organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1246-o1247

Absolute configuration of fibaruretin B

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 15 April 2011; accepted 20 April 2011; online 29 April 2011)

The title furan­oditerpenoid, known as fibaruretin B (systematic name: 2β,3α-dihy­droxy-2,3,7,8α-tetra­hydro­penianthic acid lactone), C20H24O7, was isolated from the roots of Arcangelisia flava. The absolute configurations at positions 2, 3, 4, 4a, 7, 9, 10a and 10b of fibaruretin B are S, R, S, R, S, S, S and S, respectively. In the crystal structure, the mol­ecules are linked into infinite chains along the c axis by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and activities of furan­oditerpenoids, see: Ito & Furukawa (1969[Ito, K. & Furukawa, H. (1969). Chem. Commun. pp. 653-654.]); Keawpradub et al. (2005[Keawpradub, N., Dej-adisai, S. & Yuenyongsawad, S. (2005). Songklanakarin J. Sci. Technol. 27, 455-467.]); Moody et al. (2006[Moody, J. O., Robert, V. A., Connolly, J. D. & Houghton, P. J. (2006). J. Ethnopharmacol. 104, 87-91.]); Nguyen-Pouplin et al. (2007[Nguyen-Pouplin, J., Tran, H., Tran, H., Phan, T. A., Dolecek, C., Farrar, J., Tran, T. H., Caron, P., Bodo, B. & Grellier, P. (2007). J. Ethnopharmacol. 109, 417-427.]); Su et al. (2008[Su, C.-R., Chen, Y.-F., Liou, M.-J., Tsai, H.-Y., Chang, W.-S. & Wu, T.-S. (2008). Bioorg. Med. Chem. 16, 9603-9609.]). For a related structure, see: Bakhari et al. (1998[Bakhari, N. A., Wah, S. T., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1998). Acta Cryst. C54, 1649-1651.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O7

  • Mr = 376.39

  • Monoclinic, P 21

  • a = 7.0942 (2) Å

  • b = 11.7149 (4) Å

  • c = 10.1921 (3) Å

  • β = 90.805 (1)°

  • V = 846.96 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 100 K

  • 0.43 × 0.12 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.926

  • 11247 measured reflections

  • 2645 independent reflections

  • 2641 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.09

  • 2645 reflections

  • 254 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1098 Friedel pairs

  • Flack parameter: 0.03 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O5i 0.86 (3) 2.54 (3) 3.1305 (15) 127 (2)
O4—H1O4⋯O6i 0.87 (3) 2.12 (3) 2.9708 (14) 165 (2)
C3—H3A⋯O5i 0.98 2.39 3.1295 (16) 131
C6—H6A⋯O2 0.97 2.43 3.1718 (19) 133
C8—H8A⋯O2ii 0.98 2.29 3.2113 (19) 157
C19—H19C⋯O3 0.96 2.31 2.9489 (18) 124
C20—H20B⋯O7iii 0.96 2.53 3.4613 (18) 164
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Furanoditerpenoids are secondary metabolites which were found in Menispermaceae plants such as Fibraurea chloroleuta Miers (Ito & Furukawa, 1969), Fibraurea tinctoria Lour. (Su et al., 2008) and Sphenocentrum jollyanum Pierre (Moody et al., 2006). They were found to possess biological properties such as anti-inflammatory and antimalarial activities. Arcangelisia flava (Menispermaceae), commonly called `Khaminkhruea' in the southern Thailand, is widely distributed from Hainan (China), Indo-China, southern peninsular Thailand, peninsular Malaysia, Sumatra, Java, Borneo, the Philipines, Sulawesi, the Northern Moluccas to New Guinea. It is an available medicinal plant used for the treatment of malaria, dysentery and as a tonic. The antimalarial, cytotoxic and antioxidant effects of this plant have been reported (Nguyen-Pouplin et al., 2007; Keawpradub et al., 2005). During the course of our study of bioactive compounds from medicinal plants, the title furanoditerpenoid compound, (I), which is known as fibaruretin B, was isolated for the first time from the roots of Arcangelisia flava (Menispermaceae) which were collected from Songkhla province in the southern part of Thailand. The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu Kα radiation with the Flack parameter being refined to 0.03 (12).

The molecule of (I) has four fused rings consisting of one five- and three six-membered rings (A/B/C/D) (Fig. 1). The two cyclohexane rings A and B are cis fused, whereas the cyclohexane ring B and pyran ring C are trans fused. The cyclohexane ring A (C1–C5/C10) is in an envelope conformation, with the pucker atom C3 (0.4436 (16) Å) and puckering parameter Q = 0.6349 (16) Å, θ = 46.82 (14)° and ϕ = 115.0 (2)° (Cremer & Pople, 1975). The cyclohexane ring B (C5–C10) adopts a twisted boat conformation with puckering parameter Q = 0.7098 (15) Å, θ = 99.25 (12)° and ϕ = 45.65 (13)°. The pyran ring C (O5/C17/C8/C9/C11/C12) is in a boat conformation with puckering parameter Q = 0.7026 (15) Å, θ = 89.67 (12)° and ϕ = 241.68 (12)°. The tetrahydrofuran ring D (O1/C2–C4/C18) is in an envelope conformation, with the pucker atom C3 [-0.2883 (16) Å] and puckering parameter Q = 0.4584 (16) Å and ϕ = 258.04 (19)°. The furan ring (C13–C16/O7) is planar with an r.m.s. 0.0028 (2) Å and is equatorially attached to the pyran ring C with torsion angles O5—C12—C13—C14 = -76.91 (15)° and O5—C12—C13—C16 = 105.01 (16)°. The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structure (Bakhari et al., 1998).

The absolute configuration at atoms C2, C3, C4, C5, C8, C12, C9, C10 or positions 2, 3, 4, 4a, 7, 9, 10a and 10b of the fibaruretin B are S, R, S, R, S, S, S and S, respectively which agree with the previous stereochemistry of fibaruretin B (Su et al., 2008).

In the crystal packing of (I) (Fig. 2), the molecules are linked into chains along the c axis through O—H···O hydrogen bonds and C—H···O weak interactions (Fig. 2 and Table 1) and the crystal is stabilized by these interactions.

Related literature top

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to and activities of furanoditerpenoid, see: Ito & Furukawa (1969); Keawpradub et al. (2005); Moody et al. (2006); Nguyen-Pouplin et al. (2007); Su et al. (2008). For a related structure, see: Bakhari et al. (1998). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The air-dried roots of Arcangelisia flava (Menispermaceae) (1.8 kg) were extracted with CH2Cl2 (2 × 10 l) under room temperature. The combined extracts were concentrated under reduced pressure to give a yellow extract (30.1 g) which was subjected to quick column chromatography over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 10 fractions (F1–F10). Fraction F9 was further purified by column chromatography using CH2Cl2–EtOAc (6:4), yielding the title compound as a white solid (275.3 mg). Colorless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days (m.p. 539–540 K).

Refinement top

Hydroxy H atom was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with C—H = 0.93 for aromatic, 0.96 Å for CH3, 0.97 for CH2 and 0.98 Å for CH. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from H6B and the deepest hole is located at 1.51 Å from C10. 1098 Friedel pairs were used to determine the absolute configuration. Outlier reflection (11 0) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing chains along the c axis. Hydrogen bonds are drawn as dashed lines.
2β,3α-dihydroxy-2,3,7,8α-tetrahydropenianthic acid lactone top
Crystal data top
C20H24O7F(000) = 400
Mr = 376.39Dx = 1.476 Mg m3
Monoclinic, P21Melting point = 539–540 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 7.0942 (2) ÅCell parameters from 2645 reflections
b = 11.7149 (4) Åθ = 4.3–66.5°
c = 10.1921 (3) ŵ = 0.93 mm1
β = 90.805 (1)°T = 100 K
V = 846.96 (5) Å3Needle, colourless
Z = 20.43 × 0.12 × 0.08 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2645 independent reflections
Radiation source: sealed tube2641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 66.5°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.692, Tmax = 0.926k = 1113
11247 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.1838P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2645 reflectionsΔρmax = 0.19 e Å3
254 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), with 1098 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (12)
Crystal data top
C20H24O7V = 846.96 (5) Å3
Mr = 376.39Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.0942 (2) ŵ = 0.93 mm1
b = 11.7149 (4) ÅT = 100 K
c = 10.1921 (3) Å0.43 × 0.12 × 0.08 mm
β = 90.805 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2641 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.926Rint = 0.018
11247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.19 e Å3
S = 1.09Δρmin = 0.15 e Å3
2645 reflectionsAbsolute structure: Flack (1983), with 1098 Friedel pairs
254 parametersAbsolute structure parameter: 0.03 (12)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09153 (14)1.02466 (10)0.68755 (10)0.0211 (2)
O20.32424 (17)1.15137 (10)0.70124 (12)0.0296 (3)
O30.27902 (16)0.75672 (11)0.80552 (11)0.0252 (3)
H1O30.255 (4)0.732 (2)0.883 (3)0.061 (8)*
O40.55436 (14)0.96856 (12)0.80516 (10)0.0239 (3)
H1O40.527 (3)0.965 (2)0.888 (3)0.046 (6)*
O50.31561 (13)0.83615 (10)0.09804 (9)0.0178 (2)
O60.53283 (13)0.96975 (11)0.09604 (9)0.0206 (2)
O70.09239 (17)0.58024 (10)0.04095 (11)0.0275 (3)
C10.08225 (19)0.83863 (15)0.58193 (13)0.0188 (3)
H1A0.01530.86800.52350.023*
H1B0.05420.75890.59810.023*
C20.07216 (19)0.90202 (14)0.70997 (14)0.0185 (3)
H2A0.04590.88510.75470.022*
C30.2412 (2)0.87467 (14)0.79792 (13)0.0181 (3)
H3A0.22070.90520.88610.022*
C40.39121 (19)0.94530 (14)0.72888 (14)0.0170 (3)
C50.45100 (19)0.89413 (13)0.59309 (13)0.0147 (3)
C60.56241 (19)0.98757 (13)0.51939 (14)0.0162 (3)
H6A0.49271.05860.52470.019*
H6B0.68210.99890.56470.019*
C70.60174 (18)0.96286 (14)0.37404 (14)0.0163 (3)
H7A0.61051.03470.32720.020*
H7B0.72250.92460.36760.020*
C80.44977 (18)0.88869 (13)0.30780 (13)0.0145 (3)
H8A0.49010.80960.32180.017*
C90.25169 (18)0.89794 (14)0.37078 (13)0.0151 (3)
C100.27476 (18)0.84594 (14)0.51044 (13)0.0147 (3)
H10A0.30780.76600.49400.018*
C110.1130 (2)0.82256 (15)0.28832 (13)0.0200 (3)
H11A0.05320.76840.34650.024*
H11B0.01490.87120.25160.024*
C120.20406 (19)0.75715 (14)0.17735 (13)0.0158 (3)
H12A0.28550.69690.21320.019*
C130.0605 (2)0.70654 (14)0.08547 (14)0.0169 (3)
C140.1096 (2)0.75809 (15)0.03551 (14)0.0214 (3)
H14A0.15190.83180.05170.026*
C150.1952 (2)0.67891 (16)0.03912 (14)0.0245 (4)
H15A0.30910.68960.08370.029*
C160.0642 (2)0.60018 (15)0.03548 (15)0.0226 (3)
H16A0.16000.54750.05080.027*
C170.43951 (19)0.90427 (14)0.16102 (14)0.0161 (3)
C180.2742 (2)1.05332 (15)0.70502 (14)0.0196 (3)
C190.5852 (2)0.79280 (14)0.61724 (14)0.0185 (3)
H19A0.68600.81600.67510.028*
H19B0.63630.76810.53530.028*
H19C0.51700.73110.65640.028*
C200.17620 (19)1.02044 (14)0.36919 (14)0.0185 (3)
H20A0.05091.02150.40360.028*
H20B0.17361.04850.28070.028*
H20C0.25671.06810.42230.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (5)0.0249 (7)0.0177 (5)0.0024 (4)0.0029 (4)0.0014 (5)
O20.0385 (6)0.0192 (7)0.0313 (6)0.0040 (5)0.0147 (5)0.0054 (5)
O30.0353 (6)0.0215 (6)0.0189 (6)0.0015 (5)0.0068 (5)0.0065 (5)
O40.0183 (5)0.0407 (7)0.0125 (5)0.0077 (5)0.0016 (4)0.0034 (5)
O50.0203 (5)0.0222 (6)0.0109 (4)0.0035 (4)0.0008 (4)0.0001 (4)
O60.0215 (5)0.0262 (6)0.0143 (5)0.0042 (5)0.0021 (4)0.0028 (4)
O70.0346 (6)0.0253 (7)0.0225 (6)0.0079 (5)0.0056 (4)0.0038 (5)
C10.0175 (7)0.0248 (9)0.0141 (6)0.0075 (6)0.0010 (5)0.0010 (6)
C20.0169 (7)0.0244 (9)0.0145 (7)0.0046 (6)0.0041 (5)0.0001 (6)
C30.0209 (7)0.0223 (9)0.0112 (7)0.0035 (6)0.0025 (5)0.0010 (6)
C40.0162 (6)0.0217 (9)0.0131 (6)0.0044 (6)0.0011 (5)0.0020 (6)
C50.0147 (6)0.0171 (8)0.0124 (6)0.0016 (6)0.0005 (5)0.0007 (6)
C60.0148 (6)0.0187 (8)0.0152 (7)0.0021 (6)0.0003 (5)0.0005 (6)
C70.0140 (6)0.0205 (8)0.0144 (7)0.0022 (6)0.0016 (5)0.0005 (6)
C80.0143 (6)0.0155 (8)0.0138 (7)0.0006 (5)0.0007 (5)0.0001 (6)
C90.0142 (6)0.0189 (8)0.0122 (6)0.0022 (6)0.0012 (5)0.0010 (6)
C100.0153 (6)0.0158 (8)0.0130 (7)0.0029 (5)0.0010 (5)0.0015 (5)
C110.0159 (6)0.0296 (9)0.0144 (7)0.0044 (6)0.0011 (5)0.0045 (6)
C120.0170 (6)0.0171 (8)0.0132 (6)0.0010 (6)0.0001 (5)0.0029 (6)
C130.0197 (7)0.0185 (8)0.0124 (6)0.0032 (6)0.0022 (5)0.0012 (6)
C140.0226 (7)0.0249 (9)0.0167 (7)0.0005 (6)0.0008 (5)0.0000 (6)
C150.0248 (7)0.0310 (10)0.0177 (7)0.0055 (7)0.0041 (6)0.0004 (6)
C160.0280 (8)0.0209 (9)0.0190 (7)0.0036 (6)0.0008 (6)0.0012 (6)
C170.0146 (6)0.0178 (8)0.0158 (7)0.0040 (6)0.0010 (5)0.0013 (6)
C180.0254 (7)0.0210 (9)0.0125 (6)0.0025 (6)0.0070 (5)0.0040 (6)
C190.0166 (6)0.0218 (9)0.0172 (6)0.0012 (6)0.0005 (5)0.0035 (6)
C200.0171 (6)0.0232 (9)0.0152 (7)0.0032 (6)0.0005 (5)0.0016 (6)
Geometric parameters (Å, º) top
O1—C181.3482 (19)C7—C81.5338 (19)
O1—C21.462 (2)C7—H7A0.9700
O2—C181.203 (2)C7—H7B0.9700
O3—C31.409 (2)C8—C171.5078 (19)
O3—H1O30.86 (3)C8—C91.5568 (17)
O4—C41.4117 (16)C8—H8A0.9800
O4—H1O40.87 (3)C9—C201.532 (2)
O5—C171.3437 (18)C9—C101.5548 (19)
O5—C121.4677 (17)C9—C111.5593 (19)
O6—C171.2156 (19)C10—H10A0.9800
O7—C151.367 (2)C11—C121.518 (2)
O7—C161.3677 (18)C11—H11A0.9700
C1—C21.504 (2)C11—H11B0.9700
C1—C101.5593 (18)C12—C131.4962 (19)
C1—H1A0.9700C12—H12A0.9800
C1—H1B0.9700C13—C161.347 (2)
C2—C31.521 (2)C13—C141.436 (2)
C2—H2A0.9800C14—C151.340 (2)
C3—C41.528 (2)C14—H14A0.9300
C3—H3A0.9800C15—H15A0.9300
C4—C181.531 (2)C16—H16A0.9300
C4—C51.5720 (18)C19—H19A0.9600
C5—C191.539 (2)C19—H19B0.9600
C5—C61.550 (2)C19—H19C0.9600
C5—C101.6006 (18)C20—H20A0.9600
C6—C71.5388 (19)C20—H20B0.9600
C6—H6A0.9700C20—H20C0.9600
C6—H6B0.9700
C18—O1—C2108.45 (12)C20—C9—C8112.23 (12)
C3—O3—H1O3109.8 (19)C10—C9—C8105.44 (11)
C4—O4—H1O4109.2 (15)C20—C9—C11107.87 (11)
C17—O5—C12117.74 (10)C10—C9—C11109.21 (12)
C15—O7—C16106.07 (12)C8—C9—C11107.75 (11)
C2—C1—C10115.53 (12)C9—C10—C1111.57 (11)
C2—C1—H1A108.4C9—C10—C5114.52 (11)
C10—C1—H1A108.4C1—C10—C5117.14 (11)
C2—C1—H1B108.4C9—C10—H10A103.9
C10—C1—H1B108.4C1—C10—H10A103.9
H1A—C1—H1B107.5C5—C10—H10A103.9
O1—C2—C1110.12 (12)C12—C11—C9114.55 (11)
O1—C2—C3102.95 (12)C12—C11—H11A108.6
C1—C2—C3111.13 (12)C9—C11—H11A108.6
O1—C2—H2A110.8C12—C11—H11B108.6
C1—C2—H2A110.8C9—C11—H11B108.6
C3—C2—H2A110.8H11A—C11—H11B107.6
O3—C3—C2112.76 (13)O5—C12—C13105.82 (10)
O3—C3—C4115.02 (13)O5—C12—C11109.30 (12)
C2—C3—C499.38 (11)C13—C12—C11111.92 (11)
O3—C3—H3A109.7O5—C12—H12A109.9
C2—C3—H3A109.7C13—C12—H12A109.9
C4—C3—H3A109.7C11—C12—H12A109.9
O4—C4—C3114.97 (12)C16—C13—C14105.98 (13)
O4—C4—C18111.49 (13)C16—C13—C12125.95 (15)
C3—C4—C1898.12 (11)C14—C13—C12128.05 (15)
O4—C4—C5109.22 (11)C15—C14—C13106.37 (16)
C3—C4—C5113.41 (12)C15—C14—H14A126.8
C18—C4—C5109.13 (12)C13—C14—H14A126.8
C19—C5—C6107.67 (11)C14—C15—O7110.84 (14)
C19—C5—C4109.10 (11)C14—C15—H15A124.6
C6—C5—C4107.64 (12)O7—C15—H15A124.6
C19—C5—C10106.79 (12)C13—C16—O7110.72 (14)
C6—C5—C10113.19 (11)C13—C16—H16A124.6
C4—C5—C10112.30 (10)O7—C16—H16A124.6
C7—C6—C5115.73 (12)O6—C17—O5118.17 (13)
C7—C6—H6A108.3O6—C17—C8126.71 (13)
C5—C6—H6A108.3O5—C17—C8115.10 (12)
C7—C6—H6B108.3O2—C18—O1121.13 (15)
C5—C6—H6B108.3O2—C18—C4129.41 (14)
H6A—C6—H6B107.4O1—C18—C4109.46 (13)
C8—C7—C6113.24 (11)C5—C19—H19A109.5
C8—C7—H7A108.9C5—C19—H19B109.5
C6—C7—H7A108.9H19A—C19—H19B109.5
C8—C7—H7B108.9C5—C19—H19C109.5
C6—C7—H7B108.9H19A—C19—H19C109.5
H7A—C7—H7B107.7H19B—C19—H19C109.5
C17—C8—C7113.08 (12)C9—C20—H20A109.5
C17—C8—C9111.68 (11)C9—C20—H20B109.5
C7—C8—C9114.33 (11)H20A—C20—H20B109.5
C17—C8—H8A105.6C9—C20—H20C109.5
C7—C8—H8A105.6H20A—C20—H20C109.5
C9—C8—H8A105.6H20B—C20—H20C109.5
C20—C9—C10114.15 (11)
C18—O1—C2—C194.59 (13)C2—C1—C10—C9121.36 (14)
C18—O1—C2—C323.98 (14)C2—C1—C10—C513.4 (2)
C10—C1—C2—O164.85 (17)C19—C5—C10—C9116.27 (13)
C10—C1—C2—C348.58 (18)C6—C5—C10—C92.04 (17)
O1—C2—C3—O3164.81 (11)C4—C5—C10—C9124.18 (13)
C1—C2—C3—O346.95 (16)C19—C5—C10—C1110.25 (14)
O1—C2—C3—C442.52 (13)C6—C5—C10—C1131.43 (13)
C1—C2—C3—C475.34 (15)C4—C5—C10—C19.29 (18)
O3—C3—C4—O477.80 (16)C20—C9—C11—C12124.47 (13)
C2—C3—C4—O4161.55 (13)C10—C9—C11—C12110.95 (14)
O3—C3—C4—C18163.86 (12)C8—C9—C11—C123.10 (18)
C2—C3—C4—C1843.21 (13)C17—O5—C12—C13171.56 (12)
O3—C3—C4—C548.87 (17)C17—O5—C12—C1150.87 (15)
C2—C3—C4—C571.78 (15)C9—C11—C12—O551.14 (16)
O4—C4—C5—C1952.16 (16)C9—C11—C12—C13168.04 (13)
C3—C4—C5—C1977.48 (15)O5—C12—C13—C16105.01 (16)
C18—C4—C5—C19174.28 (12)C11—C12—C13—C16136.03 (16)
O4—C4—C5—C664.40 (15)O5—C12—C13—C1476.91 (17)
C3—C4—C5—C6165.96 (12)C11—C12—C13—C1442.1 (2)
C18—C4—C5—C657.71 (14)C16—C13—C14—C150.54 (17)
O4—C4—C5—C10170.36 (13)C12—C13—C14—C15177.84 (14)
C3—C4—C5—C1040.72 (17)C13—C14—C15—O70.09 (18)
C18—C4—C5—C1067.53 (15)C16—O7—C15—C140.40 (17)
C19—C5—C6—C773.55 (14)C14—C13—C16—O70.81 (17)
C4—C5—C6—C7168.95 (12)C12—C13—C16—O7177.62 (13)
C10—C5—C6—C744.25 (16)C15—O7—C16—C130.76 (16)
C5—C6—C7—C829.86 (17)C12—O5—C17—O6179.82 (13)
C6—C7—C8—C17155.77 (13)C12—O5—C17—C80.97 (18)
C6—C7—C8—C926.47 (18)C7—C8—C17—O62.4 (2)
C17—C8—C9—C2071.31 (15)C9—C8—C17—O6128.28 (16)
C7—C8—C9—C2058.69 (15)C7—C8—C17—O5176.37 (12)
C17—C8—C9—C10163.84 (13)C9—C8—C17—O552.99 (17)
C7—C8—C9—C1066.16 (16)C2—O1—C18—O2174.62 (13)
C17—C8—C9—C1147.30 (17)C2—O1—C18—C45.10 (14)
C7—C8—C9—C11177.30 (12)O4—C4—C18—O227.2 (2)
C20—C9—C10—C161.69 (15)C3—C4—C18—O2148.19 (15)
C8—C9—C10—C1174.68 (12)C5—C4—C18—O293.50 (18)
C11—C9—C10—C159.14 (16)O4—C4—C18—O1152.46 (11)
C20—C9—C10—C574.33 (14)C3—C4—C18—O131.50 (13)
C8—C9—C10—C549.30 (16)C5—C4—C18—O186.81 (13)
C11—C9—C10—C5164.85 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O5i0.86 (3)2.54 (3)3.1305 (15)127 (2)
O4—H1O4···O6i0.87 (3)2.12 (3)2.9708 (14)165 (2)
C3—H3A···O5i0.982.393.1295 (16)131
C6—H6A···O20.972.433.1718 (19)133
C8—H8A···O2ii0.982.293.2113 (19)157
C19—H19C···O30.962.312.9489 (18)124
C20—H20B···O7iii0.962.533.4613 (18)164
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H24O7
Mr376.39
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)7.0942 (2), 11.7149 (4), 10.1921 (3)
β (°) 90.805 (1)
V3)846.96 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.93
Crystal size (mm)0.43 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.692, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
11247, 2645, 2641
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.09
No. of reflections2645
No. of parameters254
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.15
Absolute structureFlack (1983), with 1098 Friedel pairs
Absolute structure parameter0.03 (12)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O5i0.86 (3)2.54 (3)3.1305 (15)127 (2)
O4—H1O4···O6i0.87 (3)2.12 (3)2.9708 (14)165 (2)
C3—H3A···O5i0.982.393.1295 (16)131
C6—H6A···O20.972.433.1718 (19)133
C8—H8A···O2ii0.982.293.2113 (19)157
C19—H19C···O30.962.312.9489 (18)124
C20—H20B···O7iii0.962.533.4613 (18)164
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On PhD study leave from Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

AWS thanks the Universiti Sains Malaysia for a PhD Student Visiting Fellowship. SC thanks the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors thank the Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811151.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBakhari, N. A., Wah, S. T., Chinnakali, K., Fun, H.-K. & Razak, I. A. (1998). Acta Cryst. C54, 1649–1651.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIto, K. & Furukawa, H. (1969). Chem. Commun. pp. 653–654.  CrossRef Google Scholar
First citationKeawpradub, N., Dej-adisai, S. & Yuenyongsawad, S. (2005). Songklanakarin J. Sci. Technol. 27, 455–467.  Google Scholar
First citationMoody, J. O., Robert, V. A., Connolly, J. D. & Houghton, P. J. (2006). J. Ethnopharmacol. 104, 87–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen-Pouplin, J., Tran, H., Tran, H., Phan, T. A., Dolecek, C., Farrar, J., Tran, T. H., Caron, P., Bodo, B. & Grellier, P. (2007). J. Ethnopharmacol. 109, 417–427.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-R., Chen, Y.-F., Liou, M.-J., Tsai, H.-Y., Chang, W.-S. & Wu, T.-S. (2008). Bioorg. Med. Chem. 16, 9603–9609.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Pages o1246-o1247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds