metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[(pyridin-4-yl)boronic acid-κN]palladium(II) di­methyl sulfoxide disolvate

aDépartement de Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: thierry.maris@umontreal.ca

(Received 18 March 2011; accepted 22 March 2011; online 7 April 2011)

In the title compound, [PdCl2(C5H6BNO2)2]·2C2H6OS, the PdII ion is located on an inversion centre and is four-coordinated in a trans square-planar geometry by two chloride ions and two (pyridin-4-yl)boronic acid ligands. The Pd—N and Pd—Cl distances are 2.023 (2) and 2.2977 (7) Å, respectively, and the average N—Pd—Cl angle is 90°. The dimethyl sulfoxide solvent mol­ecules play a key role in the crystal structure by bridging the complex mol­ecules via O—H⋯O hydrogen bonds, forming tapes running along the b axis. C—H⋯O inter­actions also contribute to the cohesion of the crystal.

Related literature

For other PdII complexes with chloride and pyridine ligands, see: Qin et al. (2002[Qin, Z., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174-5186.]); Viossat et al. (1993[Viossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84-85.]); Zordan & Brammer (2006[Zordan, F. & Brammer, L. (2006). Cryst. Growth Des. 6, 1374-1379.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C5H6BNO2)2]·2C2H6OS

  • Mr = 579.39

  • Triclinic, [P \overline 1]

  • a = 6.2629 (4) Å

  • b = 8.1515 (5) Å

  • c = 11.7761 (7) Å

  • α = 80.687 (3)°

  • β = 82.248 (3)°

  • γ = 77.456 (3)°

  • V = 576.00 (6) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 10.62 mm−1

  • T = 150 K

  • 0.12 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.252, Tmax = 0.428

  • 6942 measured reflections

  • 2135 independent reflections

  • 2031 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.07

  • 2135 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O10i 0.84 1.94 2.750 (3) 163
O9—H9⋯O10 0.84 1.94 2.745 (3) 160
C5—H5⋯O10 0.95 2.51 3.253 (3) 135
C12—H12A⋯O8ii 0.98 2.54 3.506 (4) 169
C12—H12B⋯O9iii 0.98 2.53 3.372 (4) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Materials Studio (Accelrys, 2002[Accelrys (2002). Materials Studio. Accelrys Inc., San Diego, California, USA.]); software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. University of Montréal, Montréal, QC, Canada.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was isolated as an air-stable yellow-orange solid. Each PdII centre lies on a crystallographic inversion centre in a square-planar environment. The chloride and (pyridin-4-yl)boronic acid ligands adopt a trans arrangement due to the molecular symmetry Ci; N—Pd—Cl angles are about 90° (Fig. 1). The bond lengths expected for Pd—N and Pd—Cl (2.023 (2) Å and 2.2977 (7) Å, respectively) are similar to those observed in trans-dichloridobis(pyridine)PdII (Viossat et al., 1993).

In the crystal structure, the solvent molecules of DMSO are linked by the boronic acid group of the complexes via O—H···O hydrogen bonds (average distance 2.747 (3) Å) to form tapes (Fig. 2, Table 2). The tapes are further connected to create layers by C—H···π interactions (distance C11—H11···Cg1 = 3.815 (4) Å where Cg1 is the centroid of the pyridine ring). Cohesion of the crystals also arises in part from C—H···O interactions involving one methyl moiety of DMSO molecules and oxygen atoms of the boronic acid unit (average C···O distance 3.439 (4) Å).

Related literature top

For other PdII complexes with chloride and pyridine ligands, see: Qin et al. (2002); Viossat et al. (1993); Zordan & Brammer (2006).

Experimental top

A suspension of PdCl2 (36 mg, 0.20 mmol) and (pyridin-4-yl)boronic acid (50 mg, 0.41 mmol) in MeCN (20 mL) was stirred for 16 h. The resulting mixture was filtered, and the solid was washed thoroughly with MeCN and then dried under vacuum before being purified by crystallization. Crystals of the title complex were grown by slow evaporation from a solution of the solid in DMSO.

Refinement top

All H-atoms were placed in calculated positions (C—H 0.95 - 0.98 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq (C) for aromatic H and 1.5Ueq (C) for methylene H. Hydroxyl H atoms were first located after a difference Fourier map calculation then refined in the riding model approximation using the AFIX 81 instruction from the SHELX program suite (Sheldrick, 2008), with O—H 0.84 Å and U(H) set to 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen atoms are drawn as a sphere of arbitrary radius. The unlabelled part is related by the symmetry operation -x, -y, 2 - z.
[Figure 2] Fig. 2. Partial view of the packing of the title compound, viewed down the a axis, showing one layer of molecules connected by O—H···O hydrogen bonds (dashed lines) involving solvent molecules of DMSO.
trans-Dichloridobis[(pyridin-4-yl)boronic acid-κN]palladium(II) dimethyl sulfoxide disolvate top
Crystal data top
[PdCl2(C5H6BNO2)2]·2C2H6OSZ = 1
Mr = 579.39F(000) = 292
Triclinic, P1Dx = 1.670 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.2629 (4) ÅCell parameters from 4582 reflections
b = 8.1515 (5) Åθ = 3.8–72.2°
c = 11.7761 (7) ŵ = 10.62 mm1
α = 80.687 (3)°T = 150 K
β = 82.248 (3)°Block, yellow
γ = 77.456 (3)°0.12 × 0.09 × 0.08 mm
V = 576.00 (6) Å3
Data collection top
Bruker SMART 6000
diffractometer
2135 independent reflections
Radiation source: Rotating Anode2031 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.041
Detector resolution: 5.5 pixels mm-1θmax = 72.2°, θmin = 3.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 109
Tmin = 0.252, Tmax = 0.428l = 1414
6942 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0938P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2135 reflectionsΔρmax = 0.68 e Å3
136 parametersΔρmin = 0.87 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (5)
Crystal data top
[PdCl2(C5H6BNO2)2]·2C2H6OSγ = 77.456 (3)°
Mr = 579.39V = 576.00 (6) Å3
Triclinic, P1Z = 1
a = 6.2629 (4) ÅCu Kα radiation
b = 8.1515 (5) ŵ = 10.62 mm1
c = 11.7761 (7) ÅT = 150 K
α = 80.687 (3)°0.12 × 0.09 × 0.08 mm
β = 82.248 (3)°
Data collection top
Bruker SMART 6000
diffractometer
2135 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2031 reflections with I > 2σ(I)
Tmin = 0.252, Tmax = 0.428Rint = 0.041
6942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.68 e Å3
2135 reflectionsΔρmin = 0.87 e Å3
136 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with Montel 200 optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected to better than 0.80 Å resolution.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) were estimated using the full covariance matrix. The cell e.s.d.'s were taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters were only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s was used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00001.00000.01847 (14)
Cl10.11789 (13)0.28133 (9)0.97775 (6)0.02895 (19)
N10.2223 (4)0.0656 (3)0.86854 (18)0.0200 (5)
C20.3867 (5)0.1387 (4)0.8834 (2)0.0236 (6)
H20.40170.15990.95860.028*
C30.5340 (5)0.1837 (4)0.7926 (2)0.0233 (6)
H30.65380.22920.80670.028*
C40.5097 (5)0.1633 (4)0.6795 (2)0.0203 (6)
C50.3368 (5)0.0875 (4)0.6668 (2)0.0217 (6)
H50.31410.06950.59200.026*
C60.1981 (5)0.0384 (4)0.7615 (2)0.0223 (6)
H60.08350.01560.75110.027*
B70.6709 (6)0.2213 (5)0.5709 (3)0.0233 (7)
O80.8706 (4)0.2330 (3)0.59305 (17)0.0353 (6)
H80.94760.25470.53050.042*
O90.6102 (4)0.2582 (3)0.46159 (16)0.0296 (5)
H90.47480.26110.46380.036*
O100.1939 (4)0.2593 (3)0.41211 (16)0.0306 (5)
S100.13090 (13)0.28540 (10)0.28929 (6)0.02519 (19)
C110.3559 (6)0.3547 (5)0.1998 (3)0.0399 (9)
H11A0.48440.26130.20020.060*
H11B0.39090.45030.22940.060*
H11C0.31640.39050.12050.060*
C120.0641 (5)0.4798 (4)0.2747 (3)0.0318 (7)
H12A0.00580.56850.30020.048*
H12B0.20150.46570.32230.048*
H12C0.09250.51250.19350.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01890 (19)0.0231 (2)0.01229 (16)0.00496 (12)0.00089 (10)0.00004 (11)
Cl10.0351 (4)0.0237 (4)0.0244 (3)0.0038 (3)0.0060 (3)0.0028 (3)
N10.0230 (13)0.0214 (12)0.0139 (10)0.0032 (10)0.0004 (9)0.0006 (9)
C20.0244 (16)0.0282 (16)0.0172 (12)0.0038 (13)0.0012 (11)0.0028 (11)
C30.0199 (15)0.0288 (16)0.0215 (12)0.0057 (13)0.0036 (11)0.0016 (11)
C40.0164 (14)0.0251 (15)0.0165 (11)0.0021 (12)0.0020 (10)0.0002 (10)
C50.0232 (15)0.0258 (15)0.0157 (11)0.0036 (12)0.0027 (10)0.0029 (10)
C60.0230 (15)0.0238 (15)0.0195 (12)0.0045 (12)0.0038 (11)0.0006 (11)
B70.0205 (17)0.0310 (18)0.0180 (13)0.0067 (14)0.0005 (12)0.0026 (12)
O80.0205 (12)0.0661 (17)0.0194 (9)0.0150 (12)0.0018 (8)0.0021 (10)
O90.0208 (11)0.0519 (15)0.0173 (9)0.0140 (10)0.0004 (8)0.0007 (9)
O100.0199 (11)0.0520 (15)0.0180 (9)0.0087 (10)0.0045 (8)0.0051 (9)
S100.0271 (4)0.0280 (4)0.0205 (3)0.0054 (3)0.0063 (3)0.0003 (3)
C110.0300 (19)0.051 (2)0.0259 (15)0.0031 (17)0.0088 (13)0.0087 (15)
C120.0251 (17)0.0374 (19)0.0289 (14)0.0008 (14)0.0010 (12)0.0011 (13)
Geometric parameters (Å, º) top
Pd1—N1i2.023 (2)C6—H60.9500
Pd1—N12.023 (2)B7—O81.338 (4)
Pd1—Cl1i2.2977 (7)B7—O91.360 (4)
Pd1—Cl12.2977 (7)O8—H80.8400
N1—C21.340 (4)O9—H90.8400
N1—C61.348 (3)O10—S101.5201 (19)
C2—C31.372 (4)S10—C121.778 (3)
C2—H20.9500S10—C111.780 (3)
C3—C41.401 (4)C11—H11a0.9800
C3—H30.9500C11—H11b0.9800
C4—C51.393 (4)C11—H11c0.9800
C4—B71.594 (4)C12—H12a0.9800
C5—C61.380 (4)C12—H12b0.9800
C5—H50.9500C12—H12c0.9800
N1i—Pd1—N1180.0N1—C6—H6119.4
N1i—Pd1—Cl1i90.64 (7)C5—C6—H6119.4
N1—Pd1—Cl1i89.36 (7)O8—B7—O9121.3 (3)
N1i—Pd1—Cl189.36 (7)O8—B7—C4116.3 (3)
N1—Pd1—Cl190.64 (7)O9—B7—C4122.4 (3)
Cl1i—Pd1—Cl1180.0B7—O8—H8109.5
C2—N1—C6119.3 (2)B7—O9—H9109.5
C2—N1—Pd1122.71 (17)O10—S10—C12106.02 (14)
C6—N1—Pd1117.96 (19)O10—S10—C11105.38 (15)
N1—C2—C3121.6 (2)C12—S10—C1198.27 (17)
N1—C2—H2119.2S10—C11—H11A109.5
C3—C2—H2119.2S10—C11—H11B109.5
C2—C3—C4120.8 (3)H11A—C11—H11B109.5
C2—C3—H3119.6S10—C11—H11C109.5
C4—C3—H3119.6H11A—C11—H11C109.5
C5—C4—C3116.2 (2)H11B—C11—H11C109.5
C5—C4—B7121.4 (2)S10—C12—H12A109.5
C3—C4—B7122.4 (3)S10—C12—H12B109.5
C6—C5—C4120.8 (2)H12A—C12—H12B109.5
C6—C5—H5119.6S10—C12—H12C109.5
C4—C5—H5119.6H12A—C12—H12C109.5
N1—C6—C5121.2 (3)H12B—C12—H12C109.5
Cl1i—Pd1—N1—C263.4 (2)C3—C4—C5—C60.7 (4)
Cl1—Pd1—N1—C2116.6 (2)B7—C4—C5—C6179.8 (3)
Cl1i—Pd1—N1—C6114.6 (2)C2—N1—C6—C51.3 (5)
Cl1—Pd1—N1—C665.4 (2)Pd1—N1—C6—C5176.8 (2)
C6—N1—C2—C31.3 (5)C4—C5—C6—N11.6 (5)
Pd1—N1—C2—C3179.3 (2)C5—C4—B7—O8156.2 (3)
N1—C2—C3—C43.7 (5)C3—C4—B7—O823.2 (5)
C2—C3—C4—C53.3 (5)C5—C4—B7—O924.3 (5)
C2—C3—C4—B7177.3 (3)C3—C4—B7—O9156.3 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O10ii0.841.942.750 (3)163
O9—H9···O100.841.942.745 (3)160
C5—H5···O100.952.513.253 (3)135
C12—H12A···O8iii0.982.543.506 (4)169
C12—H12B···O9iv0.982.533.372 (4)144
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C5H6BNO2)2]·2C2H6OS
Mr579.39
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.2629 (4), 8.1515 (5), 11.7761 (7)
α, β, γ (°)80.687 (3), 82.248 (3), 77.456 (3)
V3)576.00 (6)
Z1
Radiation typeCu Kα
µ (mm1)10.62
Crystal size (mm)0.12 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.252, 0.428
No. of measured, independent and
observed [I > 2σ(I)] reflections
6942, 2135, 2031
Rint0.041
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.07
No. of reflections2135
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.87

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002), UdMX (Maris, 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O10i0.841.942.750 (3)163
O9—H9···O100.841.942.745 (3)160
C5—H5···O100.952.513.253 (3)135
C12—H12A···O8ii0.982.543.506 (4)169
C12—H12B···O9iii0.982.533.372 (4)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada, the Ministère de l'Éducation du Québec, the Canada Foundation for Innovation, the Canada Research Chairs Program and the Université de Montréal for financial support.

References

First citationAccelrys (2002). Materials Studio. Accelrys Inc., San Diego, California, USA.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaris, T. (2004). UdMX. University of Montréal, Montréal, QC, Canada.  Google Scholar
First citationQin, Z., Jennings, M. C., Puddephatt, R. J. & Muir, K. W. (2002). Inorg. Chem. 41, 5174–5186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84–85.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZordan, F. & Brammer, L. (2006). Cryst. Growth Des. 6, 1374–1379.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds