inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na3DyCl6

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

(Received 6 April 2011; accepted 18 April 2011; online 29 April 2011)

Single crystals of the title compound, tris­odium hexa­chloridodysprosate, Na3DyCl6, were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na3AlF6) and the high-temperature structure of the Na3MCl6 series, with M = Eu–Lu, Y and Sc. The isolated, almost perfect [DyCl6]3− octa­hedra are inter­connected via two crystallographically different Na+ cations: while one Na+ resides on centres of symmetry (as well as Dy3+) and also builds almost perfect, isolated [NaCl6]5− octa­hedra, the other Na+ is surrounded by seven chloride anions forming a distorted [NaCl7]6− trigonal prism with just one cap as close secondary contact.

Related literature

The first structural descriptions of the Na3MCl6 series (M = Eu–Lu, Y and Sc) on a single crystal in the cryolite-type structure (Hawthorne &, Ferguson, 1975[Hawthorne, F. C. & Ferguson, R. B. (1975). Can. Mineral. 13, 377-382.]) were given for M = Er by Meyer et al. (1987[Meyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25-33.]), for M = Ho by Böcker et al. (2001[Böcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 19.]) and for M = Y by Liao & Dronskowski (2004[Liao, W. & Dronskowski, R. (2004). Acta Cryst. E60, i72-i73.]). For the correlation between the two temperature-dependent phases, see: Meyer (1984[Meyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191-197.]); Meyer et al. (1987[Meyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25-33.]); Wickleder & Meyer (1995[Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457-463.]). For a planned synthesis of Dy2NCl3, compare with those for Gd2NCl3 (Schwanitz-Schüller & Simon, 1985[Schwanitz-Schüller, U. & Simon, A. (1985). Z. Naturforsch. Teil B, 40, 279-283.]) and Y2NCl3 (Meyer et al., 1989[Meyer, H.-J., Jones, N. L. & Corbett, J. D. (1989). Inorg. Chem. 28, 2635-2637.]).

Experimental

Crystal data
  • Na3DyCl6

  • Mr = 444.17

  • Monoclinic, P 21 /n

  • a = 6.8791 (5) Å

  • b = 7.2816 (5) Å

  • c = 10.1734 (7) Å

  • β = 90.823 (4)°

  • V = 509.54 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.96 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Nonius Kappa-CCD diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.218, Tmax = 0.414

  • 12026 measured reflections

  • 1245 independent reflections

  • 1124 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.045

  • S = 1.08

  • 1245 reflections

  • 50 parameters

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Selected bond lengths (Å)

Na1—Cl2i 2.7358 (8)
Na1—Cl3iii 2.7902 (8)
Na1—Cl1 2.8687 (8)
Na2—Cl1 2.8295 (19)
Na2—Cl2vi 2.8341 (19)
Na2—Cl1iv 2.8492 (19)
Na2—Cl3i 2.8612 (19)
Na2—Cl3vii 3.204 (2)
Na2—Cl2iv 3.325 (2)
Na2—Cl2 3.488 (2)
Dy—Cl2 2.6176 (8)
Dy—Cl3 2.6320 (8)
Dy—Cl1viii 2.6447 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) -x+1, -y, -z; (viii) -x, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Trisodiumhexachlorodysprosate(III) belongs to a group of ternary chlorides Na3MCl6 with M = Eu – Lu, Y and Sc (Meyer et al., 1987), which crystallize in the cryolite-type structure (Hawthorne et al., 1975). The Dy3+ and (Na1)+ occupy the 2a and 2b Wyckoff positions at centres of symmetry, whereas the three crystallographically different chloride anions and (Na2)+ reside at the 4e position with the site symmetry 1. A l l cations have six primary contacts to Cl-, but the [(Na2)Cl6]5- polyhedron can not only be described as distorted trigonal prism instead of the usual octahedra that are realised for [DyCl6]3- and [(Na1)Cl6]5-, it moreover carries a seventh capping Cl- anion. The isolated [DyCl6]3- octahedra are interconnected to a three-dimensional texture via sodium cations (Fig. 1). This structure represents the high-temperature phase of the Na3MCl6 series with M = Eu – Lu, Y and Sc. The transition into the low-temperature phase with its trigonal structure (Meyer, 1984) depends on the radius of the actual lanthanoid(III) cation (Wickleder et al., 1995) and is estimated for M = Dy at around 290 K, hence not far below the temperature of the measurement.

Related literature top

The first structural descriptions of the Na3MCl6 series (Eu–Lu, Y and Sc) on a single crystal in the cryolite-type structure (Hawthorne et al., 1975) were given for M = Er by Meyer et al. (1987), for M = Ho by Böcker et al. (2001) and for M = Y by Liao et al. (2004). For the correlation between the two temperature-dependent phases, see: Meyer (1984); Meyer et al. (1987); Wickleder et al. (1995).

For related literature, see: Meyer et al. (1989); Schwanitz-Schüller & Simon (1985).

Experimental top

Colourless and transparent single crystals of Na3DyCl6 were obtained as by-product from the reaction of sodium azide (NaN3), dysprosium metal (Dy) and its the corresponding trichloride (DyCl3) in presence of sodium chloride (NaCl) as flux, originally designed to produce Dy2NCl3 in analogy to Gd2NCl3 (Schwanitz-Schüller et al., 1985) and Y2NCl3 (Meyer et al., 1989) instead. The reaction mixture was placed into a torch- sealed evacuated fused-silica vessel, which was heated at 1143 K for seven days, followed by cooling to room temperature within one day.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of cryolite-type Na3DyCl6. Displacement ellipsoids are drawn at 90% probability level.
Trisodium hexachloridodysprosate top
Crystal data top
Na3DyCl6F(000) = 402
Mr = 444.17Dx = 2.895 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -p2ynCell parameters from 8457 reflections
a = 6.8791 (5) Åθ = 3.4–28.1°
b = 7.2816 (5) ŵ = 8.96 mm1
c = 10.1734 (7) ÅT = 293 K
β = 90.823 (4)°Block, colourless
V = 509.54 (6) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1245 independent reflections
Radiation source: fine-focus sealed tube1124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
charge cpouled device scansθmax = 28.1°, θmin = 3.4°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie 1999)
h = 99
Tmin = 0.218, Tmax = 0.414k = 99
12026 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0199P)2 + 0.2881P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.84 e Å3
1245 reflectionsΔρmin = 1.05 e Å3
50 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (5)
Crystal data top
Na3DyCl6V = 509.54 (6) Å3
Mr = 444.17Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.8791 (5) ŵ = 8.96 mm1
b = 7.2816 (5) ÅT = 293 K
c = 10.1734 (7) Å0.20 × 0.15 × 0.10 mm
β = 90.823 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1245 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie 1999)
1124 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.414Rint = 0.071
12026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01950 parameters
wR(F2) = 0.0450 restraints
S = 1.08Δρmax = 0.84 e Å3
1245 reflectionsΔρmin = 1.05 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.00000.00000.50000.0291 (4)
Na20.5218 (2)0.0749 (2)0.24225 (18)0.0499 (4)
Dy0.00000.00000.00000.01593 (9)
Cl10.13816 (12)0.06522 (12)0.23941 (8)0.02834 (18)
Cl20.31489 (12)0.17894 (12)0.06382 (9)0.0358 (2)
Cl30.16836 (13)0.30521 (11)0.07742 (9)0.0358 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0323 (11)0.0244 (10)0.0303 (10)0.0038 (7)0.0033 (9)0.0027 (7)
Na20.0462 (9)0.0341 (9)0.0694 (12)0.0069 (7)0.0029 (8)0.0033 (8)
Dy0.01762 (12)0.01512 (12)0.01509 (12)0.00060 (6)0.00126 (7)0.00138 (6)
Cl10.0334 (4)0.0333 (4)0.0182 (3)0.0032 (3)0.0037 (3)0.0035 (3)
Cl20.0322 (4)0.0323 (4)0.0431 (5)0.0149 (3)0.0120 (4)0.0090 (4)
Cl30.0350 (4)0.0271 (4)0.0450 (5)0.0123 (3)0.0069 (4)0.0122 (4)
Geometric parameters (Å, º) top
Na1—Cl2i2.7358 (8)Na2—Dyiv4.0608 (17)
Na1—Cl2ii2.7358 (8)Na2—Na1x4.2126 (17)
Na1—Cl3iii2.7902 (8)Dy—Cl22.6176 (8)
Na1—Cl3iv2.7902 (8)Dy—Cl2xii2.6176 (8)
Na1—Cl12.8687 (8)Dy—Cl32.6320 (8)
Na1—Cl1v2.8687 (8)Dy—Cl3xii2.6320 (8)
Na1—Na2vi3.9579 (18)Dy—Cl1xii2.6447 (8)
Na1—Na2vii3.9580 (18)Dy—Cl12.6447 (8)
Na1—Na2viii4.2126 (17)Dy—Na2xiii4.0608 (17)
Na1—Na2ix4.2126 (17)Dy—Na2vi4.0608 (17)
Na2—Cl12.8295 (19)Cl1—Na2vi2.8492 (19)
Na2—Cl2x2.8341 (19)Cl2—Na1xiv2.7358 (8)
Na2—Cl1iv2.8492 (19)Cl2—Na2viii2.8342 (19)
Na2—Cl3i2.8612 (19)Cl2—Na2vi3.325 (2)
Na2—Cl3xi3.204 (2)Cl2—Na23.488 (2)
Na2—Cl2iv3.325 (2)Cl3—Na1vi2.7902 (8)
Na2—Cl23.488 (2)Cl3—Na2xv2.8611 (19)
Na2—Na1iv3.9580 (18)Cl3—Na2xi3.204 (2)
Cl2i—Na1—Cl2ii180.0Cl3xi—Na2—Na1iv44.32 (3)
Cl2i—Na1—Cl3iii90.49 (3)Cl2iv—Na2—Na1iv88.01 (4)
Cl2ii—Na1—Cl3iii89.51 (3)Cl1—Na2—Dyiv103.79 (5)
Cl2i—Na1—Cl3iv89.51 (3)Cl2x—Na2—Dyiv158.34 (6)
Cl2ii—Na1—Cl3iv90.49 (3)Cl1iv—Na2—Dyiv40.43 (3)
Cl3iii—Na1—Cl3iv180.0Cl3i—Na2—Dyiv97.19 (5)
Cl2i—Na1—Cl185.33 (3)Cl3xi—Na2—Dyiv88.29 (4)
Cl2ii—Na1—Cl194.67 (3)Cl2iv—Na2—Dyiv39.98 (2)
Cl3iii—Na1—Cl186.30 (3)Na1iv—Na2—Dyiv78.73 (3)
Cl3iv—Na1—Cl193.71 (3)Cl1—Na2—Na1x132.81 (6)
Cl2i—Na1—Cl1v94.67 (3)Cl2x—Na2—Na1x90.06 (4)
Cl2ii—Na1—Cl1v85.33 (3)Cl1iv—Na2—Na1x112.16 (5)
Cl3iii—Na1—Cl1v93.71 (3)Cl3i—Na2—Na1x41.17 (3)
Cl3iv—Na1—Cl1v86.29 (3)Cl3xi—Na2—Na1x82.78 (4)
Cl1—Na1—Cl1v180.00 (3)Cl2iv—Na2—Na1x40.45 (2)
Cl2i—Na1—Na2vi59.53 (3)Na1iv—Na2—Na1x120.74 (4)
Cl2ii—Na1—Na2vi120.47 (3)Dyiv—Na2—Na1x74.49 (3)
Cl3iii—Na1—Na2vi53.35 (3)Cl2—Dy—Cl2xii180.0
Cl3iv—Na1—Na2vi126.65 (3)Cl2—Dy—Cl391.33 (3)
Cl1—Na1—Na2vi45.99 (3)Cl2xii—Dy—Cl388.67 (3)
Cl1v—Na1—Na2vi134.01 (3)Cl2—Dy—Cl3xii88.67 (3)
Cl2i—Na1—Na2vii120.47 (3)Cl2xii—Dy—Cl3xii91.33 (3)
Cl2ii—Na1—Na2vii59.53 (3)Cl3—Dy—Cl3xii180.0
Cl3iii—Na1—Na2vii126.65 (3)Cl2—Dy—Cl1xii91.73 (3)
Cl3iv—Na1—Na2vii53.35 (3)Cl2xii—Dy—Cl1xii88.27 (3)
Cl1—Na1—Na2vii134.01 (3)Cl3—Dy—Cl1xii91.71 (3)
Cl1v—Na1—Na2vii45.99 (3)Cl3xii—Dy—Cl1xii88.29 (3)
Na2vi—Na1—Na2vii180.0Cl2—Dy—Cl188.28 (3)
Cl2i—Na1—Na2viii127.96 (3)Cl2xii—Dy—Cl191.72 (3)
Cl2ii—Na1—Na2viii52.04 (3)Cl3—Dy—Cl188.29 (3)
Cl3iii—Na1—Na2viii42.45 (3)Cl3xii—Dy—Cl191.71 (3)
Cl3iv—Na1—Na2viii137.55 (3)Cl1xii—Dy—Cl1180.00 (3)
Cl1—Na1—Na2viii73.28 (3)Cl2—Dy—Na2xiii125.31 (3)
Cl1v—Na1—Na2viii106.72 (3)Cl2xii—Dy—Na2xiii54.69 (3)
Na2vi—Na1—Na2viii72.02 (3)Cl3—Dy—Na2xiii115.46 (3)
Na2vii—Na1—Na2viii107.98 (3)Cl3xii—Dy—Na2xiii64.54 (3)
Cl2i—Na1—Na2ix52.04 (3)Cl1xii—Dy—Na2xiii44.32 (3)
Cl2ii—Na1—Na2ix127.96 (3)Cl1—Dy—Na2xiii135.68 (3)
Cl3iii—Na1—Na2ix137.55 (3)Cl2—Dy—Na2vi54.69 (3)
Cl3iv—Na1—Na2ix42.45 (3)Cl2xii—Dy—Na2vi125.31 (3)
Cl1—Na1—Na2ix106.72 (3)Cl3—Dy—Na2vi64.54 (3)
Cl1v—Na1—Na2ix73.28 (3)Cl3xii—Dy—Na2vi115.46 (3)
Na2vi—Na1—Na2ix107.98 (3)Cl1xii—Dy—Na2vi135.68 (3)
Na2vii—Na1—Na2ix72.02 (3)Cl1—Dy—Na2vi44.32 (3)
Na2viii—Na1—Na2ix180.0Na2xiii—Dy—Na2vi180.0
Cl1—Na2—Cl2x97.84 (6)Dy—Cl1—Na2105.51 (5)
Cl1—Na2—Cl1iv88.35 (5)Dy—Cl1—Na2vi95.24 (4)
Cl2x—Na2—Cl1iv143.02 (7)Na2—Cl1—Na2vi133.80 (6)
Cl1—Na2—Cl3i94.53 (6)Dy—Cl1—Na1134.58 (3)
Cl2x—Na2—Cl3i79.84 (5)Na2—Cl1—Na1104.61 (4)
Cl1iv—Na2—Cl3i136.23 (7)Na2vi—Cl1—Na187.61 (4)
Cl1—Na2—Cl3xi144.16 (7)Dy—Cl2—Na1xiv138.63 (3)
Cl2x—Na2—Cl3xi74.54 (5)Dy—Cl2—Na2viii99.86 (4)
Cl1iv—Na2—Cl3xi79.25 (5)Na1xiv—Cl2—Na2viii121.47 (5)
Cl3i—Na2—Cl3xi117.64 (5)Dy—Cl2—Na2vi85.33 (4)
Cl1—Na2—Cl2iv139.29 (7)Na1xiv—Cl2—Na2vi87.50 (4)
Cl2x—Na2—Cl2iv119.28 (5)Na2viii—Cl2—Na2vi102.36 (4)
Cl1iv—Na2—Cl2iv72.36 (4)Dy—Cl3—Na1vi134.93 (3)
Cl3i—Na2—Cl2iv77.55 (4)Dy—Cl3—Na2xv128.25 (5)
Cl3xi—Na2—Cl2iv68.06 (4)Na1vi—Cl3—Na2xv96.38 (4)
Cl1—Na2—Na1iv104.40 (5)Dy—Cl3—Na2xi90.78 (4)
Cl2x—Na2—Na1iv97.07 (5)Na1vi—Cl3—Na2xi82.33 (4)
Cl1iv—Na2—Na1iv46.40 (3)Na2xv—Cl3—Na2xi104.74 (4)
Cl3i—Na2—Na1iv161.07 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y1/2, z+1/2; (viii) x1, y, z; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y, z; (xii) x, y, z; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y+1/2, z+1/2; (xv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaNa3DyCl6
Mr444.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.8791 (5), 7.2816 (5), 10.1734 (7)
β (°) 90.823 (4)
V3)509.54 (6)
Z2
Radiation typeMo Kα
µ (mm1)8.96
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie 1999)
Tmin, Tmax0.218, 0.414
No. of measured, independent and
observed [I > 2σ(I)] reflections
12026, 1245, 1124
Rint0.071
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.045, 1.08
No. of reflections1245
No. of parameters50
Δρmax, Δρmin (e Å3)0.84, 1.05

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Na1—Cl2i2.7358 (8)Na2—Cl3vii3.204 (2)
Na1—Cl2ii2.7358 (8)Na2—Cl2iv3.325 (2)
Na1—Cl3iii2.7902 (8)Na2—Cl23.488 (2)
Na1—Cl3iv2.7902 (8)Dy—Cl22.6176 (8)
Na1—Cl12.8687 (8)Dy—Cl2viii2.6176 (8)
Na1—Cl1v2.8687 (8)Dy—Cl32.6320 (8)
Na2—Cl12.8295 (19)Dy—Cl3viii2.6320 (8)
Na2—Cl2vi2.8341 (19)Dy—Cl1viii2.6447 (8)
Na2—Cl1iv2.8492 (19)Dy—Cl12.6447 (8)
Na2—Cl3i2.8612 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z; (viii) x, y, z.
 

Acknowledgements

This work was supported by the German Research Foundation (DFG, Frankfurt/Main) within the funding programme Open Access Publishing and the State of Baden-Württemberg (Stuttgart). The authors thank Dr Sabine Strobel for the data collection.

References

First citationBöcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 19.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHawthorne, F. C. & Ferguson, R. B. (1975). Can. Mineral. 13, 377–382.  Google Scholar
First citationLiao, W. & Dronskowski, R. (2004). Acta Cryst. E60, i72–i73.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMeyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191–197.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G., Ax, P., Schleid, Th. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25–33.  CrossRef CAS Google Scholar
First citationMeyer, H.-J., Jones, N. L. & Corbett, J. D. (1989). Inorg. Chem. 28, 2635–2637.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchwanitz-Schüller, U. & Simon, A. (1985). Z. Naturforsch. Teil B, 40, 279–283.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457–463.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds