organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-{[6-(4-bromophenyl)-3-oxo-2,3,4,5-tetrahydropyridazin-4-yl]methyl}benzoate

Adailton J. Bortoluzzi,^a* Luciana B. P. Souza,^a Antônio C. Joussef^a and Emerson Meyer^b

^aDepartamento de Química, UFSC, 88040-900 Florianópolis, SC, Brazil, and ^bDepartamento de Química, UEM, 87020-900 Maringá, PR, Brazil Correspondence e-mail: adajb@qmc.ufsc.br

Received 13 April 2011; accepted 19 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.038; wR factor = 0.098; data-to-parameter ratio = 13.3.

The structure of the title compound, $C_{19}H_{17}BrN_2O_3$, consists of two cyclic groups, *viz.* 4-(methoxycarbonyl)phenyl and 6-(4bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-yl, which are linked by a methylene spacer. The pyridazine ring is twisted and the dihedral angle between its mean plane and that of the bromophenyl mean plane is 17.2 (2)°. The 4-(methoxycarbonyl)phenyl group shows a quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxylate ester group is 7.9 (4)°. Centrosymmetric intermolecular N-H···O hydrogen bonds form dimers. These are linked by C-Br···O=C interactions [Br···O = 3.10 (1) Å] to form a one-dimensional polymeric structure running along the [120] direction.

Related literature

For specific details concerning organic reactions and synthetic procedures for 4,5-diihydro-3(2*H*)-pyridazinone derivatives, see: Meyer *et al.* (2004). For the biological activity of heterocyclic compounds containing the 3(2*H*)-pyridazinone group, see: Sayed *et al.* (2002); Katrusiak & Baloniak (1994); Dogruer *et al.* (2003); Pieretti *et al.* (2006); Cao *et al.* (2003); Piaz *et al.* (1994); Xu *et al.* (2008); Giovannoni *et al.* (2007); Coelho *et al.* (2007); Malinka *et al.* (2003); Wexler *et al.* (1996); Barbaro *et al.*, (2001); Vergelli *et al.* (2007); Abudshait (2007). For related structures, see: Zhang *et al.* (2006); Zhou & Zhou (2007). For C–Br···O interactions, see: Voronina *et al.* (2009)

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{17}BrN_2O_3\\ M_r = 401.26\\ Triclinic, P\overline{1}\\ a = 5.991 \ (1) \ \mathring{A}\\ b = 8.958 \ (1) \ \mathring{A}\\ c = 17.531 \ (2) \ \mathring{A}\\ \alpha = 99.502 \ (11)^\circ\\ \beta = 95.241 \ (12)^\circ \end{array}$

Data collection

Enraf-Nonius CAD-43151diffractometer2033Absorption correction: ψ scan R_{int} [North et al. (1968) and PLATON3 stat(Spek, 2009)]re $T_{min} = 0.567, T_{max} = 0.978$ in3368 measured reflectionsin

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.098$ S = 1.033151 reflections 237 parameters 3151 independent reflections 2033 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ 3 standard reflections every 200 reflections intensity decay: 1%

 $\gamma = 105.499 \ (10)^{\circ}$ $V = 885.1 \ (2) \ \text{\AA}^3$

Mo $K\alpha$ radiation

 $0.50 \times 0.33 \times 0.13$ mm

 $\mu = 2.34 \text{ mm}^{-1}$

T = 293 K

Z = 2

4 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$N3-H3\cdotsO1^i$	0.86	2.08	2.910 (4)	162	
Symmetry codes: (i) $-x + 3$, $-y + 1$, $-z + 1$; (ii) $x - 2$, $y - 1$, z .					

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *SET4* in *CAD-4 Software*; data reduction: *HELENA* (Spek, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2061).

References

- Abudshait, S. A. (2007). Molecules, 12, 25-42.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Barbaro, R., Betti, L., Botta, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G. & Corsano, S. (2001). *J. Med. Chem.* 44, 2118–21332.
- Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155.
- Coelho, A., Raviña, E., Fraiz, N., Yáñez, M., Laguna, R., Cano, E. & Sotelo, E. (2007). J. Med. Chem. 50, 6476–6484.
- Dogruer, D. S., Sahin, M. F., Kupeli, E. & Yesilada, E. (2003). *Turk. J. Chem.* **27**, 727–738.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Giovannoni, M. P., Cesari, N., Vergelli, C., Graziano, A., Biancalani, C., Biagini, P., Ghelardini, C., Vivoli, E. & Piaz, V. D. (2007). J. Med. Chem. 50, 3945–3953.
- Katrusiak, A. & Baloniak, S. (1994). Tetrahedron, 50, 12933–12940.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Malinka, W., Redzicka, A. & Losach, O. (2003). Il Farmaco, 59, 457-462.
- Meyer, E., Joussef, A. C., Gallardo, H. & de Souza, L. de B. P. (2004). *Synth. Commun.* **34**, 783–793.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Piaz, V. D., Ciciani, G. & Giovannoni, M. P. (1994). Synthesis, pp. 669-671.
- Pieretti, S., Dominici, L., Giannuario, A. D., Cesari, N. & Piaz, V. D. (2006). Life Sci. **79**, 791–800.
- Sayed, G. H., Sayed, M. A., Mahmoud, M. R. & Shaaban, S. S. (2002). Egypt. J. Chem. 45, 767–776.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vergelli, C., Giovannoni, M. P., Pieretti, S., Giannuario, A. D., Piaz, V. D., Biagini, P., Biancalani, C., Graziano, A. & Cesari, N. (2007). *Bioorg. Med. Chem.* 15, 5563–5575.
- Voronina, Yu. K., Saifina, L. F., Romanova, E. S., Lodochnikova, O. A. & Litvinov, I. A. (2009). J. Struct. Chem. 50, 588–591.
- Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D. & Timmermans, P. B. M. W. M. (1996). J. Med. Chem. 39, 625– 656.
- Xu, H., Hu, X.-H., Zou, X.-M., Liu, B., Zhu, Y.-Q., Wang, Y., Hu, F.-Z. & Uang, H.-Z. (2008). J. Agric. Food Chem. 56, 6567–6572.
- Zhang, C.-T., Wu, J.-H., Zhou, L.-N., Wang, Y.-L. & Wang, J.-K. (2006). Acta Cryst. E62, 02999–03000.
- Zhou, Z.-Z. & Zhou, H.-B. (2007). Acta Cryst. E63, o2512.

supporting information

Acta Cryst. (2011). E67, o1230-o1231 [doi:10.1107/S160053681101467X]

Methyl 4-{[6-(4-bromophenyl)-3-oxo-2,3,4,5-tetrahydropyridazin-4-yl]methyl}benzoate

Adailton J. Bortoluzzi, Luciana B. P. Souza, Antônio C. Joussef and Emerson Meyer

S1. Comment

Heterocyclic compounds containing 3-(2*H*)-pyridazinone moiety in their structures have attracted a great deal of attention due to their wide spectrum of biological activity such as antimicrobial (Sayed *et al.*, 2002; Katrusiak & Baloniak, 1994), anti-inflammatory (Dogruer *et al.*, 2003; Pieretti *et al.*, 2006), antifeedant (Cao *et al.*, 2003), herbicidal (Piaz *et al.*, 1994; Xu *et al.*, 2008), antiplatelet (Giovannoni *et al.*, 2007; Coelho *et al.*, 2007), anticancer (Malinka *et al.*, 2003), antihypertensive (Wexler *et al.*, 1996; Barbaro *et al.*, 2001), antinociceptive agent (Giovannoni *et al.*, 2007; Vergelli *et al.*, 2007) and other biological and pharmacological properties (Abudshait, 2007). In our study toward the synthesis of di-hydropyridazinones as potential candidates for antihypertensive activity the structure of methyl 4-[6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-ylmethyl]benzoate has been determined.

The structure of the title compound consists of two cyclic moieties, 4-(methoxycarbonyl)phenyl and 6-(4-bromophenyl)-3-oxo-2,3,4,5-dihydropyridazin-4-yl, which are linked by methylene spacer (Fig. 1). The pyridazinyl ring is twisted, the greatest deviation is observed for carbon atoms C5 and the disordered C6A and C6B atoms, which are -0.0674 (8), 0.479 (5) and -0.415 (12) Å, respectively, out of the mean plane of all atoms in the ring. The dihedral angle between the mean plane of this ring and that of the bromophenyl mean plane is 17.2 (2)°. The 4-(Methoxycarbonyl)phenyl moiety shows quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxylate ester group is 7.9 (4)°. Intermolecular N3—H3N···O1 hydrogen bonds form centrosymmetric dimers (Fig. 2). Each dimer is linked to two neighboring dimers through C4=O1···Br—C14 interactions (Voronina *et al.*, 2009) forming an one-dimensional polymeric structure along [120] direction (Fig. 3). In addition, packing analysis shows that the molecules are perfectly stacked along [100] direction (Fig. 4).

S2. Experimental

The title compound was synthesized according to a previously described method (Meyer *et al.*, 2004). A careful crystallization from methanol/water (1:1 v/v) provided colorless crystals suitable for X-ray analysis.

S3. Refinement

H atoms were placed at their idealized positions with distances of 0.93, 0.98, 0.97 and 0.96 Å and U_{iso} fixed at 1.2 and 1.5 times U_{eq} of the preceding atom for C—H_{Ar}, CH, CH₂ and CH₃, respectively. H atom bonded to N atom at the pyridazinyl ring was found from Fourier difference map and treated with riding model and its U_{iso} fixed at 1.2 times U_{eq} of the parent atom. One C atom (C6) of the pyridazinyl ring is disordered over two alternative positions. The position of the disordered atoms were restrained and the occupancies were refined giving 0.696 (16) and 0.304 (16) for C6A and C6B, respectively.

Figure 1

The molecular structure of title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Figure 2 Dimeric structure formed by hydrogen bonds. Symmetry code: -x + 3, -y + 1, -z + 1

Figure 3

One-dimensional polymeric structure formed by C—Br···O=C interactions. Symmetry code: -2 + x, -1 + y, z

Figure 4

Packing showing the molecules staked along [100] direction.

Methyl 4-{[6-(4-bromophenyl)-3-oxo-2,3,4,5-tetrahydropyridazin-4-yl]methyl}benzoate

Crystal data	
$C_{19}H_{17}BrN_2O_3$	$\gamma = 105.499 \ (10)^{\circ}$
$M_r = 401.26$	V = 885.1 (2) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 408
a = 5.991(1) Å	$D_{\rm x} = 1.506 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.958 (1) Å	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
c = 17.531 (2) Å	Cell parameters from 25 reflections
$\alpha = 99.502 \ (11)^{\circ}$	$\theta = 8.2 - 13.4^{\circ}$
$\beta = 95.241 \ (12)^{\circ}$	$\mu = 2.34 \text{ mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Enraf–Nonius CAD-4 diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega/2\theta$ scans
Absorption correction: ψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
$T_{\min} = 0.567, \ T_{\max} = 0.978$
3368 measured reflections

Refinement

Tejuventent	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 1.03	H-atom parameters constrained
3151 reflections	$w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 0.1645P]$
237 parameters	where $P = (F_o^2 + 2F_c^2)/3$
4 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

 $0.50 \times 0.33 \times 0.13 \text{ mm}$

 $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -7 \rightarrow 6$ $k = 0 \rightarrow 10$

intensity decay: 1%

 $R_{\rm int} = 0.024$

 $l = -20 \rightarrow 20$

3151 independent reflections 2033 reflections with $I > 2\sigma(I)$

3 standard reflections every 200 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br	-0.15083 (6)	-0.19522 (5)	0.35018 (3)	0.06171 (18)	
01	1.4961 (4)	0.5375 (3)	0.40556 (15)	0.0636 (7)	
O2	0.7322 (7)	0.1015 (5)	-0.0912 (2)	0.1113 (14)	
O3	0.5072 (5)	0.2549 (4)	-0.05798 (17)	0.0862 (10)	
N2	0.9579 (5)	0.2989 (3)	0.44336 (17)	0.0477 (7)	
N3	1.1821 (5)	0.4010 (3)	0.45053 (17)	0.0495 (7)	
Н3	1.2594	0.4324	0.4969	0.059*	
C1	0.8308 (5)	0.2698 (4)	0.37748 (19)	0.0441 (9)	
C4	1.2910 (6)	0.4559 (4)	0.3928 (2)	0.0478 (9)	
C5	1.1519 (6)	0.4051 (6)	0.3128 (2)	0.0748 (13)	
H5A	1.1718	0.3001	0.2959	0.090*	0.696 (16)
H5B	1.0661	0.4828	0.3257	0.090*	0.304 (16)
C6A	0.9009 (7)	0.3670 (12)	0.3173 (5)	0.053 (2)	0.696 (16)
H61A	0.8150	0.3097	0.2667	0.063*	0.696 (16)
H62A	0.8582	0.4644	0.3297	0.063*	0.696 (16)
C6B	0.936 (2)	0.2760 (19)	0.3030 (5)	0.049 (5)	0.304 (16)
H61B	0.9684	0.1765	0.2852	0.059*	0.304 (16)
H62B	0.8234	0.2891	0.2630	0.059*	0.304 (16)
C11	0.5908 (5)	0.1601 (4)	0.3696 (2)	0.0430 (8)	
C12	0.4841 (6)	0.1357 (4)	0.4353 (2)	0.0485 (9)	
H12	0.5620	0.1913	0.4843	0.058*	
C13	0.2661 (6)	0.0313 (4)	0.4295 (2)	0.0505 (9)	

H13	0.1970	0.0163	0.4741	0.061*
C14	0.1509 (5)	-0.0509 (4)	0.3570 (2)	0.0459 (9)
C15	0.2488 (6)	-0.0279 (4)	0.2906 (2)	0.0505 (9)
H15	0.1680	-0.0826	0.2418	0.061*
C16	0.4696 (6)	0.0776 (4)	0.2968 (2)	0.0489 (9)
H16	0.5370	0.0932	0.2520	0.059*
C20	1.2585 (6)	0.4905 (5)	0.2539 (2)	0.0636 (11)
H20A	1.4172	0.4836	0.2532	0.076*
H20B	1.2664	0.6013	0.2686	0.076*
C21	1.1228 (6)	0.4253 (5)	0.1732 (2)	0.0578 (10)
C22	1.1646 (7)	0.3022 (6)	0.1252 (3)	0.0761 (13)
H22	1.2879	0.2642	0.1408	0.091*
C23	1.0265 (8)	0.2329 (6)	0.0538 (3)	0.0768 (13)
H23	1.0584	0.1494	0.0220	0.092*
C24	0.8429 (7)	0.2863 (5)	0.0295 (2)	0.0592 (10)
C25	0.8033 (7)	0.4128 (5)	0.0761 (2)	0.0659 (11)
H25	0.6828	0.4528	0.0598	0.079*
C26	0.9426 (8)	0.4809 (5)	0.1475 (2)	0.0679 (12)
H26	0.9136	0.5663	0.1787	0.082*
C27	0.6928 (8)	0.2035 (6)	-0.0460 (3)	0.0723 (12)
C28	0.3469 (9)	0.1770 (7)	-0.1296 (3)	0.116 (2)
H28A	0.2053	0.2075	-0.1280	0.173*
H28B	0.3113	0.0645	-0.1344	0.173*
H28C	0.4184	0.2075	-0.1736	0.173*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0414 (2)	0.0561 (3)	0.0743 (3)	-0.00418 (16)	0.00693 (18)	0.00672 (19)
01	0.0418 (14)	0.0744 (18)	0.0551 (17)	-0.0138 (13)	-0.0059 (12)	0.0156 (14)
O2	0.117 (3)	0.150 (3)	0.065 (2)	0.070 (3)	-0.010 (2)	-0.025 (2)
O3	0.080 (2)	0.117 (3)	0.058 (2)	0.046 (2)	-0.0112 (16)	-0.0057 (18)
N2	0.0352 (15)	0.0527 (18)	0.0452 (19)	0.0005 (13)	-0.0002 (14)	0.0052 (14)
N3	0.0373 (15)	0.0555 (18)	0.0426 (18)	-0.0010 (13)	-0.0034 (13)	0.0021 (15)
C1	0.0352 (18)	0.049 (2)	0.046 (2)	0.0084 (16)	0.0029 (17)	0.0105 (17)
C4	0.0378 (19)	0.052 (2)	0.046 (2)	0.0031 (16)	-0.0008 (17)	0.0083 (18)
C5	0.049 (2)	0.103 (3)	0.049 (3)	-0.016 (2)	-0.0062 (19)	0.021 (2)
C6A	0.041 (3)	0.051 (5)	0.060 (4)	-0.004 (3)	-0.004 (3)	0.027 (4)
C6B	0.051 (8)	0.041 (9)	0.045 (8)	-0.001 (7)	-0.003 (6)	0.010 (7)
C11	0.0337 (17)	0.047 (2)	0.046 (2)	0.0069 (15)	0.0014 (16)	0.0103 (17)
C12	0.0414 (19)	0.055 (2)	0.040 (2)	0.0050 (17)	0.0025 (16)	0.0011 (17)
C13	0.0406 (19)	0.055 (2)	0.051 (2)	0.0053 (17)	0.0113 (17)	0.0082 (19)
C14	0.0328 (17)	0.045 (2)	0.055 (2)	0.0027 (15)	0.0058 (16)	0.0088 (18)
C15	0.0422 (19)	0.054 (2)	0.044 (2)	0.0036 (17)	-0.0019 (17)	-0.0005 (18)
C16	0.0420 (19)	0.061 (2)	0.040 (2)	0.0066 (17)	0.0063 (16)	0.0113 (18)
C20	0.049 (2)	0.073 (3)	0.057 (3)	-0.005 (2)	0.0006 (19)	0.020 (2)
C21	0.045 (2)	0.071 (3)	0.050 (3)	-0.0007 (19)	0.0047 (19)	0.021 (2)
C22	0.059 (3)	0.111 (4)	0.064 (3)	0.035 (3)	0.006 (2)	0.017 (3)

supporting information

C23	0.078 (3)	0.102 (4)	0.054 (3)	0.040 (3)	0.009 (2)	0.003 (3)
C24	0.060 (2)	0.078 (3)	0.042 (2)	0.022 (2)	0.0082 (19)	0.016 (2)
C25	0.070 (3)	0.071 (3)	0.056 (3)	0.024 (2)	-0.001 (2)	0.013 (2)
C26	0.082 (3)	0.062 (3)	0.053 (3)	0.016 (2)	-0.001 (2)	0.008 (2)
C27	0.079 (3)	0.095 (4)	0.044 (3)	0.031 (3)	0.009 (2)	0.009 (3)
C28	0.102 (4)	0.165 (6)	0.068 (4)	0.056 (4)	-0.028 (3)	-0.018 (4)

Geometric parameters (Å, °)

				_
Br—C14	1.901 (3)	C12—C13	1.372 (5)	
Br-O1 ⁱ	3.096 (2)	C12—H12	0.9300	
O1—C4	1.229 (4)	C13—C14	1.376 (5)	
O2—C27	1.196 (5)	C13—H13	0.9300	
O3—C27	1.325 (5)	C14—C15	1.372 (5)	
O3—C28	1.456 (5)	C15—C16	1.388 (4)	
N2-C1	1.271 (4)	C15—H15	0.9300	
N2—N3	1.389 (4)	C16—H16	0.9300	
N3—C4	1.343 (4)	C20—C21	1.505 (5)	
N3—H3	0.8600	C20—H20A	0.9700	
C1-C11	1.488 (4)	C20—H20B	0.9700	
C1—C6A	1.495 (4)	C21—C22	1.366 (6)	
C1—C6B	1.504 (5)	C21—C26	1.375 (6)	
C4—C5	1.498 (5)	C22—C23	1.385 (6)	
C5—C6B	1.462 (5)	C22—H22	0.9300	
C5—C6A	1.463 (4)	C23—C24	1.373 (5)	
C5—C20	1.477 (5)	C23—H23	0.9300	
C5—H5A	0.9800	C24—C25	1.371 (6)	
C5—H5B	0.9800	C24—C27	1.487 (6)	
C6A—H5B	1.2052	C25—C26	1.386 (6)	
C6A—H61A	0.9700	C25—H25	0.9300	
С6А—Н62А	0.9700	C26—H26	0.9300	
C6B—H61B	0.9700	C28—H28A	0.9600	
C6B—H62B	0.9700	C28—H28B	0.9600	
C11—C12	1.388 (5)	C28—H28C	0.9600	
C11—C16	1.391 (5)			
$C14$ — Br — $O1^i$	152.32 (12)	C12—C13—C14	119.2 (3)	
C27—O3—C28	116.1 (4)	C12—C13—H13	120.4	
C1—N2—N3	116.8 (3)	C14—C13—H13	120.4	
C4—N3—N2	127.0 (3)	C15—C14—C13	121.0 (3)	
C4—N3—H3	116.5	C15—C14—Br	120.3 (3)	
N2—N3—H3	116.5	C13—C14—Br	118.7 (3)	
N2-C1-C11	116.9 (3)	C14—C15—C16	119.4 (3)	
N2—C1—C6A	120.7 (4)	C14—C15—H15	120.3	
C11—C1—C6A	121.2 (3)	C16—C15—H15	120.3	
N2-C1-C6B	121.5 (7)	C15—C16—C11	120.5 (3)	
C11—C1—C6B	115.6 (4)	C15—C16—H16	119.7	
O1-C4-N3	121.0 (3)	C11—C16—H16	119.7	

O1—C4—C5	122.8 (3)	C5—C20—C21	112.3 (3)
N3—C4—C5	116.1 (3)	C5—C20—H20A	109.1
C6B—C5—C20	129.0 (5)	C21—C20—H20A	109.1
C6A—C5—C20	122.3 (4)	С5—С20—Н20В	109.1
C6B—C5—C4	116.4 (6)	C21—C20—H20B	109.1
C6A—C5—C4	110.8 (4)	H20A—C20—H20B	107.9
C20—C5—C4	114.6 (3)	C22—C21—C26	117.9 (4)
C6A—C5—H5A	101.8	C22—C21—C20	121.1 (4)
С20—С5—Н5А	101.8	C26—C21—C20	120.9 (4)
С4—С5—Н5А	101.8	C21—C22—C23	121.2 (4)
С6В—С5—Н5В	90.6	С21—С22—Н22	119.4
С20—С5—Н5В	90.6	С23—С22—Н22	119.4
C4—C5—H5B	90.6	C24—C23—C22	120.6 (4)
H5A—C5—H5B	156.6	С24—С23—Н23	119.7
C5—C6A—C1	112.7 (4)	С22—С23—Н23	119.7
C1—C6A—H5B	126.3	C25—C24—C23	118.8 (4)
C5—C6A—H61A	109.1	C25—C24—C27	122.6 (4)
C1—C6A—H61A	109.1	C23—C24—C27	118.7 (4)
H5B—C6A—H61A	123.3	C24—C25—C26	120.0 (4)
C5—C6A—H62A	109.1	С24—С25—Н25	120.0
C1—C6A—H62A	109.1	С26—С25—Н25	120.0
H61A—C6A—H62A	107.8	C21—C26—C25	121.5 (4)
C5—C6B—C1	112.2 (5)	С21—С26—Н26	119.2
C5—C6B—H61B	109.2	С25—С26—Н26	119.2
C1—C6B—H61B	109.2	O2—C27—O3	123.1 (4)
С5—С6В—Н62В	109.2	O2—C27—C24	124.5 (4)
C1—C6B—H62B	109.2	O3—C27—C24	112.4 (4)
H61B—C6B—H62B	107.9	O3—C28—H28A	109.5
C12—C11—C16	118.3 (3)	O3—C28—H28B	109.5
C12—C11—C1	120.5 (3)	H28A—C28—H28B	109.5
C16—C11—C1	121.2 (3)	O3—C28—H28C	109.5
C13—C12—C11	121.4 (3)	H28A—C28—H28C	109.5
C13—C12—H12	119.3	H28B—C28—H28C	109.5
C11—C12—H12	119.3		
C1—N2—N3—C4	-9.7 (5)	C12—C13—C14—Br	179.9 (3)
N3—N2—C1—C11	179.8 (3)	O1 ⁱ —Br—C14—C15	137.0 (3)
N3—N2—C1—C6A	-12.7 (6)	O1 ⁱ —Br—C14—C13	-44.1 (5)
N3—N2—C1—C6B	28.2 (10)	C13—C14—C15—C16	1.3 (6)
N2—N3—C4—O1	-175.0 (3)	Br—C14—C15—C16	-179.8 (3)
N2—N3—C4—C5	2.1 (6)	C14-C15-C16-C11	-0.3 (6)
O1—C4—C5—C6B	164.1 (11)	C12-C11-C16-C15	-0.8 (5)
N3—C4—C5—C6B	-13.0 (11)	C1-C11-C16-C15	178.0 (3)
O1—C4—C5—C6A	-157.3 (5)	C6B-C5-C20-C21	-2.8 (14)
N3—C4—C5—C6A	25.7 (6)	C6A-C5-C20-C21	-46.4 (8)
O1—C4—C5—C20	-14.0 (6)	C4—C5—C20—C21	174.9 (4)
N3—C4—C5—C20	168.9 (4)	C5-C20-C21-C22	-87.0 (5)
C20-C5-C6A-C1	175.7 (5)	C5-C20-C21-C26	88.7 (5)

C4—C5—C6A—C1	-44.3 (9)	C26—C21—C22—C23	-1.5 (6)
N2—C1—C6A—C5	40.7 (10)	C20—C21—C22—C23	174.3 (4)
C11—C1—C6A—C5	-152.3 (5)	C21—C22—C23—C24	-0.2 (7)
C20-C5-C6B-C1	-154.1 (8)	C22—C23—C24—C25	2.0 (7)
C4—C5—C6B—C1	28.1 (19)	C22—C23—C24—C27	-177.2 (4)
N2—C1—C6B—C5	-38.1 (19)	C23—C24—C25—C26	-2.1 (6)
C11—C1—C6B—C5	169.9 (10)	C27—C24—C25—C26	177.1 (4)
N2-C1-C11-C12	21.7 (5)	C22—C21—C26—C25	1.5 (6)
C6A—C1—C11—C12	-145.8 (6)	C20—C21—C26—C25	-174.3 (4)
C6B-C1-C11-C12	175.0 (11)	C24—C25—C26—C21	0.3 (7)
N2-C1-C11-C16	-157.2 (4)	C28—O3—C27—O2	1.4 (7)
C6A—C1—C11—C16	35.4 (7)	C28—O3—C27—C24	-178.3 (4)
C6B—C1—C11—C16	-3.8 (11)	C25—C24—C27—O2	173.6 (5)
C16-C11-C12-C13	1.0 (5)	C23—C24—C27—O2	-7.2 (7)
C1—C11—C12—C13	-177.9 (3)	C25—C24—C27—O3	-6.6 (6)
C11—C12—C13—C14	0.0 (6)	C23—C24—C27—O3	172.6 (4)
C12-C13-C14-C15	-1.2 (6)		

Symmetry code: (i) *x*-2, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N3—H3…O1 ⁱⁱ	0.86	2.08	2.910 (4)	162
C14— Br ···O1 ⁱ	1.90 (1)	3.10(1)	?	152 (1)

Symmetry codes: (i) *x*-2, *y*-1, *z*; (ii) -*x*+3, -*y*+1, -*z*+1.