organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1210

4-tert-Butyl-2-[2-(1,3,3-tri­methyl­indolin-2-yl­­idene)ethyl­­idene]cyclo­hexa­none

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 23 March 2011; accepted 19 April 2011; online 29 April 2011)

The title mol­ecule, C23H31NO, has two alternative cyclo­hexa­none configurations at the 4-position in a ratio of 0.663 (3):0.337 (3). The plane of the five-membered planar ring in the indolin-2-yl­idene subtends an angle of 2.19 (7)° with its fused aromatic ring, an angle of 16.24 (8)° with the plane of the major cyclo­hexa­none configuration and an angle of 8.54 (15)° with the bridging planar ethyl­idene C atoms. These last atoms subtend an angle of 8.37 (16)° with the mean plane through the major cyclo­hexa­none configuration. The mol­ecules pack approximately parallel to the ([\overline{1}]01) plane via C—H⋯π and C—H⋯O inter­actions.

Related literature

For background information on potential applications of NLO (organic nonlinear optical material) compounds, see: Denk et al. (1990[Denk, W., Strickler, J. H. & Webb, W. W. (1990). Science, 248, 73-76.]); Ma et al. (2002[Ma, H., Jen, A. K.-Y. & Dalton, L. R. (2002). Adv. Mater. 14, 1339-1365.]); Parthenopoulos & Rentzepis (1989[Parthenopoulos, D. A. & Rentzepis, P. M. (1989). Science, 245, 843-845.]). For synthesis details, see: Ainsworth (1963[Ainsworth, C. (1963). Org. Synth. Coll. 4, 536.]). For related compounds, see: Kawamata et al. (1998[Kawamata, J., Inoue, K. & Inabe, T. (1998). Bull. Chem. Soc. Jpn, 71, 2777-2786.]); Higham et al. (2010[Higham, L. T., Scott, J. L. & Strauss, C. R. (2010). Cryst. Growth Des. 10, 2409-2420.]); Bhuiyan et al. (2011[Bhuiyan, M. D. H., Ashraf, M., Teshomne, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177-187.]); Teshome et al. (2011[Teshome, A., Bhuiyan, M. D. H., Gainsford, G. J., Ashraf, M., Asselberghs, I., Williams, G. V. M., Kay, A. J. & Clays, K. (2011). Opt. Mater. 33, 336-345.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H31NO

  • Mr = 337.49

  • Monoclinic, P 21 /n

  • a = 9.7327 (4) Å

  • b = 17.2187 (6) Å

  • c = 12.1303 (4) Å

  • β = 100.045 (2)°

  • V = 2001.69 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 116 K

  • 0.62 × 0.49 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.668, Tmax = 0.746

  • 44399 measured reflections

  • 4500 independent reflections

  • 3690 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.05

  • 4500 reflections

  • 308 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.45 3.3293 (19) 154
C9—H9ACg1ii 0.98 2.65 3.5705 (17) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic nonlinear optical (NLO) materials show much promise due to their potential application in areas such as optical power limiting, optical data storage and two-photon fluorescence imaging (Ma et al., 2002; Parthenopoulos & Rentzepis, 1989; Denk et al., 1990). Such compounds are typically push–pull conjugated systems that can be modified by altering either the donor, acceptor or conjugated interconnect moieties. However these modifications can involve trade-offs insofar as improvements to the nonlinear optical properties typically result in compounds that are more complex to prepare, have lower stabilities and higher optical losses. Conjugated ketones are useful intermediates for increasing the chain length and/or substituting different donors and acceptors onto a basic chromophore backbone. This is because conjugated ketones are quite reactive species and are able to undergo a range of carbon–carbon double bond forming reactions including the Wittig reaction, Knoevenagel condensation and Peterson olefination. With this in mind, and in line with our ongoing work on the development of novel organic NLO compounds, we sought to prepare the title compound 3 using the method outlined in Fig. 1. This compound is a useful synthon for the preparation of a range of chromophore systems as it contains an electron-rich indoline donor unit and a conjugated ketone onto which a range of acceptors can be coupled. The title molecule 3 is conveniently prepared in excellent yield by the condensation of 4-tert-butyl-2-hydroxymethylenecyclohexanone 1 with Fisher's base 2. Compound 1 was prepared from 4-tert-butylcyclohexanone using the general procedure reported by Ainsworth (1963).

Compound REFCODES below are from the CSD (Version 5.32, with Feb. 2011 updates; Allen, 2002). In the title compound 3 (Fig. 2), the cyclohexanone ring exists in two configurations, S (C18a) and R (C18b), in the ratio a:b of 0.663 (3):0.337 (3). This model made chemical sense, was stable in refinement, with insignificant difference Fourier residual density. The data supported refinement in the centrosymmetric space group P21/n even though there were 57 weak reflections (with intensities between values between 0.08 (2) and 0.87 (7)) that violated the n glide absence condition. Refinement in P21 did not improve the fit significantly as would be expected with such weak contributing data, and gave some very large correlations between thermal and positional parameters of the n glide related molecules.

The closest comparable structures for the cyclochexanone section of the molecule is QADZUQ, 4-tert-butyl-2,6-bis(4-methylbenzylidene)cyclohexanone (Kawamata et al., 1998) which has a mirror plane passing through the carbonyl, tert-butyl and their bound ring C atoms. A comparision of the cyclohexanone dimensions indicates that some electronic delocalization along the ethylidene chain is observed with the C14—C15 bond length shortened (1.472 (2), 1.490 Å), the C13—C14 bond length lengthened (1.3619 (18), 1.332 Å) and the C12—C13 bond shortened (1.4204 (19), 1.466 Å) for 3 and QADZUQ respectively. The dienone-ether macrocyclic compound WUYMIN (Higham et al., 2010) also contains copies of the 4-tert-butyl-cyclohexanone at a lower resolution (R 9.0%), with similar configurational disorder in the ratio of 0.70:0.30 as observed here.

As noted before in related indoline-based compounds there is minor buckling between the planar 5- and 6-membered rings in the indolin-2-ylidene ring of 2.19 (7)° compared with 1.81 (13)° in compound 17 (Teshome et al., 2011) and 1.38 (9)° in compound TMIPI (Bhuiyan et al., 2011). The interplanar angles confirm the consistent twist along the electronic delocalization plane: 8.54 (15)° between the 5-membered indoline ring (N1,C1,C6–C8) and the ethylidene atoms plane (C8,C12–C14) with a further 8.37 (16)° angle subtended between the latter and the average plane through the major configuration cyclohexanone atoms (C14–C16, C17a, C18a and C19). The indoline dimensions are identical to those found in the above-listed compounds.

The molecules are held in the lattice by weak C—H···π interactions (Table 1) over cell inversion centres and C—H···O hydrogen bonds, the latter forming C(10) motifs (Bernstein et al., 1995), Fig. 3.

Related literature top

For background information, see: Denk et al. (1990); Ma et al. (2002); Parthenopoulos & Rentzepis (1989). For synthesis details, see: Ainsworth (1963). For related compounds, see: Kawamata et al. (1998); Higham et al. (2010); Bhuiyan et al. (2011); Teshome et al. (2011). For the Cambridge Structural Database, see: Allen (2002). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of Fisher's base 2 (0.865 g, 5 mmole) in methanol was added compound 1 (0.91 g, 5 mmole). The mixture was refluxed for 2 h by which time its colour had changed from deep red to brown. The solvent was removed at reduced pressure and the residue purified by crystallization in ethanol, giving the title compound 3 as a yellow solid (1.5 g, 88% yield). X-ray quality crystals were grown by slow evaporation from methanol. m.p.: 450 K.

Refinement top

A total of 15 outlier reflections (ΔF2/σ(F2)>4.5) were removed from the refinment using OMIT. There were 57 systematic absence violations involving weak reflections as discussed in the Comment section. The cyclohexanone ring was disordered across two configuraions (see Fig. 1); each was refined with common occupancy factors giving a final ratio a:b of 0.663 (3):0.337 (3). The bond lengths between C16 and C19 to their respective disorder atoms (C17 and C18, a and b) were restrained to be the same using SADI. The bond distances between C20b and each of the bound methyl C atoms were similarly restrained.

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary), 0.99 (methylene) or 0.95 (phenyl) Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005) and SADABS (Sheldrick, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme showing the synthetic procedure for obtaining the title compound.
[Figure 2] Fig. 2. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level. H atoms not shown for clarity. Dashed bonds indicate positions of the minor (b) configuration atoms (see text).
[Figure 3] Fig. 3. Partial packing diagram of the unit cell showing key interactions (see text and Table 1) [Macrae et al., 2008]. Only significant H atoms are shown as balls for clarity. Symmetry (i) x - 1/2, 3/2 - y, z - 1/2 (ii) 2 - x, 1 - y, 2 - z Two ring centres are shown as purple balls: Cg1 is the centre of the C1–C6 ring at symmetry (ii).
4-tert-Butyl-2-[2-(1,3,3-trimethylindolin-2- ylidene)ethylidene]cyclohexanone top
Crystal data top
C23H31NOF(000) = 736
Mr = 337.49Dx = 1.120 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9800 reflections
a = 9.7327 (4) Åθ = 2.4–27.3°
b = 17.2187 (6) ŵ = 0.07 mm1
c = 12.1303 (4) ÅT = 116 K
β = 100.045 (2)°Block, orange
V = 2001.69 (13) Å30.62 × 0.49 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4500 independent reflections
Radiation source: fine-focus sealed tube3690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.333 pixels mm-1θmax = 27.3°, θmin = 2.4°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(Blessing, 1995)
k = 2222
Tmin = 0.668, Tmax = 0.746l = 1515
44399 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.720P]
where P = (Fo2 + 2Fc2)/3
4500 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.26 e Å3
5 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H31NOV = 2001.69 (13) Å3
Mr = 337.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7327 (4) ŵ = 0.07 mm1
b = 17.2187 (6) ÅT = 116 K
c = 12.1303 (4) Å0.62 × 0.49 × 0.25 mm
β = 100.045 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4500 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3690 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.746Rint = 0.043
44399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0505 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
4500 reflectionsΔρmin = 0.21 e Å3
308 parameters
Special details top

Experimental. 1H NMR (500 MHz, CDCl3): δ 8.00 (d, 1H, J 10 Hz), 7.20-7.17 (m, 2H), 6.93 (t, 1H) 7.71 (d, 1H, J 5 Hz), 5.29 (d, 1H, J 10Hz), 3.22 (s, 3H), 2.56 (dd, 2H, J 5 Hz), 2.32(m, 1H), 2.15 (m, 2H), 1.95 (m, 2H), 1.63 (s, 6H), 0.98 (s, 9H). 13C NMR (75 MHz, CDCl3): δ 198.5, 165.1, 144.4, 139.5, 134.5, 127.8, 124.1, 121.8, 121.1, 106.9, 91.5, 46.8, 44.9, 39.3, 32.7, 29.7, 28.7, 27.4, 26.8, 24.0. LCMS found: MH+ 338.2475; C23H31NO requires MH+ 338.2484; Δ = -2.7 ppm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.28457 (12)0.66246 (6)0.71213 (10)0.0437 (3)
N10.79474 (12)0.49759 (7)1.02889 (9)0.0283 (3)
C10.89106 (14)0.53885 (8)1.10624 (11)0.0270 (3)
C21.00469 (15)0.51059 (9)1.18053 (12)0.0331 (3)
H21.02610.45671.18480.040*
C31.08596 (16)0.56435 (10)1.24853 (12)0.0379 (4)
H31.16540.54691.29950.045*
C41.05364 (16)0.64254 (10)1.24352 (12)0.0384 (4)
H41.11030.67791.29150.046*
C50.93804 (15)0.67029 (9)1.16829 (12)0.0320 (3)
H50.91500.72391.16540.038*
C60.85852 (14)0.61754 (8)1.09849 (11)0.0265 (3)
C70.73269 (13)0.63014 (8)1.00634 (11)0.0259 (3)
C80.70101 (13)0.54643 (8)0.96512 (11)0.0262 (3)
C90.79355 (16)0.41346 (8)1.02159 (13)0.0335 (3)
H9A0.84280.39710.96160.050*
H9B0.69690.39501.00530.050*
H9C0.84010.39151.09290.050*
C100.77348 (15)0.68104 (9)0.91287 (12)0.0329 (3)
H10A0.85270.65740.88540.049*
H10B0.79970.73290.94250.049*
H10C0.69400.68520.85120.049*
C110.61232 (15)0.66848 (9)1.05326 (12)0.0340 (3)
H11A0.64540.71661.09210.051*
H11B0.57900.63291.10590.051*
H11C0.53580.68030.99160.051*
C120.60291 (14)0.52054 (8)0.87812 (11)0.0299 (3)
H120.60700.46730.85870.036*
C130.49551 (14)0.56575 (8)0.81416 (11)0.0291 (3)
H130.48860.61840.83600.035*
C140.40147 (14)0.54095 (8)0.72454 (11)0.0286 (3)
C150.29387 (14)0.59685 (9)0.67486 (12)0.0308 (3)
C160.19053 (16)0.57155 (10)0.57339 (14)0.0418 (4)
H16A0.09790.59240.58110.063*
H16B0.21750.59650.50680.063*
C190.4067 (2)0.46039 (9)0.67678 (13)0.0394 (4)
H19A0.496 (2)0.4472 (12)0.6680 (17)0.059*
H19B0.375 (2)0.4235 (12)0.7229 (18)0.059*
C17A0.1748 (3)0.48893 (14)0.5508 (2)0.0303 (5)0.663 (3)
H17A0.118 (3)0.4799 (16)0.480 (2)0.045*0.663 (3)
H17B0.129 (3)0.4671 (16)0.610 (2)0.045*0.663 (3)
C18A0.3166 (2)0.45000 (15)0.5576 (2)0.0255 (5)0.663 (3)
H18A0.366 (3)0.4800 (15)0.507 (2)0.038*0.663 (3)
C20A0.3096 (6)0.3654 (4)0.5180 (5)0.0281 (10)0.663 (3)
C21A0.4546 (3)0.32873 (16)0.5326 (3)0.0469 (7)0.663 (3)
H21A0.44820.27770.49640.070*0.663 (3)
H21B0.49190.32280.61260.070*0.663 (3)
H21C0.51680.36220.49820.070*0.663 (3)
C22A0.2492 (3)0.36163 (15)0.39073 (19)0.0434 (6)0.663 (3)
H22A0.15270.38050.37760.065*0.663 (3)
H22B0.25110.30780.36480.065*0.663 (3)
H22C0.30560.39420.34960.065*0.663 (3)
C23A0.2173 (3)0.31416 (14)0.5787 (2)0.0400 (6)0.663 (3)
H23A0.21660.26100.54970.060*0.663 (3)
H23B0.12190.33470.56590.060*0.663 (3)
H23C0.25440.31410.65910.060*0.663 (3)
C17B0.2366 (6)0.4922 (3)0.5221 (4)0.0331 (11)0.337 (3)
H17C0.15470.47150.47050.050*0.337 (3)
H17D0.30850.50480.47640.050*0.337 (3)
C18B0.2938 (5)0.4273 (3)0.6024 (5)0.0268 (10)0.337 (3)
H18B0.225 (6)0.421 (3)0.653 (4)0.040*0.337 (3)
C20B0.3155 (11)0.3475 (7)0.5420 (9)0.030 (2)0.337 (3)
C21B0.3865 (6)0.2909 (3)0.6310 (5)0.0512 (15)0.337 (3)
H21D0.40370.24150.59540.077*0.337 (3)
H21E0.32590.28180.68630.077*0.337 (3)
H21F0.47540.31280.66830.077*0.337 (3)
C22B0.4077 (6)0.3596 (3)0.4542 (5)0.0498 (15)0.337 (3)
H22D0.42410.30960.42030.075*0.337 (3)
H22E0.49700.38200.48970.075*0.337 (3)
H22F0.36120.39500.39620.075*0.337 (3)
C23B0.1757 (5)0.3156 (3)0.4890 (5)0.0526 (16)0.337 (3)
H23D0.11500.31230.54540.079*0.337 (3)
H23E0.18780.26380.45890.079*0.337 (3)
H23F0.13310.35010.42820.079*0.337 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0452 (6)0.0324 (6)0.0489 (7)0.0034 (5)0.0046 (5)0.0071 (5)
N10.0312 (6)0.0245 (6)0.0280 (6)0.0020 (4)0.0014 (5)0.0022 (4)
C10.0286 (7)0.0298 (7)0.0231 (6)0.0024 (5)0.0057 (5)0.0015 (5)
C20.0356 (8)0.0353 (8)0.0280 (7)0.0050 (6)0.0044 (6)0.0057 (6)
C30.0327 (8)0.0506 (10)0.0279 (7)0.0025 (7)0.0018 (6)0.0026 (6)
C40.0362 (8)0.0451 (9)0.0311 (7)0.0066 (7)0.0018 (6)0.0062 (6)
C50.0327 (7)0.0315 (7)0.0313 (7)0.0029 (6)0.0040 (6)0.0027 (6)
C60.0239 (6)0.0303 (7)0.0252 (6)0.0007 (5)0.0040 (5)0.0022 (5)
C70.0250 (6)0.0247 (7)0.0271 (6)0.0030 (5)0.0017 (5)0.0007 (5)
C80.0261 (6)0.0270 (7)0.0264 (6)0.0026 (5)0.0066 (5)0.0025 (5)
C90.0392 (8)0.0237 (7)0.0367 (7)0.0017 (6)0.0046 (6)0.0022 (6)
C100.0331 (7)0.0302 (7)0.0342 (7)0.0038 (6)0.0026 (6)0.0063 (6)
C110.0285 (7)0.0367 (8)0.0363 (7)0.0006 (6)0.0046 (6)0.0049 (6)
C120.0331 (7)0.0267 (7)0.0291 (7)0.0051 (5)0.0033 (6)0.0007 (5)
C130.0276 (7)0.0299 (7)0.0299 (7)0.0049 (5)0.0050 (5)0.0018 (5)
C140.0297 (7)0.0292 (7)0.0263 (6)0.0046 (5)0.0031 (5)0.0010 (5)
C150.0277 (7)0.0321 (8)0.0322 (7)0.0048 (5)0.0040 (6)0.0023 (6)
C160.0269 (7)0.0476 (10)0.0470 (9)0.0031 (6)0.0046 (6)0.0127 (7)
C190.0522 (10)0.0295 (8)0.0313 (8)0.0017 (7)0.0068 (7)0.0026 (6)
C17A0.0213 (12)0.0320 (12)0.0342 (13)0.0011 (10)0.0042 (10)0.0044 (10)
C18A0.0219 (11)0.0286 (13)0.0249 (12)0.0020 (9)0.0009 (9)0.0001 (10)
C20A0.0269 (14)0.023 (3)0.034 (2)0.0007 (14)0.0050 (12)0.0008 (14)
C21A0.0356 (13)0.0441 (15)0.0596 (18)0.0067 (11)0.0046 (12)0.0154 (13)
C22A0.0568 (16)0.0425 (14)0.0300 (12)0.0024 (11)0.0047 (11)0.0081 (10)
C23A0.0465 (14)0.0316 (12)0.0440 (14)0.0074 (10)0.0137 (11)0.0016 (10)
C17B0.027 (3)0.036 (3)0.032 (2)0.001 (2)0.005 (2)0.0046 (19)
C18B0.028 (2)0.024 (2)0.029 (2)0.0033 (17)0.0057 (19)0.0004 (19)
C20B0.040 (3)0.013 (5)0.039 (5)0.005 (3)0.009 (3)0.009 (3)
C21B0.069 (4)0.028 (3)0.053 (3)0.003 (2)0.002 (3)0.004 (2)
C22B0.054 (3)0.049 (3)0.052 (3)0.005 (2)0.024 (3)0.013 (3)
C23B0.039 (3)0.049 (3)0.068 (4)0.009 (2)0.005 (3)0.029 (3)
Geometric parameters (Å, º) top
O1—C151.2260 (18)C19—C18B1.415 (4)
N1—C81.3754 (17)C19—C18A1.565 (3)
N1—C11.3989 (17)C19—H19A0.92 (2)
N1—C91.4513 (17)C19—H19B0.93 (2)
C1—C21.3872 (19)C17A—C18A1.524 (4)
C1—C61.3910 (19)C17A—H17A0.95 (3)
C2—C31.391 (2)C17A—H17B0.98 (3)
C2—H20.9500C18A—C20A1.531 (7)
C3—C41.381 (2)C18A—H18A0.99 (3)
C3—H30.9500C20A—C21A1.528 (6)
C4—C51.403 (2)C20A—C23A1.537 (5)
C4—H40.9500C20A—C22A1.554 (7)
C5—C61.3828 (19)C21A—H21A0.9800
C5—H50.9500C21A—H21B0.9800
C6—C71.5228 (18)C21A—H21C0.9800
C7—C111.5378 (19)C22A—H22A0.9800
C7—C101.5389 (19)C22A—H22B0.9800
C7—C81.5392 (18)C22A—H22C0.9800
C8—C121.3684 (18)C23A—H23A0.9800
C9—H9A0.9800C23A—H23B0.9800
C9—H9B0.9800C23A—H23C0.9800
C9—H9C0.9800C17B—C18B1.523 (7)
C10—H10A0.9800C17B—H17C0.9900
C10—H10B0.9800C17B—H17D0.9900
C10—H10C0.9800C18B—C20B1.587 (14)
C11—H11A0.9800C18B—H18B0.99 (5)
C11—H11B0.9800C20B—C23B1.504 (11)
C11—H11C0.9800C20B—C22B1.521 (11)
C12—C131.4204 (19)C20B—C21B1.527 (9)
C12—H120.9500C21B—H21D0.9800
C13—C141.3619 (18)C21B—H21E0.9800
C13—H130.9500C21B—H21F0.9800
C14—C151.472 (2)C22B—H22D0.9800
C14—C191.508 (2)C22B—H22E0.9800
C15—C161.5114 (19)C22B—H22F0.9800
C16—C17A1.452 (3)C23B—H23D0.9800
C16—C17B1.597 (5)C23B—H23E0.9800
C16—H16A0.9900C23B—H23F0.9800
C16—H16B0.9900
C8—N1—C1111.58 (11)H16A—C16—H16B107.1
C8—N1—C9125.35 (12)C18B—C19—C14122.8 (2)
C1—N1—C9123.04 (11)C14—C19—C18A114.15 (14)
C2—C1—C6122.14 (13)C18B—C19—H19A118.0 (13)
C2—C1—N1128.51 (13)C14—C19—H19A111.5 (13)
C6—C1—N1109.35 (11)C18A—C19—H19A104.6 (13)
C1—C2—C3117.27 (14)C18B—C19—H19B78.9 (13)
C1—C2—H2121.4C14—C19—H19B111.0 (13)
C3—C2—H2121.4C18A—C19—H19B106.6 (13)
C4—C3—C2121.39 (14)H19A—C19—H19B108.5 (18)
C4—C3—H3119.3C16—C17A—C18A110.9 (2)
C2—C3—H3119.3C16—C17A—H17A110.8 (17)
C3—C4—C5120.74 (14)C18A—C17A—H17A111.0 (17)
C3—C4—H4119.6C16—C17A—H17B106.3 (16)
C5—C4—H4119.6C18A—C17A—H17B108.2 (17)
C6—C5—C4118.31 (14)H17A—C17A—H17B109 (2)
C6—C5—H5120.8C17A—C18A—C20A114.3 (3)
C4—C5—H5120.8C17A—C18A—C19110.9 (2)
C5—C6—C1120.13 (12)C20A—C18A—C19112.7 (3)
C5—C6—C7130.43 (13)C17A—C18A—H18A105.7 (15)
C1—C6—C7109.44 (11)C20A—C18A—H18A107.5 (15)
C6—C7—C11110.89 (11)C19—C18A—H18A105.0 (15)
C6—C7—C10110.13 (11)C21A—C20A—C18A111.6 (4)
C11—C7—C10109.83 (12)C21A—C20A—C23A108.2 (3)
C6—C7—C8101.24 (10)C18A—C20A—C23A113.2 (5)
C11—C7—C8113.57 (11)C21A—C20A—C22A106.3 (5)
C10—C7—C8110.91 (11)C18A—C20A—C22A109.9 (3)
C12—C8—N1122.67 (13)C23A—C20A—C22A107.5 (4)
C12—C8—C7128.96 (12)C18B—C17B—C16118.4 (4)
N1—C8—C7108.32 (11)C18B—C17B—H17A111.2 (14)
N1—C9—H9A109.5C16—C17B—H18A122.0 (12)
N1—C9—H9B109.5C16—C17B—H17C107.7
H9A—C9—H9B109.5H18A—C17B—H17C122.5
N1—C9—H9C109.5C18B—C17B—H17D107.7
H9A—C9—H9C109.5C16—C17B—H17D107.7
H9B—C9—H9C109.5H17A—C17B—H17D121.5
C7—C10—H10A109.5H17C—C17B—H17D107.1
C7—C10—H10B109.5C19—C18B—C17B105.6 (4)
H10A—C10—H10B109.5C19—C18B—C20B119.4 (5)
C7—C10—H10C109.5C17B—C18B—C20B113.8 (5)
H10A—C10—H10C109.5C19—C18B—H18B100 (3)
H10B—C10—H10C109.5C17B—C18B—H18B106 (3)
C7—C11—H11A109.5C20B—C18B—H18B110 (3)
C7—C11—H11B109.5C23B—C20B—C22B110.5 (8)
H11A—C11—H11B109.5C23B—C20B—C21B109.4 (7)
C7—C11—H11C109.5C22B—C20B—C21B109.4 (8)
H11A—C11—H11C109.5C23B—C20B—C18B109.2 (8)
H11B—C11—H11C109.5C22B—C20B—C18B110.3 (7)
C8—C12—C13126.21 (13)C21B—C20B—C18B107.9 (8)
C8—C12—H12116.9C20B—C21B—H21D109.5
C13—C12—H12116.9C20B—C21B—H21E109.5
C14—C13—C12126.32 (14)H21D—C21B—H21E109.5
C14—C13—H13116.8C20B—C21B—H21F109.5
C12—C13—H13116.8H21D—C21B—H21F109.5
C13—C14—C15116.93 (13)H21E—C21B—H21F109.5
C13—C14—C19122.16 (13)C20B—C22B—H22D109.5
C15—C14—C19120.91 (12)C20B—C22B—H22E109.5
O1—C15—C14123.00 (13)H22D—C22B—H22E109.5
O1—C15—C16118.98 (13)C20B—C22B—H22F109.5
C14—C15—C16118.03 (13)H22D—C22B—H22F109.5
C17A—C16—C15118.01 (16)H22E—C22B—H22F109.5
C15—C16—C17B111.8 (2)C20B—C23B—H23D109.5
C17A—C16—H16A107.8C20B—C23B—H23E109.5
C15—C16—H16A107.8H23D—C23B—H23E109.5
C17B—C16—H16A132.0C20B—C23B—H23F109.5
C17A—C16—H16B107.8H23D—C23B—H23F109.5
C15—C16—H16B107.8H23E—C23B—H23F109.5
C17B—C16—H16B85.5
C8—N1—C1—C2176.44 (14)C12—C13—C14—C194.0 (2)
C9—N1—C1—C25.6 (2)C13—C14—C15—O11.7 (2)
C8—N1—C1—C62.69 (16)C19—C14—C15—O1178.83 (15)
C9—N1—C1—C6175.30 (13)C13—C14—C15—C16178.40 (13)
C6—C1—C2—C30.3 (2)C19—C14—C15—C161.1 (2)
N1—C1—C2—C3179.35 (13)O1—C15—C16—C17A161.6 (2)
C1—C2—C3—C41.0 (2)C14—C15—C16—C17A18.3 (3)
C2—C3—C4—C50.7 (2)O1—C15—C16—C17B168.3 (3)
C3—C4—C5—C60.8 (2)C14—C15—C16—C17B11.7 (3)
C4—C5—C6—C12.0 (2)C13—C14—C19—C18B164.7 (3)
C4—C5—C6—C7177.19 (14)C15—C14—C19—C18B15.8 (4)
C2—C1—C6—C51.9 (2)C13—C14—C19—C18A164.90 (17)
N1—C1—C6—C5178.95 (12)C15—C14—C19—C18A14.5 (2)
C2—C1—C6—C7177.53 (12)C15—C16—C17A—C18A48.0 (3)
N1—C1—C6—C71.67 (15)C16—C17A—C18A—C20A171.4 (3)
C5—C6—C7—C1159.72 (19)C16—C17A—C18A—C1960.0 (3)
C1—C6—C7—C11120.99 (13)C14—C19—C18A—C17A43.3 (3)
C5—C6—C7—C1062.06 (19)C14—C19—C18A—C20A172.8 (3)
C1—C6—C7—C10117.23 (13)C17A—C18A—C20A—C21A177.1 (3)
C5—C6—C7—C8179.47 (14)C19—C18A—C20A—C21A49.3 (4)
C1—C6—C7—C80.18 (14)C17A—C18A—C20A—C23A54.8 (4)
C1—N1—C8—C12175.08 (12)C19—C18A—C20A—C23A73.0 (4)
C9—N1—C8—C127.0 (2)C17A—C18A—C20A—C22A65.3 (4)
C1—N1—C8—C72.53 (15)C19—C18A—C20A—C22A166.9 (3)
C9—N1—C8—C7175.40 (12)C15—C16—C17B—C18B42.5 (6)
C6—C7—C8—C12176.03 (14)C14—C19—C18B—C17B41.3 (5)
C11—C7—C8—C1265.07 (18)C14—C19—C18B—C20B171.0 (4)
C10—C7—C8—C1259.19 (18)C16—C17B—C18B—C1955.4 (6)
C6—C7—C8—N11.39 (13)C16—C17B—C18B—C20B171.7 (5)
C11—C7—C8—N1117.52 (12)C19—C18B—C20B—C23B167.3 (5)
C10—C7—C8—N1118.23 (12)C17B—C18B—C20B—C23B66.8 (7)
N1—C8—C12—C13174.55 (13)C19—C18B—C20B—C22B71.0 (7)
C7—C8—C12—C138.4 (2)C17B—C18B—C20B—C22B54.9 (8)
C8—C12—C13—C14177.00 (14)C19—C18B—C20B—C21B48.5 (8)
C12—C13—C14—C15176.56 (13)C17B—C18B—C20B—C21B174.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.453.3293 (19)154
C9—H9A···Cg1ii0.982.653.5705 (17)156
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H31NO
Mr337.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)116
a, b, c (Å)9.7327 (4), 17.2187 (6), 12.1303 (4)
β (°) 100.045 (2)
V3)2001.69 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.62 × 0.49 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.668, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
44399, 4500, 3690
Rint0.043
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.05
No. of reflections4500
No. of parameters308
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005) and SADABS (Sheldrick, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.453.3293 (19)154
C9—H9A···Cg1ii0.982.653.5705 (17)156
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank Dr J. Wikaira of the University of Canterbury for her assistance in the data collection.

References

First citationAinsworth, C. (1963). Org. Synth. Coll. 4, 536.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Ashraf, M., Teshomne, A., Gainsford, G. J., Kay, A. J., Asselberghs, I. & Clays, K. (2011). Dyes Pigm. 89, 177–187.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenk, W., Strickler, J. H. & Webb, W. W. (1990). Science, 248, 73–76.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigham, L. T., Scott, J. L. & Strauss, C. R. (2010). Cryst. Growth Des. 10, 2409–2420.  CrossRef CAS Google Scholar
First citationKawamata, J., Inoue, K. & Inabe, T. (1998). Bull. Chem. Soc. Jpn, 71, 2777–2786.  Web of Science CrossRef CAS Google Scholar
First citationMa, H., Jen, A. K.-Y. & Dalton, L. R. (2002). Adv. Mater. 14, 1339–1365.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthenopoulos, D. A. & Rentzepis, P. M. (1989). Science, 245, 843–845.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeshome, A., Bhuiyan, M. D. H., Gainsford, G. J., Ashraf, M., Asselberghs, I., Williams, G. V. M., Kay, A. J. & Clays, K. (2011). Opt. Mater. 33, 336–345.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1210
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds