

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(S)-(+)-N-Benzylidene-1-(1-naphthyl)ethylamine

Sylvain Bernès,^a* Guadalupe Hernández,^b Jaime Vázguez,^c Alejandra Tovar^b and René Gutiérrez^b

^aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico, ^bLaboratorio de Síntesis de Compleios, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, A.P. 1067, 72001 Puebla, Pue., Mexico, and ^cUniversidad de la Cañada, Cd. Universitaria, 68540, Teotitlán de Flores Magón, Oax., Mexico

Correspondence e-mail: sylvain_bernes@Hotmail.com

Received 1 April 2011; accepted 7 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 8.7.

In the title chiral aldimine, $C_{19}H_{17}N$, the azomethine group is not fully conjugated with the phenyl substituent: the dihedral angle between phenyl and $C^* - N = C$ mean planes is $\varphi_3 =$ 23.0 (2)°. Compared with the earlier DFT-B3LYP/6-31 G(d) computations from the literature, the $C=N-C^*-C(naph$ thyl) torsion angle, found at $\varphi_2 = -118.0 \ (2)^\circ$ in the X-ray structure, does not match the angle calculated for the potential minimum energy at $\varphi_2 = 0^\circ$. However, this angle is close to the second potential energy minimum at $\varphi_2 = -120^\circ$ which is *ca*. 8.5 kJ mol^{-1} above the global energy minimum. Thus, the reported X-ray structure corresponds to the second most likely (according to DFT) conformer, allowing the existence of other polymorphs to be anticipated.

Related literature

For a typical synthesis of the title compound, see: Lee & Ahn (2002). For general background to solvent-free synthesis, see: Tanaka & Toda (2000). For the structures of related imines, see: Espinosa Leija et al. (2009); Bernès et al. (2010). For the DFT study of the title compound (R enantiomer), see: Fukuda et al. (2007).

organic compounds

Experimental

Crystal data

N

a

h

f

C19H17N	$V = 737.76 (13) \text{ Å}^3$
$M_r = 259.34$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 8.0761 (8) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 7.7874 (8) Å	$T = 298 { m K}$
c = 11.7760 (11) Å	$0.4 \times 0.2 \times 0.2$ mm
$\beta = 95.033 \ (7)^{\circ}$	

Data collection

Siemens P4 diffractometer 2470 measured reflections 1595 independent reflections 1276 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.094$ S = 1.021595 reflections 183 parameters

 $R_{\rm int} = 0.017$ 3 standard reflections every 97 reflections intensity decay: 1%

mm

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.09 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.08 \text{ e } \text{\AA}^{-3}$

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Support from VIEP-UAP (GUPJ-NAT10-G) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2008).

References

- Bernès, S., Hernández, G., Portillo, R., Cruz, S. & Gutiérrez, R. (2010). Acta Cryst. E66, 01322-01323.
- Espinosa Leija, A., Hernández, G., Portillo, R., Gutiérrez, R. & Bernès, S. (2009). Acta Cryst. E65, o1651.
- Fukuda, K., Suzuki, H., Tokita, M., Watanabe, J. & Kawauchi, S. (2007). J. Mol. Struct. (Theochem), 821, 95-100.
- Lee, T. & Ahn, Y. (2002). Bull. Korean Chem. Soc. 23, 1490-1492.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.

supporting information

Acta Cryst. (2011). E67, o1257 [doi:10.1107/S1600536811012980]

(S)-(+)-N-Benzylidene-1-(1-naphthyl)ethylamine

Sylvain Bernès, Guadalupe Hernández, Jaime Vázquez, Alejandra Tovar and René Gutiérrez

S1. Comment

Schiff base compounds are widely studied and used, attracting much attention in both organic synthesis and metal ion complexation. Recently, we have focused our attention on the synthesis of chiral and achiral Schiff bases (Espinosa Leija *et al.*, 2009; Bernès *et al.*, 2010). In continuation of this work, we synthesized the title compound using the solvent-free approach (Tanaka & Toda, 2000). The reaction occurs under mild conditions and requires easier workup procedures and simpler equipment, compared to similar reactions carried out in solution, for example - in refluxing CH_2Cl_2 (Lee & Ahn, 2002).

In the title molecule (Fig. 1), all distances and bond angles have expected values. The imine group has a sterically favored *E* conformation, and it is rotated by 23.0 (2)° relative to the phenyl group (the dihedral angle between planes of N1/C2/C9 and C3…C8 groups). The dihedral angle between aromatic phenyl and naphthyl groups is 70.7 (1)°. This molecular conformation is significantly different from one observed in the solid-state for a related imine bearing a thiophene group instead of the phenyl (Espinosa Leija *et al.*, 2009), in which corresponding angles are 5.1 (8) and 83.79 (13)°.

Interestingly, there is a study on conformational flexibility of the title compound that has been published on the basis of DFT calculations at B3LYP/6–31 G(*d*) level (Fukuda *et al.*, 2007). The potential energies for internal rotations around σ bonds C9^{*}—C11 (φ_1), C9^{*}—N1 (φ_2) and C2—C3 (φ_3) were computed (see Fig. 1 for the angle notations, hereafter assumed for the *S* enantiomer). The dihedral angle φ_1 related to the orientation of the naphthyl group has two energy minima, with the global minimum at $\varphi_1 = 40^\circ$, close to that found by X-ray diffraction ($\varphi_1 = N1$ —C9—C11—C12 = -25.3 (3)°). Similarly, the orientations for the phenyl ring are consistent between DFT and X-ray data: $\varphi_3 = 0^\circ vs. \varphi_3 = N1$ —C2—C3—C8 = 19.9 (4)°. In contrast, internal rotation φ_2 computed by DFT presents a minimum at $\varphi_2 = 0^\circ$, far different from the angle observed in the crystal structure: $\varphi_2 = C2$ —N1—C9—C11 = -118.0 (2)°. However, on the φ_2 potential curve published by Fukuda *et al.*, there are two lesser minima, at $\varphi_2 = -120^\circ$ and $\varphi_2 = 110^\circ$. The first one is consistent with the conformer observed in the solid-state ($\varphi_2 = -118^\circ$) and is placed only 2 kcal/mol above the $\varphi_2 = 0^\circ$ minimum. It may thus be expected that the title molecule could be crystallized in different polymorphic phases, derived from conformers with different values for the angle φ_2 .

S2. Experimental

The title compound was prepared by reacting (*S*)-(–)-(1-naphthyl)ethylamine and benzaldehyde (Lee & Ahn, 2002), but at room temperature and using no solvent. The crude was recrystallized from EtOH affording colorless crystals of the title compound. Yield 94%; mp 79–81 °C. Analysis: $[a]_D^{25} = +233$ (*c* 1, CHCl₃). FT—IR (KBr): 1641 cm⁻¹ (C=N). ¹H NMR (400 MHz, CDCl₃/TMS) $\delta = 1.71$ (d, 3H, CH—CH₃), 5.31 (q, 1H, Ar—CH), 7.34–8.24 (m, 12H, Ar), 8.36 (s, 1H, H-C=N). ¹³C NMR (100 MHz, CDCl₃/TMS) $\delta = 24.51$ (CCH₃), 65.51 (CHCH₃), 123.56 (Ar), 123.97 (Ar), 125.26 (Ar), 125.64(Ar), 125.74 (Ar), 127.28 (Ar), 128.21 (Ar), 128.46 (Ar), 128.88 (Ar), 130.52 (Ar), 130.60 (Ar), 133.94 (Ar),

136.43 (Ar),141.12 (Ar), 159.55 (HC=N). MS—EI: *m*/*z*= 259 (*M*⁺).

S3. Refinement

All C-bonded H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH₃), and 0.98 Å (methine CH). Isotropic displacement parameters were calculated as $U_{iso}(H) = 1.5U_{eq}(C10)$ for the methyl group and $U_{iso}(H) = 1.2U_{eq}(carrier atom)$ otherwise. The methyl group C10 was considered as a rigid group but was allowed to rotate about C9—C10 bond. The absolute configuration was assigned from the known configuration of the chiral amine used as the starting material and confirmed by measring the optical rotation and comparing with rotations reported in the litterature for both enantiomers. All measured Friedel pairs (223) were merged.

Figure 1

The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. The scheme indicates the torsion angles used in the DFT study of Fukuda *et al.* (2007).

(S)-(+)-N-Benzylidene-1-(1-naphthyl)ethylamine

Crystal data	
C ₁₉ H ₁₇ N	$V = 737.76 (13) \text{ Å}^3$
$M_r = 259.34$	Z = 2
Monoclinic, $P2_1$	F(000) = 276
Hall symbol: P 2yb	$D_{\rm x} = 1.167 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.0761 (8) Å	Melting point: 352 K
b = 7.7874 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.7760 (11) Å	Cell parameters from 80 reflections
$\beta = 95.033 (7)^{\circ}$	$\theta = 4.9 - 12.3^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K

Data collection

Siemens P4 diffractometer	$R_{ m int} = 0.017$ $ heta_{ m max} = 26.2^\circ, \ heta_{ m min} = 2.5^\circ$
Radiation source: fine-focus sealed tube	$h = -10 \longrightarrow 3$
Graphite monochromator	$k = -1 \rightarrow 9$
$2\theta/\omega$ scans	$l = -14 \rightarrow 14$
2470 measured reflections	3 standard reflections every 97 reflections
1595 independent reflections	intensity decay: 1%
1276 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained

 $wR(F^2) = 0.094$ $wR(F^2) = 0.094$ S = 1.021595 reflections 183 parameters 1 restraint 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 0.0347P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.09$ e Å⁻³ $\Delta\rho_{min} = -0.08$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.063 (8) Absolute structure: 223 Friedel pairs merged

Irregular, colourless

 $0.4 \times 0.2 \times 0.2$ mm

	Fractional	atomic	coordinates	and	isotropic	or equiv	alent is	sotropic	displac	cement	parameters	(Å	2)
--	------------	--------	-------------	-----	-----------	----------	----------	----------	---------	--------	------------	----	----

x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
0.3971 (2)	0.6059 (3)	0.71942 (14)	0.0646 (5)
0.4226 (3)	0.6094 (3)	0.61588 (18)	0.0643 (6)
0.3363	0.6432	0.5631	0.077*
0.5833 (3)	0.5624 (3)	0.57416 (18)	0.0662 (6)
0.6202 (4)	0.6121 (4)	0.4665 (2)	0.0906 (8)
0.5440	0.6761	0.4203	0.109*
0.7722 (5)	0.5659 (5)	0.4274 (3)	0.1090 (11)
0.7989	0.6028	0.3561	0.131*
0.8809 (4)	0.4676 (5)	0.4930 (3)	0.1058 (12)
0.9813	0.4356	0.4660	0.127*
0.8442 (3)	0.4155 (5)	0.5982 (3)	0.0977 (10)
0.9188	0.3468	0.6423	0.117*
0.6973 (3)	0.4640 (4)	0.6394 (2)	0.0748 (7)
0.6745	0.4301	0.7121	0.090*
0.2278 (2)	0.6405 (3)	0.74826 (16)	0.0583 (5)
0.1547	0.6558	0.6781	0.070*
0.1713 (3)	0.4844 (3)	0.8128 (2)	0.0747 (7)
0.1743	0.3844	0.7654	0.112*
0.0599	0.5025	0.8328	0.112*
0.2442	0.4681	0.8809	0.112*
	x 0.3971 (2) 0.4226 (3) 0.3363 0.5833 (3) 0.6202 (4) 0.5440 0.7722 (5) 0.7989 0.8809 (4) 0.9813 0.8442 (3) 0.9188 0.6973 (3) 0.6745 0.2278 (2) 0.1547 0.1713 (3) 0.1743 0.0599 0.2442	xy $0.3971 (2)$ $0.6059 (3)$ $0.4226 (3)$ $0.6094 (3)$ 0.3363 0.6432 $0.5833 (3)$ $0.5624 (3)$ $0.6202 (4)$ $0.6121 (4)$ 0.5440 0.6761 $0.7722 (5)$ $0.5659 (5)$ 0.7989 0.6028 $0.8809 (4)$ $0.4676 (5)$ 0.9813 $0.4155 (5)$ 0.9188 0.3468 $0.6973 (3)$ $0.4640 (4)$ 0.6745 0.4301 $0.2278 (2)$ $0.6405 (3)$ 0.1547 0.6558 $0.1713 (3)$ $0.4844 (3)$ 0.1743 0.3844 0.0599 0.5025 0.2442 0.4681	x y z $0.3971(2)$ $0.6059(3)$ $0.71942(14)$ $0.4226(3)$ $0.6094(3)$ $0.61588(18)$ 0.3363 0.6432 0.5631 $0.5833(3)$ $0.5624(3)$ $0.57416(18)$ $0.6202(4)$ $0.6121(4)$ $0.4665(2)$ 0.5440 0.6761 0.4203 $0.7722(5)$ $0.5659(5)$ $0.4274(3)$ 0.7989 0.6028 0.3561 $0.8809(4)$ $0.4676(5)$ $0.4930(3)$ 0.9813 0.4356 0.4660 $0.8442(3)$ $0.4155(5)$ $0.5982(3)$ 0.9188 0.3468 0.6423 $0.6973(3)$ $0.4640(4)$ $0.6394(2)$ 0.6745 0.4301 0.7121 $0.2278(2)$ $0.6405(3)$ $0.74826(16)$ 0.1547 0.6558 0.6781 $0.1713(3)$ $0.4844(3)$ $0.8128(2)$ 0.1743 0.3844 0.7654 0.0599 0.5025 0.8328 0.2442 0.4681 0.8809

C11	0.2202 (3)	0.7992 (3)	0.82185 (16)	0.0538 (5)	
C12	0.3561 (3)	0.8538 (3)	0.88883 (18)	0.0648 (6)	
H12A	0.4567	0.7968	0.8856	0.078*	
C13	0.3473 (3)	0.9946 (3)	0.9628 (2)	0.0760 (7)	
H13A	0.4412	1.0271	1.0092	0.091*	
C14	0.2046 (3)	1.0830(3)	0.96724 (19)	0.0729 (7)	
H14A	0.2011	1.1765	1.0161	0.087*	
C15	0.0608 (3)	1.0349 (3)	0.89846 (17)	0.0595 (5)	
C16	-0.0910(3)	1.1256 (3)	0.90111 (19)	0.0729 (7)	
H16A	-0.0950	1.2215	0.9478	0.088*	
C17	-0.2301 (3)	1.0758 (4)	0.8373 (2)	0.0776 (7)	
H17A	-0.3285	1.1369	0.8407	0.093*	
C18	-0.2257 (3)	0.9330 (4)	0.7667 (2)	0.0731 (7)	
H18A	-0.3217	0.8987	0.7233	0.088*	
C19	-0.0826 (2)	0.8434 (3)	0.76058 (18)	0.0618 (6)	
H19A	-0.0822	0.7490	0.7122	0.074*	
C20	0.0660 (2)	0.8899 (3)	0.82582 (16)	0.0529 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0602 (10)	0.0696 (13)	0.0646 (10)	0.0073 (10)	0.0089 (8)	-0.0043 (10)
C2	0.0694 (13)	0.0571 (13)	0.0670 (12)	0.0072 (12)	0.0095 (11)	-0.0043 (11)
C3	0.0726 (14)	0.0565 (12)	0.0718 (12)	-0.0021 (11)	0.0185 (11)	-0.0127 (11)
C4	0.121 (2)	0.0679 (16)	0.0887 (16)	0.0076 (18)	0.0422 (16)	-0.0017 (14)
C5	0.139 (3)	0.084 (2)	0.116 (2)	-0.017 (2)	0.074 (2)	-0.023 (2)
C6	0.0783 (18)	0.100(2)	0.145 (3)	-0.0151 (19)	0.0411 (19)	-0.059 (2)
C7	0.0638 (15)	0.112 (3)	0.117 (2)	0.0058 (16)	0.0057 (15)	-0.052 (2)
C8	0.0638 (14)	0.0823 (17)	0.0782 (13)	0.0047 (14)	0.0061 (11)	-0.0211 (13)
C9	0.0544 (11)	0.0602 (12)	0.0606 (11)	0.0038 (11)	0.0073 (9)	-0.0060 (11)
C10	0.0847 (16)	0.0558 (14)	0.0842 (15)	-0.0062 (13)	0.0114 (12)	-0.0021 (13)
C11	0.0571 (11)	0.0528 (12)	0.0530 (10)	-0.0038 (10)	0.0127 (9)	0.0041 (9)
C12	0.0600 (13)	0.0637 (13)	0.0708 (12)	-0.0029 (12)	0.0060 (11)	0.0000 (12)
C13	0.0773 (17)	0.0729 (17)	0.0765 (14)	-0.0175 (15)	-0.0008(12)	-0.0106 (14)
C14	0.0912 (17)	0.0565 (14)	0.0723 (13)	-0.0121 (13)	0.0155 (12)	-0.0119 (11)
C15	0.0730 (14)	0.0493 (11)	0.0587 (11)	-0.0047 (11)	0.0209 (10)	0.0048 (10)
C16	0.0884 (18)	0.0584 (13)	0.0768 (14)	0.0041 (14)	0.0341 (13)	-0.0024 (13)
C17	0.0715 (16)	0.0747 (17)	0.0901 (15)	0.0131 (14)	0.0269 (13)	0.0072 (14)
C18	0.0605 (13)	0.0809 (17)	0.0794 (14)	0.0022 (13)	0.0145 (11)	0.0021 (13)
C19	0.0601 (13)	0.0612 (13)	0.0655 (11)	-0.0024 (11)	0.0139 (10)	-0.0031 (11)
C20	0.0591 (11)	0.0495 (11)	0.0520 (9)	-0.0052 (9)	0.0166 (8)	0.0045 (9)

Geometric parameters (Å, °)

N1—C2	1.255 (2)	C10—H10C	0.9600
N1—C9	1.462 (3)	C11—C12	1.362 (3)
C2—C3	1.473 (3)	C11—C20	1.436 (3)
C2—H2A	0.9300	C12—C13	1.405 (3)

C3—C8	1.379 (3)	C12—H12A	0.9300
C3—C4	1.383 (3)	C13—C14	1.348 (3)
C4—C5	1.395 (4)	C13—H13A	0.9300
C4—H4A	0.9300	C14—C15	1.407 (3)
C5—C6	1.355 (5)	C14—H14A	0.9300
C5—H5A	0.9300	C15—C16	1.418 (3)
C6—C7	1.361 (5)	C15—C20	1.420 (3)
C6—H6A	0.9300	C16—C17	1 352 (3)
C7—C8	1 373 (3)	C16—H16A	0.9300
C7—H7A	0.9300	C17-C18	1 391 (4)
	0.9300	C17 $H17A$	0.9300
$C_0 = C_{11}$	1.514(3)	C_{18} C_{19}	1 358 (3)
C_{2}	1.514(5) 1 525 (3)		0.0300
C_{9}	1.525 (5)	C_{10} C_{20}	0.9300
C10_U10A	0.9800	C10 = U10A	1.414(3)
CIO-HIOA	0.9600	С19—н19А	0.9300
CI0—HI0B	0.9600		
C2 N1 C0	117 20 (19)		100 5
C2—N1—C9	117.30 (18)	HI0A—CI0—HI0C	109.5
N1 = C2 = C3	122.9 (2)	HI0B—CI0—HI0C	109.5
NI—C2—H2A	118.5	C12-C11-C20	118.99 (19)
C3—C2—H2A	118.5	C12—C11—C9	121.04 (19)
C8—C3—C4	118.6 (2)	C20—C11—C9	119.90 (18)
C8—C3—C2	121.2 (2)	C11—C12—C13	121.4 (2)
C4—C3—C2	120.2 (2)	C11—C12—H12A	119.3
C3—C4—C5	119.8 (3)	C13—C12—H12A	119.3
C3—C4—H4A	120.1	C14—C13—C12	120.8 (2)
C5—C4—H4A	120.1	C14—C13—H13A	119.6
C6—C5—C4	120.2 (3)	С12—С13—Н13А	119.6
С6—С5—Н5А	119.9	C13—C14—C15	120.5 (2)
С4—С5—Н5А	119.9	C13—C14—H14A	119.8
C5—C6—C7	120.4 (3)	C15—C14—H14A	119.8
С5—С6—Н6А	119.8	C14—C15—C16	121.8 (2)
С7—С6—Н6А	119.8	C14—C15—C20	119.5 (2)
C6—C7—C8	120.2 (3)	C16—C15—C20	118.7 (2)
С6—С7—Н7А	119.9	C17—C16—C15	121.5 (2)
C8—C7—H7A	119.9	C17—C16—H16A	119.2
C7—C8—C3	120.8 (3)	C15—C16—H16A	119.2
C7—C8—H8A	119.6	C_{16} $-C_{17}$ $-C_{18}$	119.9(2)
$C_3 - C_8 - H_8 A$	119.6	C_{16} C_{17} H_{17A}	120.1
N1 - C9 - C11	111.65 (18)	C18 - C17 - H17A	120.1
N1 - C9 - C10	107.2(2)	$C_{10} - C_{18} - C_{17}$	120.1 120.6(2)
$C_{11} = C_{10} = C_{10}$	107.2(2) 109.68(15)	$C_{19} = C_{18} = C_{17}$	120.0 (2)
N1 C0 H0A	109.08 (15)	C17 C18 H18A	119.7
$\Gamma_{1} = C_{2} = \Pi_{2} \times C_{1}$	109.4	$C_{17} = C_{10} = C_{10}$	119.7 121.7(2)
С10 С0 Ц0А	107.4	$C_{10} = C_{10} = U_{10A}$	121.7(2)
$C_1 U - U_2 - \Pi_2 A$	109.4	$C_{10} = C_{10} = H_{10A}$	119.2
$C_{2} = C_{10} = H_{10}$	109.5	$C_{10} = C_{19} = H_{19} A$	119.2
	109.5	C19 - C20 - C15	117.57 (19)
H10A-C10-H10B	109.5	C19—C20—C11	123.62 (18)

С9—С10—Н10С	109.5	C15—C20—C11	118.81 (18)
C9—N1—C2—C3	-174.6 (2)	C11—C12—C13—C14	-1.9 (4)
N1—C2—C3—C8	19.9 (4)	C12-C13-C14-C15	0.6 (4)
N1—C2—C3—C4	-162.2 (3)	C13—C14—C15—C16	-179.9 (2)
C8—C3—C4—C5	-1.6 (4)	C13—C14—C15—C20	1.4 (3)
C2—C3—C4—C5	-179.5 (2)	C14—C15—C16—C17	-178.0 (2)
C3—C4—C5—C6	2.3 (5)	C20-C15-C16-C17	0.7 (3)
C4—C5—C6—C7	-1.1 (5)	C15—C16—C17—C18	-0.3 (4)
C5—C6—C7—C8	-0.8 (5)	C16—C17—C18—C19	-0.4 (4)
C6—C7—C8—C3	1.6 (4)	C17—C18—C19—C20	0.6 (3)
C4—C3—C8—C7	-0.3 (4)	C18—C19—C20—C15	-0.1 (3)
C2—C3—C8—C7	177.6 (3)	C18—C19—C20—C11	-179.8 (2)
C2—N1—C9—C11	-118.0 (2)	C14—C15—C20—C19	178.3 (2)
C2-N1-C9-C10	121.9 (2)	C16—C15—C20—C19	-0.5 (3)
N1-C9-C11-C12	-25.3 (3)	C14—C15—C20—C11	-2.0 (3)
C10-C9-C11-C12	93.4 (2)	C16—C15—C20—C11	179.16 (18)
N1-C9-C11-C20	157.71 (17)	C12-C11-C20-C19	-179.5 (2)
C10—C9—C11—C20	-83.6 (2)	C9—C11—C20—C19	-2.5 (3)
C20-C11-C12-C13	1.1 (3)	C12—C11—C20—C15	0.8 (3)
C9—C11—C12—C13	-175.92 (19)	C9—C11—C20—C15	177.88 (17)