metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-chlorido-di­chlorido[μ2-4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine]­copper(I)copper(II)]

aDepartment of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, and Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zstu_zhuchaoying@126.com

(Received 29 March 2011; accepted 20 April 2011; online 29 April 2011)

In the mixed-valence CuI/CuII coordination polymer, [Cu2Cl3(C20H14N4)]n, the two Cu atoms are bridged to a pair of Cl atoms across a centre of inversion. The monovalent metal atoms is coordinated by a pyridine N atom as well as by three Cl atoms in a tetra­hedral CuNCl3 geometry. The divalent metal atom is N,N′,N′′-chelated by the heterocycle, and it exists in a square-pyramidal CuN3Cl2 geometry; the apical site is occupied by the second bridging Cl atom. The bridging modes of the Cl atoms and the heterocycle give rise to the formation of a layered arrangement parallel to (001).

Related literature

For related structures, see: Hou et al. (2005[Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825-7832.]); Zhang et al. (2007[Zhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365-4367.])

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl3(C20H14N4)]

  • Mr = 543.78

  • Triclinic, [P \overline 1]

  • a = 8.1389 (8) Å

  • b = 9.8161 (10) Å

  • c = 12.4823 (13) Å

  • α = 79.512 (2)°

  • β = 85.036 (2)°

  • γ = 88.202 (2)°

  • V = 976.78 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 294 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). University of Göttingen, Germany.]) Tmin = 0.694, Tmax = 0.771

  • 7840 measured reflections

  • 3778 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.06

  • 3778 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Terpyridine and its derivatives have been receiving rapidly increasing attention recently not only because of their versatility as building blocks in supramolecular assembles, but also due to the interesting electronic, photonic and magnetic properties of their transition metal complexes.

4'-(4-Pyridyl)-2,2':6'2''-terpyridine(pyterpy) belongs to this group of ligands and has usually been used to construct a great variety of structurally interesting entities, such as ribbon-type coordination polymers (Hou et al., 2005) and self-catenated networks (Zhang et al., 2007).

The structure of the title compound (I) is shown in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains two Cu crystallographically nonequivalent atoms. The Cu1 atom has a distorted square-pyramidal coordination formed by three N atoms of tridentate 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) ligand and two Cl atoms. The Cu2 atom is coordinated by one N atom from the pendent monodentate pyridine of pyterpy as well as by three Cl atoms, conferring a tetrahedral coordination geometry. The two terpy ligands in a transoid arrangement link Cu1 and Cu2 atoms, to form a mixed-valence tetrameric M4L4 rectangular unit with a separation of 11.017 Å, which is smaller than those in reported ribbon-type compounds, and then linked by a Cu2Cl2 cluster, leading to the formation of an infinite 1-D coordination polymer (Fig. 2).

Related literature top

For related structures, see: Hou et al. (2005); Zhang et al. (2007)

Experimental top

The mixture of CuCl (0.020 g, 0.2 mmol), 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) (0.062 g, 0.1 mmol), and acetonitrile (6 ml) were placed and sealed in a 15 ml Teflon-lined stainless steel reactor and heated to 180 °C for 72 h, then cooled down to room temperature at a rate of 2 °C/ 20 min. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 20% yield.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound.
[Figure 2] Fig. 2. The 1-D zigzag chain structure of the title compoud.
Poly[µ2-chlorido-dichlorido[µ2-4'-(4-pyridyl)-2,2':6',2''- terpyridine]copper(I)copper(II)] top
Crystal data top
[Cu2Cl3(C20H14N4)]Z = 2
Mr = 543.78F(000) = 542
Triclinic, P1Dx = 1.849 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1389 (8) ÅCell parameters from 1056 reflections
b = 9.8161 (10) Åθ = 2.4–26.0°
c = 12.4823 (13) ŵ = 2.60 mm1
α = 79.512 (2)°T = 294 K
β = 85.036 (2)°Block, black
γ = 88.202 (2)°0.15 × 0.12 × 0.10 mm
V = 976.78 (17) Å3
Data collection top
Bruker SMART
diffractometer
3778 independent reflections
Radiation source: fine-focus sealed tube3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.694, Tmax = 0.771k = 1212
7840 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3983P]
where P = (Fo2 + 2Fc2)/3
3778 reflections(Δ/σ)max = 0.002
262 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2Cl3(C20H14N4)]γ = 88.202 (2)°
Mr = 543.78V = 976.78 (17) Å3
Triclinic, P1Z = 2
a = 8.1389 (8) ÅMo Kα radiation
b = 9.8161 (10) ŵ = 2.60 mm1
c = 12.4823 (13) ÅT = 294 K
α = 79.512 (2)°0.15 × 0.12 × 0.10 mm
β = 85.036 (2)°
Data collection top
Bruker SMART
diffractometer
3778 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3391 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 0.771Rint = 0.014
7840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3778 reflectionsΔρmin = 0.34 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.55686 (3)0.36696 (3)0.35707 (2)0.02849 (9)
Cu21.49349 (3)0.14312 (3)0.05428 (3)0.04087 (10)
Cl11.36557 (7)0.05058 (6)0.10452 (5)0.03600 (14)
Cl31.68201 (7)0.25884 (6)0.18347 (5)0.03968 (15)
Cl21.73952 (7)0.30031 (7)0.48213 (5)0.04485 (16)
C160.4539 (2)0.3584 (2)0.30399 (17)0.0271 (4)
N20.6324 (2)0.54582 (18)0.28869 (14)0.0266 (4)
N41.2937 (2)0.24557 (19)0.00438 (16)0.0332 (4)
N30.3521 (2)0.43980 (19)0.35802 (14)0.0299 (4)
N10.6210 (2)0.77686 (18)0.35354 (14)0.0288 (4)
C111.3087 (3)0.3651 (2)0.03817 (19)0.0333 (5)
H111.41030.40840.02390.040*
C150.6150 (2)0.4212 (2)0.26284 (17)0.0265 (4)
C140.7417 (2)0.3610 (2)0.20518 (17)0.0282 (4)
H140.72740.27550.18540.034*
C91.0297 (2)0.3681 (2)0.11560 (17)0.0273 (4)
C80.8918 (2)0.4302 (2)0.17696 (17)0.0260 (4)
C60.7742 (2)0.6135 (2)0.26509 (17)0.0270 (4)
C70.9077 (2)0.5576 (2)0.20962 (17)0.0286 (4)
H71.00680.60470.19440.034*
C101.1832 (3)0.4291 (2)0.09312 (19)0.0324 (5)
H101.20140.51260.11500.039*
C10.6025 (3)0.8956 (2)0.39099 (19)0.0355 (5)
H10.50020.91700.42370.043*
C30.8787 (3)0.9570 (3)0.3336 (2)0.0464 (6)
H30.96551.01820.32720.056*
C180.2576 (3)0.1787 (3)0.3369 (2)0.0415 (6)
H180.22600.09040.33080.050*
C40.9006 (3)0.8347 (2)0.2933 (2)0.0404 (6)
H41.00180.81220.25980.049*
C50.7688 (3)0.7472 (2)0.30392 (17)0.0286 (4)
C170.4102 (3)0.2284 (2)0.29147 (19)0.0335 (5)
H170.48160.17490.25320.040*
C20.7283 (3)0.9875 (3)0.3832 (2)0.0411 (6)
H20.71201.06910.41090.049*
C131.0125 (3)0.2455 (3)0.0776 (2)0.0465 (7)
H130.91130.20140.08860.056*
C200.2040 (3)0.3911 (3)0.40001 (19)0.0368 (5)
H200.13300.44680.43640.044*
C190.1529 (3)0.2610 (3)0.3913 (2)0.0420 (6)
H190.04960.22960.42160.050*
C121.1452 (3)0.1887 (3)0.0232 (2)0.0480 (7)
H121.13000.10650.00140.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02035 (14)0.03193 (16)0.03487 (16)0.00211 (10)0.00583 (10)0.01466 (11)
Cu20.02869 (16)0.04265 (18)0.0509 (2)0.00035 (12)0.01106 (13)0.01440 (14)
Cl10.0362 (3)0.0355 (3)0.0399 (3)0.0021 (2)0.0025 (2)0.0165 (2)
Cl30.0261 (3)0.0494 (3)0.0401 (3)0.0083 (2)0.0011 (2)0.0003 (3)
Cl20.0350 (3)0.0568 (4)0.0461 (3)0.0020 (3)0.0134 (2)0.0265 (3)
C160.0199 (10)0.0300 (11)0.0308 (11)0.0016 (8)0.0031 (8)0.0069 (9)
N20.0191 (8)0.0270 (9)0.0340 (9)0.0018 (7)0.0035 (7)0.0092 (7)
N40.0229 (9)0.0345 (10)0.0428 (11)0.0016 (7)0.0081 (8)0.0140 (8)
N30.0234 (9)0.0323 (10)0.0334 (10)0.0012 (7)0.0061 (7)0.0085 (8)
N10.0244 (9)0.0311 (9)0.0335 (9)0.0033 (7)0.0003 (7)0.0143 (8)
C110.0208 (10)0.0339 (12)0.0455 (13)0.0020 (9)0.0067 (9)0.0120 (10)
C150.0211 (10)0.0263 (10)0.0319 (11)0.0001 (8)0.0028 (8)0.0073 (8)
C140.0228 (10)0.0270 (10)0.0359 (11)0.0002 (8)0.0051 (8)0.0121 (9)
C90.0217 (10)0.0289 (11)0.0315 (11)0.0030 (8)0.0033 (8)0.0092 (9)
C80.0211 (10)0.0285 (11)0.0291 (10)0.0023 (8)0.0016 (8)0.0094 (8)
C60.0203 (10)0.0284 (11)0.0331 (11)0.0024 (8)0.0015 (8)0.0099 (9)
C70.0199 (10)0.0309 (11)0.0365 (12)0.0011 (8)0.0035 (8)0.0125 (9)
C100.0235 (11)0.0306 (11)0.0452 (13)0.0013 (9)0.0034 (9)0.0149 (10)
C10.0316 (12)0.0363 (12)0.0416 (13)0.0062 (10)0.0012 (10)0.0184 (10)
C30.0365 (13)0.0401 (14)0.0682 (18)0.0090 (11)0.0012 (12)0.0244 (13)
C180.0294 (12)0.0366 (13)0.0583 (16)0.0068 (10)0.0024 (11)0.0096 (11)
C40.0261 (11)0.0393 (13)0.0595 (15)0.0017 (10)0.0031 (10)0.0213 (12)
C50.0238 (10)0.0294 (11)0.0342 (11)0.0038 (8)0.0005 (8)0.0117 (9)
C170.0232 (11)0.0334 (12)0.0444 (13)0.0002 (9)0.0043 (9)0.0115 (10)
C20.0433 (14)0.0348 (13)0.0504 (14)0.0015 (10)0.0019 (11)0.0231 (11)
C130.0246 (11)0.0452 (14)0.0749 (18)0.0108 (10)0.0186 (11)0.0334 (13)
C200.0240 (11)0.0434 (13)0.0411 (13)0.0019 (10)0.0092 (9)0.0087 (10)
C190.0225 (11)0.0462 (14)0.0538 (15)0.0075 (10)0.0082 (10)0.0044 (12)
C120.0326 (13)0.0413 (14)0.0762 (19)0.0075 (11)0.0179 (12)0.0361 (13)
Geometric parameters (Å, º) top
Cu1—N2i1.9466 (16)C14—H140.9300
Cu1—N1i2.0455 (18)C9—C101.387 (3)
Cu1—N3i2.0557 (18)C9—C131.387 (3)
Cu1—Cl22.2325 (6)C9—C81.483 (3)
Cu1—Cl32.5172 (6)C8—C71.397 (3)
Cu2—N42.0374 (18)C6—C71.390 (3)
Cu2—Cl32.2933 (6)C6—C51.478 (3)
Cu2—Cl1ii2.3964 (7)C7—H70.9300
Cu2—Cl12.4007 (6)C10—H100.9300
Cu2—Cu2ii2.8917 (7)C1—C21.371 (3)
Cl1—Cu2ii2.3964 (7)C1—H10.9300
C16—N31.355 (3)C3—C21.373 (3)
C16—C171.375 (3)C3—C41.385 (3)
C16—C151.477 (3)C3—H30.9300
N2—C61.333 (3)C18—C191.377 (3)
N2—C151.335 (3)C18—C171.385 (3)
N2—Cu1i1.9466 (16)C18—H180.9300
N4—C111.330 (3)C4—C51.377 (3)
N4—C121.332 (3)C4—H40.9300
N3—C201.339 (3)C17—H170.9300
N3—Cu1i2.0557 (18)C2—H20.9300
N1—C11.332 (3)C13—C121.382 (3)
N1—C51.353 (3)C13—H130.9300
N1—Cu1i2.0455 (18)C20—C191.381 (3)
C11—C101.380 (3)C20—H200.9300
C11—H110.9300C19—H190.9300
C15—C141.385 (3)C12—H120.9300
C14—C81.403 (3)
N2i—Cu1—N1i78.97 (7)C10—C9—C8121.92 (19)
N2i—Cu1—N3i79.19 (7)C13—C9—C8121.8 (2)
N1i—Cu1—N3i156.19 (7)C7—C8—C14118.17 (18)
N2i—Cu1—Cl2162.20 (6)C7—C8—C9121.33 (19)
N1i—Cu1—Cl299.27 (5)C14—C8—C9120.49 (19)
N3i—Cu1—Cl298.61 (5)N2—C6—C7120.70 (19)
N2i—Cu1—Cl396.91 (5)N2—C6—C5112.78 (17)
N1i—Cu1—Cl397.93 (5)C7—C6—C5126.51 (19)
N3i—Cu1—Cl393.99 (5)C6—C7—C8119.42 (19)
Cl2—Cu1—Cl3100.87 (2)C6—C7—H7120.3
N4—Cu2—Cl3120.37 (6)C8—C7—H7120.3
N4—Cu2—Cl1ii104.34 (6)C11—C10—C9119.6 (2)
Cl3—Cu2—Cl1ii107.93 (2)C11—C10—H10120.2
N4—Cu2—Cl1101.32 (6)C9—C10—H10120.2
Cl3—Cu2—Cl1115.66 (2)N1—C1—C2122.6 (2)
Cl1ii—Cu2—Cl1105.86 (2)N1—C1—H1118.7
N4—Cu2—Cu2ii111.61 (6)C2—C1—H1118.7
Cl3—Cu2—Cu2ii127.92 (2)C2—C3—C4119.6 (2)
Cl1ii—Cu2—Cu2ii52.998 (16)C2—C3—H3120.2
Cl1—Cu2—Cu2ii52.861 (18)C4—C3—H3120.2
Cu2ii—Cl1—Cu274.14 (2)C19—C18—C17119.5 (2)
Cu2—Cl3—Cu1112.90 (2)C19—C18—H18120.2
N3—C16—C17122.26 (19)C17—C18—H18120.2
N3—C16—C15113.85 (18)C5—C4—C3118.4 (2)
C17—C16—C15123.88 (18)C5—C4—H4120.8
C6—N2—C15121.47 (17)C3—C4—H4120.8
C6—N2—Cu1i119.54 (14)N1—C5—C4121.9 (2)
C15—N2—Cu1i118.95 (14)N1—C5—C6113.76 (18)
C11—N4—C12116.29 (19)C4—C5—C6124.37 (19)
C11—N4—Cu2121.51 (15)C16—C17—C18118.6 (2)
C12—N4—Cu2121.71 (15)C16—C17—H17120.7
C20—N3—C16118.36 (19)C18—C17—H17120.7
C20—N3—Cu1i127.42 (15)C1—C2—C3118.8 (2)
C16—N3—Cu1i114.11 (14)C1—C2—H2120.6
C1—N1—C5118.65 (19)C3—C2—H2120.6
C1—N1—Cu1i126.56 (15)C12—C13—C9120.2 (2)
C5—N1—Cu1i114.75 (14)C12—C13—H13119.9
N4—C11—C10124.2 (2)C9—C13—H13119.9
N4—C11—H11117.9N3—C20—C19122.4 (2)
C10—C11—H11117.9N3—C20—H20118.8
N2—C15—C14120.84 (19)C19—C20—H20118.8
N2—C15—C16113.24 (17)C18—C19—C20118.9 (2)
C14—C15—C16125.90 (19)C18—C19—H19120.6
C15—C14—C8119.30 (19)C20—C19—H19120.6
C15—C14—H14120.4N4—C12—C13123.4 (2)
C8—C14—H14120.4N4—C12—H12118.3
C10—C9—C13116.26 (19)C13—C12—H12118.3
Symmetry codes: (i) x+2, y+1, z; (ii) x+3, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl3(C20H14N4)]
Mr543.78
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.1389 (8), 9.8161 (10), 12.4823 (13)
α, β, γ (°)79.512 (2), 85.036 (2), 88.202 (2)
V3)976.78 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.694, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
7840, 3778, 3391
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.06
No. of reflections3778
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem. 46, 4365–4367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds