organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Absolute configuration of 3β -acetoxyolean-11,12-aziridin-28,13- β -olide

Wen Nee Tan,^a Keng Chong Wong,^a Melati Khairuddean,^a Madhukar Hemamalini^b and Hoong-Kun Fun^b*‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 8 April 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.087; data-to-parameter ratio = 9.0.

The title compound, $C_{32}H_{49}NO_4$, has been isolated from the dichloromethane extract of the stem bark of *Garcinia atroviridis* Griff. ex T. Anders. Rings *A* and *B*, *B* and *C*, and *C* and *D* are *trans*-fused, whereas rings *D* and *E* are *cis*-fused. Rings *A*, *B*, *C* and *E* have slightly distorted chair conformations, while ring *D* is most heavily distorted towards a half-chair conformation owing to the strain induced by the lactonization. The ester group attached to ring *A* is in an equatorial position.

Related literature

For details and applications of *Garcinia atroviridis* Griff. ex T. Anders, see: Permana *et al.* (2001); Amran *et al.* (2009). For bond-length data, see: Allen *et al.* (1987). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $C_{32}H_{49}NO_4$ $M_r = 511.72$ Monoclinic, C2 a = 13.0197 (2) Å b = 6.7460 (1) Å c = 32.0674 (5) Å $\beta = 100.6452$ (4)°

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.659$, $T_{max} = 0.917$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.087$ S = 1.023061 reflections 342 parameters 1 restraint $V = 2768.04 (7) \text{ Å}^{3}$ Z = 4 Cu K\alpha radiation $\mu = 0.62 \text{ mm}^{-1}$ T = 100 K 0.73 × 0.15 × 0.14 mm

8407 measured reflections 3061 independent reflections 3050 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$

H-atom parameters constrained $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 721 Friedel pairs Flack parameter: 0.1 (2)

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

TWN, WKC and MK wish to acknowledge the research grant RU1001/PKIMIA/811129 provided by the Universiti Sains Malaysia, Penang, that has resulted in this article. TWN would like to thank USM for the award of a postgraduate fellowship. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2699).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Amran, A. A., Zaiton, Z., Faizah, O. & Morat, P. (2009). Singapore Med. J. 50, 295–299.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Permana, D., Lajis, N. H., Mackeen, M. M., Ali, A. M., Aimi, N., Kitajima, M. & Takayama, H. (2001). J. Nat. Prod. 64, 976–979.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

‡ Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2011). E67, o1220 [doi:10.1107/S1600536811014875]

Absolute configuration of 3β -acetoxyolean-11,12-aziridin-28,13- β -olide

Wen Nee Tan, Keng Chong Wong, Melati Khairuddean, Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Garcinia atroviridis Griff. ex T. Anders. (Clusiaceae) is a medium-sized fruit tree which may be found growing wild or cultivated throughout Peninsular Malaysia (Permana *et al.*, 2001). In folkloric medicine, it has been used as a postpartum medication agent as well as an agent to treat earache, throat irritation, cough, dandruff and some stomachache associated with pregnancy (Amran *et al.*, 2009). In our research on this plant, the stem bark extracts of *G. atroviridis* were examined. The title compound (I), 3β -acetoxyolean-11,12-aziridin-28,13- β -olide, has been isolated from the dichloromethane extract.

The title molecule presented in Fig. 1 contains five six-membered rings, namely, *A* (C15–C20), *B* (C14/C15/C20–C23), *C* (C9/C8/C12–C14/C23), *D* (C2/C7–C11) and *E* (C2–C7). The ester group attached to ring *A* is in an equatorial position. The bond distances (Allen *et al.*, 1987) and angles in (I) are as expected. Rings *A/B*, *B/C* and *C/D* are trans-fused, whereas rings *D/E* are cis-fused. Rings *A*, *B*, *C* and *E* have slightly distorted chair conformations, ring *D* being most heavily distorted towards a half-chair conformation due to the strain induced by the lactonization, as shown by the Cremer & Pople, (1975) parameters: [ring *A*: Q = 0.572 (2) Å, $\theta = 175.5$ (2)° and $\varphi = 325$ (3)°; *B*: Q = 0.584 (2) Å, $\theta = 11.6$ (2)° and f = 118.6 (10)°; *C*: Q = 0.574 (2) Å, $\theta = 46.9$ (2)° and $\varphi = 111.4$ (3)°; *D*: Q = 0.629 (2) Å, $\theta = 166.06$ (18)° and f = 236.5 (8); *E*: Q = 0.571 (2) Å, $\theta = 3.8$ (2)° and f = 202 (4)°]. The absolute configurations of the natural product molecule were determined by the refinement of the Flack parameter to 0.1 (2). There are eleven chiral centres in the molecule. From the structure presented, these centers exhibit the following chiralities: C2 = S, C7 = R, C8 = S, C9 = S, C12 = S, C13 = S, C14 = R, C15 = S, C18 = S, C20 = R and C23 = R. There are no classical hydrogen bond, weak interaction, *Cg*–*Cg* and C—H···*π* interactions in the crystal packing.

S2. Experimental

Air-dried stem bark of *G. atroviridis* was ground and sequentially extracted in a Soxhlet apparatus with hexane, dichloromethane and methanol. The dichloromethane extract after concentration was subjected to silica gel column chromatography using a hexane-chloroform-ethylacetate-methanol gradient to afford 58 fractions (D1–D58). Fraction D8 was further fractionated with hexane-ethyl acetate gradient as the eluting solvent, to afford 25 sub-fractions (D8a–D8y). The solid from fractions D8c–D8d was recrystallized from ethanol to yield the title compound (m.p. 581–583 K) as a colourless crystalline solid.

S3. Refinement

All hydrogen atoms were positioned geometrically (N—H = 0.88 Å and C—H = 0.98–1.0 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. 721 Friedel pairs were used to determine the absolute configuration.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms omitted for clarity.

3β-acetoxyolean-11,12-aziridin-28,13-β-olide

Crystal data

C₃₂H₄₉NO₄ $M_r = 511.72$ Monoclinic, C2 Hall symbol: C 2y a = 13.0197 (2) Å b = 6.7460 (1) Å c = 32.0674 (5) Å $\beta = 100.6452$ (4)° V = 2768.04 (7) Å³ Z = 4

Data collection

Bruker SMART APEX DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.659, T_{\max} = 0.917$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.087$ S = 1.023061 reflections 342 parameters F(000) = 1120 $D_x = 1.228 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8407 reflections $\theta = 4.2-62.5^{\circ}$ $\mu = 0.62 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.73 \times 0.15 \times 0.14 \text{ mm}$

8407 measured reflections 3061 independent reflections 3050 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 62.5^\circ, \ \theta_{min} = 4.2^\circ$ $h = -14 \rightarrow 14$ $k = -7 \rightarrow 5$ $l = -36 \rightarrow 36$

 restraint
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 1.724P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$

Special details

 $\Delta \rho_{\min} = -0.37 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 721 Friedel pairs Absolute structure parameter: 0.1 (2)

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.32106 (11)	-0.0737 (2)	0.17064 (4)	0.0246 (3)	
O2	0.62607 (11)	0.4500 (2)	0.44068 (4)	0.0270 (4)	
O3	0.67821 (13)	0.7573 (3)	0.42805 (4)	0.0378 (4)	
O4	0.19103 (13)	-0.2023 (3)	0.12291 (5)	0.0355 (4)	
N1	0.55624 (13)	0.2185 (4)	0.21012 (6)	0.0339 (5)	
H1	0.5937	0.3172	0.2030	0.041*	
C1	0.24506 (16)	-0.0616 (4)	0.13528 (6)	0.0246 (5)	
C2	0.24394 (14)	0.1455 (3)	0.11795 (6)	0.0205 (4)	
C3	0.21283 (15)	0.1641 (4)	0.06963 (6)	0.0218 (4)	
H3A	0.1363	0.1478	0.0611	0.026*	
H3B	0.2472	0.0582	0.0558	0.026*	
C4	0.24546 (15)	0.3678 (4)	0.05499 (6)	0.0243 (5)	
H4A	0.2039	0.4715	0.0661	0.029*	
H4B	0.2283	0.3734	0.0236	0.029*	
C5	0.36277 (16)	0.4152 (4)	0.06945 (6)	0.0256 (5)	
C6	0.39041 (15)	0.4014 (4)	0.11863 (6)	0.0234 (5)	
H6A	0.4663	0.4229	0.1283	0.028*	
H6B	0.3525	0.5055	0.1314	0.028*	
C7	0.36000 (15)	0.1978 (3)	0.13284 (6)	0.0196 (4)	
H7A	0.3993	0.1012	0.1181	0.023*	
C8	0.37372 (15)	0.1226 (3)	0.17907 (6)	0.0197 (4)	
C9	0.31546 (14)	0.2417 (3)	0.20917 (5)	0.0169 (4)	
C10	0.19759 (14)	0.2301 (4)	0.19046 (5)	0.0217 (4)	
H10A	0.1599	0.3287	0.2049	0.026*	
H10B	0.1713	0.0969	0.1961	0.026*	
C11	0.17391 (14)	0.2695 (4)	0.14213 (5)	0.0214 (4)	
H11A	0.1845	0.4120	0.1369	0.026*	
H11B	0.0997	0.2377	0.1309	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.48492 (15)	0.0697 (4)	0.19851 (6)	0.0282 (5)
H12A	0.5131	-0.0480	0.1854	0.034*
C13	0.52441 (15)	0.0924 (4)	0.24330 (6)	0.0304 (6)
H13A	0.5763	-0.0087	0.2568	0.036*
C14	0.46077 (14)	0.1942 (3)	0.27216 (5)	0.0184 (4)
H14A	0.4692	0.3391	0.2672	0.022*
C15	0.50418 (14)	0.1640 (3)	0.32060 (6)	0.0194 (4)
C16	0.61602 (14)	0.2523 (4)	0.32994 (6)	0.0234 (5)
H16A	0.6639	0.1625	0.3183	0.028*
H16B	0.6158	0.3814	0.3153	0.028*
C17	0.65743 (15)	0.2823 (4)	0.37752 (6)	0.0243 (5)
H17A	0.6627	0.1528	0.3923	0.029*
H17B	0.7280	0.3423	0.3818	0.029*
C18	0.58362 (15)	0.4169 (3)	0.39561 (5)	0.0230 (5)
H18A	0.5801	0.5472	0.3805	0.028*
C19	0.47224 (15)	0.3357 (3)	0.39178 (6)	0.0222 (5)
C20	0.43358 (14)	0.2950 (3)	0.34356 (5)	0.0192 (4)
H20A	0.4339	0.4281	0.3299	0.023*
C21	0.31921 (14)	0.2264 (4)	0.33240 (5)	0.0218 (4)
H21A	0.3146	0.0843	0.3396	0.026*
H21B	0.2765	0.3026	0.3493	0.026*
C22	0.27630 (14)	0.2569 (4)	0.28508 (5)	0.0217 (4)
H22A	0.2741	0.4007	0.2788	0.026*
H22B	0.2038	0.2061	0.2785	0.026*
C23	0.34200 (14)	0.1521 (3)	0.25602 (6)	0.0183 (4)
C24	0.66861 (15)	0.6269 (3)	0.45241 (6)	0.0240 (5)
C25	0.7020 (2)	0.6407 (4)	0.49973 (7)	0.0368 (6)
H25A	0.6668	0.7533	0.5104	0.055*
H25B	0.7778	0.6598	0.5068	0.055*
H25C	0.6831	0.5182	0.5129	0.055*
C26	0.43081 (16)	0.2772 (4)	0.04793 (6)	0.0336 (6)
H26A	0.5047	0.3078	0.0582	0.050*
H26B	0.4140	0.2964	0.0171	0.050*
H26C	0.4171	0.1391	0.0547	0.050*
C27	0.38219 (18)	0.6281 (4)	0.05690 (6)	0.0342 (6)
H27A	0.4548	0.6647	0.0684	0.051*
H27B	0.3349	0.7174	0.0684	0.051*
H27C	0.3693	0.6391	0.0259	0.051*
C28	0.34752 (16)	0.4625 (3)	0.20954 (6)	0.0227 (5)
H28A	0.3000	0.5337	0.1873	0.034*
H28B	0.4192	0.4731	0.2043	0.034*
H28C	0.3438	0.5205	0.2372	0.034*
C29	0.51138 (16)	-0.0556 (4)	0.33404 (6)	0.0255 (5)
H29A	0.5653	-0.0711	0.3595	0.038*
H29B	0.5296	-0.1362	0.3110	0.038*
H29C	0.4438	-0.0992	0.3401	0.038*
C30	0.40528 (17)	0.5014 (4)	0.40603 (6)	0.0296 (5)
H30A	0.4392	0.5506	0.4339	0.044*

H30B	0.3360	0.4490	0.4078	0.044*	
H30C	0.3980	0.6101	0.3854	0.044*	
C31	0.46755 (16)	0.1551 (4)	0.42054 (6)	0.0270 (5)	
H31A	0.4845	0.1964	0.4503	0.040*	
H31B	0.5181	0.0554	0.4150	0.040*	
H31C	0.3971	0.0984	0.4146	0.040*	
C32	0.31756 (17)	-0.0706 (3)	0.25724 (6)	0.0246 (5)	
H32A	0.3163	-0.1105	0.2865	0.037*	
H32B	0.3716	-0.1460	0.2465	0.037*	
H32C	0.2493	-0.0971	0.2395	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0363 (8)	0.0157 (8)	0.0206 (6)	0.0029 (7)	0.0019 (5)	-0.0023 (6)
O2	0.0373 (8)	0.0246 (9)	0.0164 (6)	-0.0043 (7)	-0.0025 (5)	0.0014 (6)
O3	0.0515 (9)	0.0313 (10)	0.0270 (7)	-0.0149 (9)	-0.0024 (6)	0.0025 (8)
O4	0.0508 (9)	0.0236 (10)	0.0292 (7)	-0.0085 (8)	0.0001 (7)	-0.0039 (7)
N1	0.0171 (8)	0.0479 (14)	0.0367 (9)	-0.0027 (9)	0.0048 (7)	-0.0081 (10)
C1	0.0309 (10)	0.0235 (13)	0.0194 (9)	-0.0020 (10)	0.0045 (7)	-0.0024 (9)
C2	0.0205 (9)	0.0193 (11)	0.0212 (9)	0.0002 (9)	0.0024 (7)	-0.0009 (9)
C3	0.0224 (9)	0.0237 (12)	0.0180 (9)	-0.0003 (9)	0.0001 (7)	-0.0030 (8)
C4	0.0265 (10)	0.0295 (13)	0.0157 (8)	-0.0002 (10)	0.0008 (7)	0.0017 (9)
C5	0.0271 (10)	0.0305 (14)	0.0188 (9)	-0.0020 (10)	0.0033 (7)	0.0029 (9)
C6	0.0196 (9)	0.0314 (14)	0.0185 (9)	-0.0025 (9)	0.0017 (7)	0.0008 (9)
C7	0.0203 (9)	0.0213 (13)	0.0173 (8)	0.0031 (8)	0.0038 (7)	-0.0021 (8)
C8	0.0231 (9)	0.0150 (12)	0.0210 (9)	0.0025 (9)	0.0043 (7)	-0.0018 (8)
C9	0.0182 (9)	0.0143 (11)	0.0183 (8)	0.0028 (8)	0.0035 (7)	-0.0014 (8)
C10	0.0199 (9)	0.0254 (12)	0.0200 (9)	0.0040 (9)	0.0043 (7)	-0.0003 (9)
C11	0.0185 (8)	0.0236 (12)	0.0205 (9)	0.0019 (9)	-0.0003 (7)	-0.0001 (9)
C12	0.0246 (10)	0.0370 (15)	0.0241 (10)	0.0137 (11)	0.0074 (8)	-0.0003 (10)
C13	0.0234 (9)	0.0482 (17)	0.0193 (9)	0.0122 (11)	0.0035 (8)	-0.0008 (10)
C14	0.0198 (9)	0.0177 (12)	0.0177 (8)	0.0022 (8)	0.0036 (7)	-0.0008(8)
C15	0.0205 (9)	0.0210 (12)	0.0163 (8)	0.0031 (9)	0.0025 (7)	-0.0002 (8)
C16	0.0205 (9)	0.0301 (13)	0.0195 (9)	0.0031 (9)	0.0034 (7)	0.0017 (9)
C17	0.0225 (9)	0.0295 (13)	0.0195 (9)	-0.0016 (10)	0.0006 (7)	0.0038 (9)
C18	0.0318 (10)	0.0221 (13)	0.0135 (8)	-0.0025 (10)	-0.0005 (7)	0.0010 (9)
C19	0.0280 (10)	0.0217 (12)	0.0176 (9)	0.0017 (9)	0.0059 (7)	-0.0002 (8)
C20	0.0224 (9)	0.0182 (12)	0.0172 (8)	0.0023 (9)	0.0041 (7)	0.0020 (8)
C21	0.0217 (9)	0.0256 (12)	0.0194 (9)	0.0003 (9)	0.0072 (7)	-0.0019 (9)
C22	0.0193 (8)	0.0243 (12)	0.0216 (9)	0.0035 (9)	0.0042 (7)	-0.0007 (9)
C23	0.0194 (9)	0.0168 (11)	0.0191 (9)	0.0013 (8)	0.0044 (7)	-0.0022 (8)
C24	0.0228 (9)	0.0257 (13)	0.0228 (10)	0.0004 (10)	0.0019 (7)	0.0003 (10)
C25	0.0522 (13)	0.0316 (15)	0.0242 (10)	-0.0048 (12)	0.0009 (9)	-0.0020 (10)
C26	0.0277 (10)	0.0529 (18)	0.0213 (9)	0.0005 (12)	0.0069 (8)	-0.0001 (11)
C27	0.0378 (11)	0.0404 (16)	0.0229 (10)	-0.0111 (12)	0.0018 (9)	0.0070 (10)
C28	0.0300 (10)	0.0180 (12)	0.0192 (9)	0.0017 (9)	0.0021 (7)	-0.0006 (9)
C29	0.0321 (10)	0.0210 (12)	0.0213 (9)	0.0071 (10)	-0.0005(8)	-0.0009(9)

supporting information

C30	0.0349 (11)	0.0317 (15)	0.0215 (9)	0.0058 (10)	0.0038 (8)	-0.0042 (9)
C31	0.0317 (10)	0.0299 (13)	0.0195 (9)	-0.0041 (10)	0.0053 (8)	0.0015 (9)
C32	0.0342 (11)	0.0181 (12)	0.0210 (9)	-0.0048 (10)	0.0033 (8)	0.0016 (9)

Geometric parameters (Å, °)

01—C1	1.363 (2)	C15—C20	1.555 (3)
O1—C8	1.493 (3)	C16—C17	1.535 (2)
O2—C24	1.340 (3)	C16—H16A	0.9900
O2—C18	1.466 (2)	C16—H16B	0.9900
O3—C24	1.198 (3)	C17—C18	1.514 (3)
O4—C1	1.204 (3)	C17—H17A	0.9900
N1-C12	1.371 (3)	C17—H17B	0.9900
N1-C13	1.480 (3)	C18—C19	1.534 (3)
N1—H1	0.8800	C18—H18A	1.0000
C1—C2	1.502 (3)	C19—C31	1.536 (3)
C2—C3	1.533 (2)	C19—C30	1.538 (3)
C2—C7	1.539 (3)	C19—C20	1.560 (2)
C2-C11	1.547 (3)	C20—C21	1.537 (2)
C3—C4	1.537 (3)	C20—H20A	1.0000
С3—НЗА	0.9900	C21—C22	1.531 (2)
С3—Н3В	0.9900	C21—H21A	0.9900
C4—C5	1.546 (3)	C21—H21B	0.9900
C4—H4A	0.9900	C22—C23	1.547 (3)
C4—H4B	0.9900	C22—H22A	0.9900
C5—C27	1.525 (4)	C22—H22B	0.9900
C5—C26	1.534 (3)	C23—C32	1.538 (3)
C5—C6	1.554 (2)	C24—C25	1.502 (3)
С6—С7	1.522 (3)	C25—H25A	0.9800
С6—Н6А	0.9900	C25—H25B	0.9800
C6—H6B	0.9900	C25—H25C	0.9800
C7—C8	1.546 (2)	C26—H26A	0.9800
С7—Н7А	1.0000	C26—H26B	0.9800
C8—C12	1.510 (3)	C26—H26C	0.9800
C8—C9	1.557 (2)	C27—H27A	0.9800
C9—C10	1.543 (2)	C27—H27B	0.9800
C9—C28	1.546 (3)	C27—H27C	0.9800
C9—C23	1.597 (2)	C28—H28A	0.9800
C10-C11	1.546 (2)	C28—H28B	0.9800
C10—H10A	0.9900	C28—H28C	0.9800
C10—H10B	0.9900	C29—H29A	0.9800
C11—H11A	0.9900	C29—H29B	0.9800
C11—H11B	0.9900	C29—H29C	0.9800
C12—C13	1.442 (3)	C30—H30A	0.9800
C12—H12A	1.0000	C30—H30B	0.9800
C13—C14	1.516 (3)	С30—Н30С	0.9800
C13—H13A	1.0000	C31—H31A	0.9800
C14—C23	1.563 (2)	C31—H31B	0.9800

C14—C15	1.565 (2)	C31—H31C	0.9800
C14—H14A	1.0000	С32—Н32А	0.9800
C15—C29	1.541 (3)	С32—Н32В	0.9800
C15—C16	1.550 (3)	С32—Н32С	0.9800
C1—O1—C8	109.63 (16)	C15—C16—H16B	109.0
C24—O2—C18	118.26 (16)	H16A—C16—H16B	107.8
C12—N1—C13	60.61 (15)	C18—C17—C16	109.20 (15)
C12—N1—H1	149.7	C18—C17—H17A	109.8
C13—N1—H1	149.7	С16—С17—Н17А	109.8
O4—C1—O1	121.1 (2)	C18—C17—H17B	109.8
O4—C1—C2	130.24 (18)	C16—C17—H17B	109.8
O1—C1—C2	108.64 (18)	H17A—C17—H17B	108.3
C1—C2—C3	115.65 (17)	O2—C18—C17	108.59 (15)
C1—C2—C7	99.01 (16)	O2—C18—C19	108.18 (14)
C3—C2—C7	110.84 (15)	C17—C18—C19	114.38 (18)
C1—C2—C11	106.48 (16)	O2—C18—H18A	108.5
C3—C2—C11	113.10 (16)	C17—C18—H18A	108.5
C7—C2—C11	110.87 (16)	C19—C18—H18A	108.5
C2—C3—C4	110.22 (16)	C18—C19—C31	112.16 (16)
С2—С3—НЗА	109.6	C18—C19—C30	107.22 (18)
С4—С3—НЗА	109.6	C31—C19—C30	108.08 (16)
С2—С3—Н3В	109.6	C18—C19—C20	105.63 (14)
C4—C3—H3B	109.6	C31—C19—C20	114.48 (18)
НЗА—СЗ—НЗВ	108.1	C30—C19—C20	109.00 (16)
C3—C4—C5	114.01 (17)	C21—C20—C15	110.54 (16)
C3—C4—H4A	108.8	C21—C20—C19	113.90 (14)
С5—С4—Н4А	108.8	C15—C20—C19	117.30 (15)
C3—C4—H4B	108.8	C21—C20—H20A	104.5
C5—C4—H4B	108.8	C15—C20—H20A	104.5
H4A—C4—H4B	107.6	C19—C20—H20A	104.5
C27—C5—C26	108.38 (18)	C22—C21—C20	110.53 (15)
C27—C5—C4	108.57 (18)	C22—C21—H21A	109.5
C26—C5—C4	111.10 (18)	C20—C21—H21A	109.5
C27—C5—C6	107.80 (18)	C22—C21—H21B	109.5
C26—C5—C6	112.04 (17)	C20—C21—H21B	109.5
C4—C5—C6	108.83 (15)	H21A—C21—H21B	108.1
C7—C6—C5	109.49 (17)	C21—C22—C23	113.23 (16)
С7—С6—Н6А	109.8	C21—C22—H22A	108.9
С5—С6—Н6А	109.8	C23—C22—H22A	108.9
С7—С6—Н6В	109.8	C21—C22—H22B	108.9
С5—С6—Н6В	109.8	С23—С22—Н22В	108.9
H6A—C6—H6B	108.2	H22A—C22—H22B	107.7
C6—C7—C2	114.13 (17)	C32—C23—C22	106.92 (17)
C6—C7—C8	126.37 (17)	C32—C23—C14	111.44 (17)
C2—C7—C8	98.92 (15)	C22—C23—C14	109.92 (15)
С6—С7—Н7А	105.2	С32—С23—С9	112.57 (16)
С2—С7—Н7А	105.2	С22—С23—С9	110.26 (16)

С8—С7—Н7А	105.2	C14—C23—C9	105.77 (14)
O1—C8—C12	103.81 (17)	O3—C24—O2	123.95 (18)
O1—C8—C7	98.61 (14)	O3—C24—C25	124.6 (2)
C12—C8—C7	113.93 (15)	O2—C24—C25	111.48 (19)
O1—C8—C9	108.06 (14)	C24—C25—H25A	109.5
C12—C8—C9	113.95 (15)	C24—C25—H25B	109.5
C7—C8—C9	116.24 (17)	H25A—C25—H25B	109.5
C10—C9—C28	107.43 (17)	С24—С25—Н25С	109.5
C10—C9—C8	107.23 (15)	H25A—C25—H25C	109.5
C28—C9—C8	109.88 (15)	H25B—C25—H25C	109.5
C10—C9—C23	111.93 (15)	C5—C26—H26A	109.5
C28—C9—C23	110.24 (16)	С5—С26—Н26В	109.5
C8—C9—C23	110.04 (16)	H26A—C26—H26B	109.5
C9—C10—C11	112.39 (14)	С5—С26—Н26С	109.5
C9—C10—H10A	109.1	H26A—C26—H26C	109.5
C11—C10—H10A	109.1	H26B—C26—H26C	109.5
C9—C10—H10B	109.1	С5—С27—Н27А	109.5
C11—C10—H10B	109.1	С5—С27—Н27В	109.5
H10A-C10-H10B	107.9	H27A—C27—H27B	109.5
C10—C11—C2	112.49 (16)	С5—С27—Н27С	109.5
C10-C11-H11A	109.1	H27A—C27—H27C	109.5
C2—C11—H11A	109.1	H27B—C27—H27C	109.5
C10-C11-H11B	109.1	C9—C28—H28A	109.5
C2—C11—H11B	109.1	C9—C28—H28B	109.5
H11A—C11—H11B	107.8	H28A—C28—H28B	109.5
N1—C12—C13	63.43 (16)	C9—C28—H28C	109.5
N1—C12—C8	119.3 (2)	H28A—C28—H28C	109.5
C13—C12—C8	121.65 (17)	H28B—C28—H28C	109.5
N1—C12—H12A	114.4	С15—С29—Н29А	109.5
C13—C12—H12A	114.4	С15—С29—Н29В	109.5
C8—C12—H12A	114.4	H29A—C29—H29B	109.5
C12—C13—N1	55.96 (15)	С15—С29—Н29С	109.5
C12—C13—C14	121.46 (17)	H29A—C29—H29C	109.5
N1—C13—C14	115.9 (2)	H29B—C29—H29C	109.5
С12—С13—Н13А	116.5	С19—С30—Н30А	109.5
N1—C13—H13A	116.5	С19—С30—Н30В	109.5
C14—C13—H13A	116.5	H30A—C30—H30B	109.5
C13—C14—C23	109.54 (15)	С19—С30—Н30С	109.5
C13—C14—C15	114.15 (16)	H30A—C30—H30C	109.5
C23—C14—C15	117.30 (15)	H30B—C30—H30C	109.5
C13—C14—H14A	104.8	C19—C31—H31A	109.5
C23—C14—H14A	104.8	C19—C31—H31B	109.5
C15—C14—H14A	104.8	H31A—C31—H31B	109.5
C29—C15—C16	107.99 (18)	С19—С31—Н31С	109.5
C29—C15—C20	115.13 (16)	H31A—C31—H31C	109.5
C16—C15—C20	107.86 (17)	H31B—C31—H31C	109.5
C29—C15—C14	113.26 (16)	С23—С32—Н32А	109.5
C16—C15—C14	107.20 (15)	С23—С32—Н32В	109.5

C20—C15—C14	105.03 (15)	H32A—C32—H32B	109.5
C17—C16—C15	112.80 (15)	С23—С32—Н32С	109.5
C17—C16—H16A	109.0	H32A—C32—H32C	109.5
C15—C16—H16A	109.0	H32B—C32—H32C	109.5
C17—C16—H16B	109.0		
C8—O1—C1—O4	-178.70 (18)	C12—N1—C13—C14	-111.9 (2)
C8—O1—C1—C2	0.5 (2)	C12—C13—C14—C23	33.2 (3)
O4—C1—C2—C3	-33.0 (3)	N1-C13-C14-C23	97.6 (2)
O1—C1—C2—C3	147.89 (16)	C12-C13-C14-C15	167.0 (2)
O4—C1—C2—C7	-151.4 (2)	N1-C13-C14-C15	-128.61 (18)
O1—C1—C2—C7	29.49 (19)	C13—C14—C15—C29	-58.5 (2)
O4—C1—C2—C11	93.6 (2)	C23—C14—C15—C29	71.6 (2)
O1—C1—C2—C11	-85.54 (19)	C13—C14—C15—C16	60.5 (2)
C1—C2—C3—C4	-163.28 (17)	C23—C14—C15—C16	-169.39 (18)
C7—C2—C3—C4	-51.7 (2)	C13—C14—C15—C20	175.07 (19)
C11—C2—C3—C4	73.6 (2)	C23—C14—C15—C20	-54.8 (2)
C2—C3—C4—C5	55.2 (2)	C29—C15—C16—C17	-72.5 (2)
C3—C4—C5—C27	-174.19 (16)	C20-C15-C16-C17	52.5 (2)
C3—C4—C5—C26	66.7 (2)	C14—C15—C16—C17	165.10 (18)
C3—C4—C5—C6	-57.1 (2)	C15—C16—C17—C18	-57.9 (3)
C27—C5—C6—C7	173.35 (17)	C24—O2—C18—C17	106.1 (2)
C26—C5—C6—C7	-67.5 (2)	C24—O2—C18—C19	-129.18 (19)
C4—C5—C6—C7	55.8 (2)	C16—C17—C18—O2	-177.98 (17)
C5—C6—C7—C2	-57.1 (2)	C16—C17—C18—C19	61.1 (2)
C5—C6—C7—C8	-179.84 (18)	O2-C18-C19-C31	-52.2 (2)
C1—C2—C7—C6	177.12 (15)	C17—C18—C19—C31	69.0 (2)
C3—C2—C7—C6	55.2 (2)	O2-C18-C19-C30	66.3 (2)
C11—C2—C7—C6	-71.3 (2)	C17—C18—C19—C30	-172.55 (16)
C1—C2—C7—C8	-46.17 (17)	O2-C18-C19-C20	-177.56 (17)
C3—C2—C7—C8	-168.12 (18)	C17—C18—C19—C20	-56.4 (2)
C11—C2—C7—C8	65.4 (2)	C29—C15—C20—C21	-64.4 (2)
C1	-147.48 (15)	C16—C15—C20—C21	175.02 (16)
C1—O1—C8—C7	-30.11 (18)	C14—C15—C20—C21	60.9 (2)
C1—O1—C8—C9	91.20 (17)	C29—C15—C20—C19	68.5 (2)
C6C7C8O1	175.33 (17)	C16—C15—C20—C19	-52.1 (2)
C2C7C8O1	46.32 (17)	C14—C15—C20—C19	-166.21 (17)
C6-C7-C8-C12	-75.3 (3)	C18—C19—C20—C21	-175.71 (18)
C2C7C8C12	155.67 (19)	C31—C19—C20—C21	60.4 (2)
C6—C7—C8—C9	60.2 (2)	C30-C19-C20-C21	-60.8 (2)
C2—C7—C8—C9	-68.8 (2)	C18—C19—C20—C15	53.0 (2)
O1—C8—C9—C10	-48.83 (19)	C31—C19—C20—C15	-71.0 (2)
C12—C8—C9—C10	-163.63 (19)	C30-C19-C20-C15	167.88 (18)
C7—C8—C9—C10	60.8 (2)	C15—C20—C21—C22	-64.6 (2)
O1—C8—C9—C28	-165.30 (14)	C19—C20—C21—C22	160.85 (18)
C12—C8—C9—C28	79.9 (2)	C20—C21—C22—C23	56.1 (2)
C7—C8—C9—C28	-55.6 (2)	C21—C22—C23—C32	74.7 (2)
01-C8-C9-C23	73.13 (18)	C21—C22—C23—C14	-46.4 (2)
	· · ·		

C12—C8—C9—C23 C7—C8—C9—C23 C28—C9—C10—C11 C8—C9—C10—C11 C23—C9—C10—C11 C9—C10—C11—C2 C1—C2—C11—C10 C3—C2—C11—C10 C7—C2—C11—C10 C13—N1—C12—C8	-41.7 (2) -177.21 (16) 72.3 (2) -45.8 (2) -166.56 (18) 49.1 (3) 45.1 (2) 173.17 (18) -61.6 (2) 113.1 (2)	C21—C22—C23—C9 C13—C14—C23—C32 C15—C14—C23—C32 C13—C14—C23—C22 C15—C14—C23—C22 C13—C14—C23—C9 C15—C14—C23—C9 C15—C14—C23—C9 C10—C9—C23—C32 C28—C9—C23—C32 C8—C9—C23—C32	-162.63 (17) 62.1 (2) -70.1 (2) -179.53 (19) 48.3 (2) -60.5 (2) 167.27 (17) 63.8 (2) -176.72 (16) -55.4 (2)
C7—C8—C12—N1 C9—C8—C12—N1 O1—C8—C12—C13 C7—C8—C12—C13 C9—C8—C12—C13 C8—C12—C13—N1 N1—C12—C13—C14 C8—C12—C13—C14	73.5 (2) -63.0 (2) -105.2 (2) 148.7 (2) 12.1 (3) -109.5 (3) 101.7 (3) -7.8 (4)	C28-C9-C23-C22 C8-C9-C23-C22 C10-C9-C23-C14 C28-C9-C23-C14 C8-C9-C23-C14 C18-O2-C24-O3 C18-O2-C24-C25	64.0 (2) -174.65 (16) -174.31 (17) -54.80 (19) 66.6 (2) -3.3 (3) 176.38 (17)