)
Cl2 ⁱ —Na1—Cl1 ^v	94.67 (3)	Cl2 ^x —Na2—Na1 ^x	90.06 (4)
Cl2 ⁱⁱ —Na1—Cl1 ^v	85.33 (3)	Cl1 ^{iv} —Na2—Na1 ^x	112.16 (5)
Cl3 ⁱⁱⁱ —Na1—Cl1 ^v	93.71 (3)	Cl3 ⁱ —Na2—Na1 ^x	41.17 (3)
Cl3 ^{iv} —Na1—Cl1 ^v	86.29 (3)	Cl3 ^{xi} —Na2—Na1 ^x	82.78 (4)
Cl1—Na1—Cl1 ^v	180.00 (3)	Cl2 ^{iv} —Na2—Na1 ^x	40.45 (2)
Cl2 ⁱ —Na1—Na2 ^{vi}	59.53 (3)	Na1 ^{iv} —Na2—Na1 ^x	120.74 (4)
Cl2 ⁱⁱ —Na1—Na2 ^{vi}	120.47 (3)	Dy ^{iv} —Na2—Na1 ^x	74.49 (3)
Cl3 ⁱⁱⁱ —Na1—Na2 ^{vi}	53.35 (3)	Cl2—Dy—Cl2 ^{xii}	180.0
Cl3 ^{iv} —Na1—Na2 ^{vi}	126.65 (3)	Cl2—Dy—Cl3	91.33 (3)
Cl1—Na1—Na2 ^{vi}	45.99 (3)	Cl2 ^{xii} —Dy—Cl3	88.67 (3)
Cl1v—Na1—Na2vi	134.01 (3)	Cl2—Dy—Cl3 ^{xii}	88.67 (3)
Cl2 ⁱ —Na1—Na2 ^{vii}	120.47 (3)	Cl2 ^{xii} —Dy—Cl3 ^{xii}	91.33 (3)
Cl2 ⁱⁱ —Na1—Na2 ^{vii}	59.53 (3)	Cl3—Dy—Cl3 ^{xii}	180.0
Cl3 ⁱⁱⁱ —Na1—Na2 ^{vii}	126.65 (3)	Cl2—Dy—Cl1 ^{xii}	91.73 (3)
Cl3 ^{iv} —Na1—Na2 ^{vii}	53.35 (3)	Cl2 ^{xii} —Dy—Cl1 ^{xii}	88.27 (3)
Cl1—Na1—Na2 ^{vii}	134.01 (3)	Cl3—Dy—Cl1 ^{xii}	91.71 (3)
Cl1v—Na1—Na2 ^{vii}	45.99 (3)	Cl3 ^{xii} —Dy—Cl1 ^{xii}	88.29 (3)
Na2 ^{vi} —Na1—Na2 ^{vii}	180.0	Cl2—Dy—Cl1	88.28 (3)
Cl2 ⁱ —Na1—Na2 ^{viii}	127.96 (3)	Cl2 ^{xii} —Dy—Cl1	91.72 (3)
Cl2 ⁱⁱ —Na1—Na2 ^{viii}	52.04 (3)	Cl3—Dy—Cl1	88.29 (3)
Cl3 ⁱⁱⁱ —Na1—Na2 ^{viii}	42.45 (3)	Cl3 ^{xii} —Dy—Cl1	91.71 (3)
Cl3 ^{iv} —Na1—Na2 ^{viii}	137.55 (3)	Cl1 ^{xii} —Dy—Cl1	180.00 (3)
Cl1—Na1—Na2 ^{viii}	73.28 (3)	Cl2—Dy—Na2 ^{xiii}	125.31 (3)
Cl1v—Na1—Na2 ^{viii}	106.72 (3)	Cl2 ^{xii} —Dy—Na2 ^{xiii}	54.69 (3)
Na2 ^{vi} —Na1—Na2 ^{viii}	72.02 (3)	Cl3—Dy—Na2 ^{xiii}	115.46 (3)

Na2 ^{vii} —Na1—Na2 ^{viii}	107.98 (3)	Cl3 ^{xii} —Dy—Na2 ^{xiii}	64.54 (3)
Cl2 ⁱ —Na1—Na2 ^{ix}	52.04 (3)	Cl1 ^{xii} —Dy—Na2 ^{xiii}	44.32 (3)
Cl2 ⁱⁱ —Na1—Na2 ^{ix}	127.96 (3)	Cl1—Dy—Na2 ^{xiii}	135.68 (3)
Cl3 ⁱⁱⁱ —Na1—Na2 ^{ix}	137.55 (3)	Cl2—Dy—Na2 ^{vi}	54.69 (3)
Cl3 ^{iv} —Na1—Na2 ^{ix}	42.45 (3)	Cl2 ^{xii} —Dy—Na2 ^{vi}	125.31 (3)
Cl1—Na1—Na2 ^{ix}	106.72 (3)	Cl3—Dy—Na2 ^{vi}	64.54 (3)
Cl1 ^v —Na1—Na2 ^{ix}	73.28 (3)	Cl3 ^{xii} —Dy—Na2 ^{vi}	115.46 (3)
Na2 ^{vi} —Na1—Na2 ^{ix}	107.98 (3)	Cl1 ^{xii} —Dy—Na2 ^{vi}	135.68 (3)
Na2 ^{vii} —Na1—Na2 ^{ix}	72.02 (3)	Cl1—Dy—Na2 ^{vi}	44.32 (3)
Na2 ^{viii} —Na1—Na2 ^{ix}	180.0	Na2 ^{xiii} —Dy—Na2 ^{vi}	180.0
Cl1—Na2—Cl2 ^x	97.84 (6)	Dy—Cl1—Na2	105.51 (5)
Cl1—Na2—Cl1 ^{iv}	88.35 (5)	Dy—Cl1—Na2 ^{vi}	95.24 (4)
Cl2 ^x —Na2—Cl1 ^{iv}	143.02 (7)	Na2—Cl1—Na2 ^{vi}	133.80 (6)
Cl1—Na2—Cl3 ⁱ	94.53 (6)	Dy—Cl1—Na1	134.58 (3)
Cl2 ^x —Na2—Cl3 ⁱ	79.84 (5)	Na2—Cl1—Na1	104.61 (4)
Cl1 ^{iv} —Na2—Cl3 ⁱ	136.23 (7)	Na2 ^{vi} —Cl1—Na1	87.61 (4)
Cl1—Na2—Cl3 ^{xi}	144.16 (7)	Dy-Cl2-Na1xiv	138.63 (3)
Cl2 ^x —Na2—Cl3 ^{xi}	74.54 (5)	Dy—Cl2—Na2 ^{viii}	99.86 (4)
Cl1 ^{iv} —Na2—Cl3 ^{xi}	79.25 (5)	Na1 ^{xiv} —Cl2—Na2 ^{viii}	121.47 (5)
Cl3 ⁱ —Na2—Cl3 ^{xi}	117.64 (5)	Dy—Cl2—Na2 ^{vi}	85.33 (4)
Cl1—Na2—Cl2 ^{iv}	139.29 (7)	Na1 ^{xiv} —Cl2—Na2 ^{vi}	87.50 (4)
Cl2 ^x —Na2—Cl2 ^{iv}	119.28 (5)	Na2 ^{viii} —Cl2—Na2 ^{vi}	102.36 (4)
Cl1 ^{iv} —Na2—Cl2 ^{iv}	72.36 (4)	Dy—Cl3—Na1 ^{vi}	134.93 (3)
Cl3 ⁱ —Na2—Cl2 ^{iv}	77.55 (4)	Dy—Cl3—Na2 ^{xv}	128.25 (5)
Cl3 ^{xi} —Na2—Cl2 ^{iv}	68.06 (4)	Na1 ^{vi} —Cl3—Na2 ^{xv}	96.38 (4)
Cl1—Na2—Na1 ^{iv}	104.40 (5)	Dy—Cl3—Na2 ^{xi}	90.78 (4)
Cl2 ^x —Na2—Na1 ^{iv}	97.07 (5)	Na1 ^{vi} —Cl3—Na2 ^{xi}	82.33 (4)
Cl1 ^{iv} —Na2—Na1 ^{iv}	46.40 (3)	Na2 ^{xv} —Cl3—Na2 ^{xi}	104.74 (4)
$Cl3^{i}$ —Na2—Na1 ^{iv}	161.07 (6)		

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) -x-1/2, y-1/2, -z+1/2; (iii) x-1/2, -y+1/2, z+1/2; (iv) -x+1/2, y-1/2, -z+1/2; (v) -x, -y, -z+1; (v) -x+1/2, y+1/2, -z+1/2; (vii) x-1/2, -y-1/2, z+1/2; (viii) x-1/2, -y-1/2, z-1/2; (viii) x-1/2, -y-1/2, -y-1/2, -y-1/2, -y-1/2, -y-1/2, -y-1/2; (viii) x-1/2, -y-1/2, -y-1/2, -y-1/2, -y-1/2; (viii) x-1/2, -y-1/2, -y-1/2; (viii) x-1/2, -y-1/2, -y-1/2; (viii) -x-1/2; (viii) -x-1/2; (viii) -x-1/2; (vii) -x-1/2; (viii) -x-1/2; (vii) -x-1/2; (vii)