organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1127

rac-5-Acetyl-6-hy­dr­oxy-3,6-di­methyl-4-phenyl-4,5,6,7-tetra­hydro-2H-indazole

aBaku State University, Z. Khalilov St 23, Baku, AZ-1148, Azerbaijan
*Correspondence e-mail: orglab@mail.ru

(Received 5 April 2011; accepted 8 April 2011; online 13 April 2011)

The title compound, C17H20N2O2, is chiral but crystallizes in a centrosymmetric space group as a racemate, the relative configuration at the stereogenic centres being 2S*,3R*,4S*. The cyclo­hexane ring adopts a half-chair conformation while the pyrazole ring has an envelope conformation. The crystal packing displays inter­molecular O—H⋯N and N—H⋯O hydrogen bonding.

Related literature

For background to the use of β-cyclo­ketols as synthons in syntheses of pyrazoles, see: Pramula et al. (1985[Pramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Ind. J. Chem. Sect. B, 24, 1255-1258.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O2

  • Mr = 284.35

  • Monoclinic, C 2/c

  • a = 18.6999 (9) Å

  • b = 5.6415 (3) Å

  • c = 28.4855 (14) Å

  • β = 94.498 (1)°

  • V = 2995.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.984

  • 16597 measured reflections

  • 3709 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.00

  • 3709 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 2.03 2.8487 (14) 178
N2—H2C⋯O1ii 0.86 2.11 2.9587 (15) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus, (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The exploitation of a simple molecule with different functionalities for the synthesis of heterocycles is usefula approach. In fact, the β-cycloketols has been used as an effective synthon in some projected syntheses of pyrazoles (Pramula et al. 1985).

In the title compound, C17H20N2O2 (I), the cyclohexane ring adopts a half-chair conformation (Fig. 1). Cyclohexane ring has a chair conformation. The phenyl ring is in a pseudo-equatorial position. The torsion angle between the acetyl group and the phenyl substituent (C7—C2—C3—C13) is 64.88 (13) °indicating the pseudo-axial location of hydrogen atoms at C2 and C3. The crystal of (I) is racemate and consists of enantiomeric pairs where the relative configuration of the centres are 2S*,3R*,4S*. The crystal structure involves N—H···O and O—H···N intermolecular hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For background to the use of β-cycloketols as synthons in syntheses of pyrazoles, see: Pramula et al. (1985).

Experimental top

2,4-Diacetyl-5-hydroxy-5-metyl-3-phenilcyclohexanon (20 mmol), hydrazine hydrate (20 mmol) were dissolved in 20 mL ethanol. The mixture was stirred at 345–350 K for 10 h. After cooling to room temperature, white crystals were obtained. The crystals were filtered off and washed with ethanol. Then, they were dissolved in ethanol (50 mL) and recrystallised to yield colourless block-shaped crystals suitable for data collection.

Refinement top

The hydrogen atoms of the NH and OH-groups of the molecule were located in a difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions and refined in the riding model with the fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus, (Bruker, 2001); data reduction: SAINT-Plus, (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) with hydrogen bonding (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
rac-5-Acetyl-6-hydroxy-3,6-dimethyl-4-phenyl-4,5,6,7- tetrahydro-2H-indazole top
Crystal data top
C17H20N2O2F(000) = 1216
Mr = 284.35Dx = 1.261 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6277 reflections
a = 18.6999 (9) Åθ = 2.5–28.2°
b = 5.6415 (3) ŵ = 0.08 mm1
c = 28.4855 (14) ÅT = 296 K
β = 94.498 (1)°Prism, colorless
V = 2995.8 (3) Å30.30 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3709 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2424
Tmin = 0.975, Tmax = 0.984k = 77
16597 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0701P)2 + 1.7992P]
where P = (Fo2 + 2Fc2)/3
3709 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H20N2O2V = 2995.8 (3) Å3
Mr = 284.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.6999 (9) ŵ = 0.08 mm1
b = 5.6415 (3) ÅT = 296 K
c = 28.4855 (14) Å0.30 × 0.30 × 0.20 mm
β = 94.498 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3709 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3079 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.021
16597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
3709 reflectionsΔρmin = 0.16 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76048 (5)0.7902 (2)0.61991 (4)0.0481 (3)
O20.62374 (5)0.43848 (16)0.52715 (3)0.0372 (2)
H2A0.60970.44430.49920.056*
N10.42526 (6)0.5528 (2)0.57008 (4)0.0369 (3)
N20.41169 (6)0.3900 (2)0.60311 (4)0.0390 (3)
H2C0.36930.33930.60740.047*
C10.47121 (7)0.3149 (3)0.62867 (5)0.0347 (3)
C1A0.52770 (6)0.4380 (2)0.61152 (4)0.0291 (3)
C20.60733 (6)0.4279 (2)0.62496 (4)0.0273 (2)
H2B0.62590.27870.61320.033*
C30.64412 (6)0.6363 (2)0.60052 (4)0.0266 (2)
H3A0.63120.78170.61670.032*
C40.61636 (6)0.6655 (2)0.54788 (4)0.0284 (2)
C50.53694 (7)0.7403 (2)0.54570 (5)0.0335 (3)
H5A0.53340.90230.55670.040*
H5B0.51640.73360.51340.040*
C5A0.49626 (6)0.5808 (2)0.57540 (4)0.0313 (3)
C60.46830 (8)0.1288 (3)0.66523 (6)0.0514 (4)
H6A0.41960.10820.67290.077*
H6B0.49750.17540.69290.077*
H6C0.48590.01780.65350.077*
C70.62509 (6)0.4376 (2)0.67804 (4)0.0309 (3)
C80.59834 (10)0.6182 (3)0.70426 (5)0.0516 (4)
H8A0.56900.73240.68920.062*
C90.61420 (11)0.6334 (4)0.75247 (6)0.0605 (5)
H9A0.59560.75680.76940.073*
C100.65747 (10)0.4662 (4)0.77516 (5)0.0561 (4)
H10A0.66860.47630.80750.067*
C110.68412 (9)0.2846 (4)0.74998 (6)0.0565 (4)
H11A0.71310.17010.76530.068*
C120.66811 (8)0.2700 (3)0.70155 (5)0.0422 (3)
H12A0.68660.14570.68480.051*
C130.72575 (6)0.6185 (2)0.60593 (4)0.0324 (3)
C140.76231 (8)0.3969 (3)0.59270 (7)0.0492 (4)
H14A0.81330.42000.59600.074*
H14B0.74760.35750.56060.074*
H14C0.74960.27010.61290.074*
C150.65806 (8)0.8528 (3)0.52295 (5)0.0392 (3)
H15A0.63840.86800.49090.059*
H15B0.70750.80650.52340.059*
H15C0.65461.00210.53880.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (5)0.0525 (6)0.0605 (7)0.0132 (4)0.0030 (4)0.0091 (5)
O20.0473 (5)0.0326 (5)0.0306 (4)0.0027 (4)0.0034 (4)0.0043 (4)
N10.0252 (5)0.0509 (7)0.0342 (5)0.0004 (5)0.0011 (4)0.0027 (5)
N20.0234 (5)0.0517 (7)0.0418 (6)0.0053 (5)0.0024 (4)0.0039 (5)
C10.0266 (6)0.0406 (7)0.0372 (6)0.0024 (5)0.0034 (5)0.0025 (5)
C1A0.0241 (5)0.0327 (6)0.0301 (6)0.0016 (4)0.0005 (4)0.0015 (5)
C20.0237 (5)0.0292 (6)0.0286 (5)0.0000 (4)0.0005 (4)0.0015 (4)
C30.0220 (5)0.0275 (5)0.0299 (5)0.0015 (4)0.0004 (4)0.0016 (4)
C40.0277 (5)0.0289 (6)0.0284 (5)0.0011 (4)0.0008 (4)0.0005 (4)
C50.0293 (6)0.0365 (6)0.0338 (6)0.0014 (5)0.0019 (5)0.0066 (5)
C5A0.0256 (6)0.0375 (6)0.0302 (6)0.0003 (5)0.0009 (4)0.0005 (5)
C60.0388 (8)0.0555 (9)0.0611 (10)0.0003 (7)0.0110 (7)0.0223 (8)
C70.0254 (5)0.0364 (6)0.0305 (6)0.0010 (5)0.0006 (4)0.0036 (5)
C80.0628 (10)0.0550 (9)0.0363 (7)0.0217 (8)0.0006 (7)0.0010 (7)
C90.0754 (12)0.0694 (12)0.0368 (8)0.0071 (10)0.0062 (8)0.0096 (8)
C100.0557 (9)0.0811 (13)0.0306 (7)0.0116 (9)0.0017 (6)0.0079 (8)
C110.0501 (9)0.0747 (12)0.0429 (8)0.0074 (8)0.0067 (7)0.0210 (8)
C120.0390 (7)0.0463 (8)0.0406 (7)0.0067 (6)0.0000 (6)0.0088 (6)
C130.0245 (5)0.0397 (7)0.0326 (6)0.0046 (5)0.0002 (4)0.0021 (5)
C140.0283 (6)0.0477 (8)0.0723 (10)0.0031 (6)0.0074 (6)0.0021 (8)
C150.0376 (7)0.0406 (7)0.0402 (7)0.0055 (6)0.0076 (5)0.0066 (6)
Geometric parameters (Å, º) top
O1—C131.2157 (17)C6—H6A0.9600
O2—C41.4215 (15)C6—H6B0.9600
O2—H2A0.8200C6—H6C0.9600
N1—C5A1.3338 (16)C7—C81.380 (2)
N1—N21.3529 (16)C7—C121.3803 (18)
N2—C11.3496 (17)C8—C91.385 (2)
N2—H2C0.8600C8—H8A0.9300
C1—C1A1.3847 (17)C9—C101.371 (3)
C1—C61.483 (2)C9—H9A0.9300
C1A—C5A1.3996 (17)C10—C111.367 (3)
C1A—C21.5093 (16)C10—H10A0.9300
C2—C71.5235 (16)C11—C121.391 (2)
C2—C31.5543 (16)C11—H11A0.9300
C2—H2B0.9800C12—H12A0.9300
C3—C131.5256 (16)C13—C141.488 (2)
C3—C41.5566 (16)C14—H14A0.9600
C3—H3A0.9800C14—H14B0.9600
C4—C151.5218 (17)C14—H14C0.9600
C4—C51.5405 (17)C15—H15A0.9600
C5—C5A1.4847 (18)C15—H15B0.9600
C5—H5A0.9700C15—H15C0.9600
C5—H5B0.9700
C4—O2—H2A109.5C1—C6—H6B109.5
C5A—N1—N2103.94 (10)H6A—C6—H6B109.5
C1—N2—N1113.36 (11)C1—C6—H6C109.5
C1—N2—H2C123.3H6A—C6—H6C109.5
N1—N2—H2C123.3H6B—C6—H6C109.5
N2—C1—C1A105.78 (12)C8—C7—C12117.74 (12)
N2—C1—C6121.79 (12)C8—C7—C2120.25 (11)
C1A—C1—C6132.37 (12)C12—C7—C2122.01 (12)
C1—C1A—C5A105.07 (11)C7—C8—C9121.61 (15)
C1—C1A—C2131.02 (11)C7—C8—H8A119.2
C5A—C1A—C2123.88 (11)C9—C8—H8A119.2
C1A—C2—C7112.60 (10)C10—C9—C8119.82 (17)
C1A—C2—C3108.68 (9)C10—C9—H9A120.1
C7—C2—C3110.35 (9)C8—C9—H9A120.1
C1A—C2—H2B108.4C11—C10—C9119.62 (15)
C7—C2—H2B108.4C11—C10—H10A120.2
C3—C2—H2B108.4C9—C10—H10A120.2
C13—C3—C2112.29 (10)C10—C11—C12120.39 (15)
C13—C3—C4111.09 (9)C10—C11—H11A119.8
C2—C3—C4112.68 (9)C12—C11—H11A119.8
C13—C3—H3A106.8C7—C12—C11120.82 (15)
C2—C3—H3A106.8C7—C12—H12A119.6
C4—C3—H3A106.8C11—C12—H12A119.6
O2—C4—C15111.21 (10)O1—C13—C14120.56 (12)
O2—C4—C5110.78 (10)O1—C13—C3119.02 (12)
C15—C4—C5108.59 (10)C14—C13—C3120.39 (11)
O2—C4—C3105.60 (9)C13—C14—H14A109.5
C15—C4—C3112.25 (10)C13—C14—H14B109.5
C5—C4—C3108.38 (9)H14A—C14—H14B109.5
C5A—C5—C4110.28 (10)C13—C14—H14C109.5
C5A—C5—H5A109.6H14A—C14—H14C109.5
C4—C5—H5A109.6H14B—C14—H14C109.5
C5A—C5—H5B109.6C4—C15—H15A109.5
C4—C5—H5B109.6C4—C15—H15B109.5
H5A—C5—H5B108.1H15A—C15—H15B109.5
N1—C5A—C1A111.85 (11)C4—C15—H15C109.5
N1—C5A—C5123.86 (11)H15A—C15—H15C109.5
C1A—C5A—C5124.28 (11)H15B—C15—H15C109.5
C1—C6—H6A109.5
C5A—N1—N2—C10.17 (16)N2—N1—C5A—C1A0.17 (15)
N1—N2—C1—C1A0.43 (16)N2—N1—C5A—C5178.45 (12)
N1—N2—C1—C6177.22 (13)C1—C1A—C5A—N10.43 (15)
N2—C1—C1A—C5A0.50 (15)C2—C1A—C5A—N1178.64 (11)
C6—C1—C1A—C5A176.80 (16)C1—C1A—C5A—C5178.19 (12)
N2—C1—C1A—C2178.53 (13)C2—C1A—C5A—C50.0 (2)
C6—C1—C1A—C21.2 (3)C4—C5—C5A—N1158.94 (12)
C1—C1A—C2—C747.39 (18)C4—C5—C5A—C1A19.52 (18)
C5A—C1A—C2—C7134.90 (13)C1A—C2—C7—C853.32 (17)
C1—C1A—C2—C3169.96 (13)C3—C2—C7—C868.31 (16)
C5A—C1A—C2—C312.33 (16)C1A—C2—C7—C12127.01 (13)
C1A—C2—C3—C13171.20 (10)C3—C2—C7—C12111.37 (13)
C7—C2—C3—C1364.88 (13)C12—C7—C8—C90.5 (3)
C1A—C2—C3—C444.84 (13)C2—C7—C8—C9179.23 (16)
C7—C2—C3—C4168.76 (9)C7—C8—C9—C100.0 (3)
C13—C3—C4—O274.30 (12)C8—C9—C10—C110.5 (3)
C2—C3—C4—O252.70 (12)C9—C10—C11—C120.6 (3)
C13—C3—C4—C1547.03 (14)C8—C7—C12—C110.4 (2)
C2—C3—C4—C15174.04 (10)C2—C7—C12—C11179.28 (13)
C13—C3—C4—C5166.96 (10)C10—C11—C12—C70.1 (3)
C2—C3—C4—C566.04 (12)C2—C3—C13—O1129.62 (13)
O2—C4—C5—C5A65.66 (13)C4—C3—C13—O1103.16 (14)
C15—C4—C5—C5A171.94 (11)C2—C3—C13—C1452.50 (16)
C3—C4—C5—C5A49.75 (13)C4—C3—C13—C1474.72 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.822.032.8487 (14)178
N2—H2C···O1ii0.862.112.9587 (15)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H20N2O2
Mr284.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)18.6999 (9), 5.6415 (3), 28.4855 (14)
β (°) 94.498 (1)
V3)2995.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
16597, 3709, 3079
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.00
No. of reflections3709
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus, (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.822.032.8487 (14)178
N2—H2C···O1ii0.862.112.9587 (15)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y1/2, z.
 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Ind. J. Chem. Sect. B, 24, 1255–1258.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1127
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds