

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(allylthiourea- κ S)bromidozinc(II) bromide

Hai-Qing Sun,^{a,b}* Xin-Qiang Wang^b and Tao Jin^a

^aSchool of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, People's Republic of China, and ^bState Key Laboratory of Crystal Materials, (Shandong University), Jinan 250100, People's Republic of China

Correspondence e-mail: sunhaiging@sina.com

Received 24 December 2010; accepted 30 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.019; wR factor = 0.045; data-to-parameter ratio = 18.6.

In the title compound, $[ZnBr(C_4H_8N_2S)_3]Br$, the Zn^{II} atom is coordinated by one Br atom and the S atoms of three Nallylthiourea ligands in a distorted tetrahedral geometry. The Zn^{II} atom and the two Br atoms are located on a threefold axis.

Related literature

For transition metal complexes containing allylthiourea ligands, see: Gambino et al. (2002); Olijnyk et al. (2003). For similar structures of N-allylthiourea coordination compounds, see: Zhang et al. (1990); Yuan et al. (1990); Hou et al. (1993); Sun et al. (2004). For compounds that have similar Zn-Br bond lengths, see: Bermejo et al. (2000, 2001); Castineiras et al. (2000).

Experimental

Crystal data

ZnBr(C ₄ H ₈ N ₂ S) ₃]Br	
$M_r = 573.74$	
Trigonal, R3	
a = 11.3591 (2) Å	
: = 14.5172 (4) Å	
V = 1622.19 (6) Å ³	

Z = 3Mo $K\alpha$ radiation $\mu = 5.13 \text{ mm}^-$ T = 296 K $0.35 \times 0.32 \times 0.32$ mm

2605 measured reflections

 $R_{\rm int} = 0.018$

1359 independent reflections

1305 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.265, T_{\max} = 0.294$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.045$	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.95	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
1359 reflections	Absolute structure: Flack (1983),
73 parameters	522 Friedel pairs
1 restraint	Flack parameter: 0.047 (8)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the State Key Laboratory of Crystal Materials Open Project (KF0804) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2081).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bermejo, E., Castineiras, A., Dominguez, R., Carballo, R., Maichle-Mossmer, C., Strähle, J., Liberta, A. E. & West, D. X. (2000). Z. Anorg. Allg. Chem. 626. 878-884.
- Bermejo, E., Castineiras, A., Fostiak, L. M., Garcia, I., Llamas-Saiz, A. L., Swearingen, J. K. & West, D. X. (2001). Z. Naturforsch. Teil B, 56, 1297-1305
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castineiras, A., Garcia, I., Bermejo, E. & West, D. X. (2000). Z. Naturforsch. Teil B, 55, 511-518.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gambino, D., Kremer, E. & Baran, E. J. (2002). Spectrochim. Acta, A58, 3085-3092
- Hou, W. B., Yuan, D. R., Xu, D., Zhang, N., Yu, W. T., Liu, M. G., Tao, X. T., Sun, S. Y. & Jiang, M. H. (1993). J. Cryst. Growth, 133, 71-74.
- Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904-1905
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Gang, X. (2004). Acta Cryst. E60, m1431-m1433.
- Yuan, D. R., Zhang, N., Tao, X. T., Xu, D. & Jiang, M. H. (1990). Chin. Phys. Lett. 7, 334-336.
- Zhang, N., Jiang, M. H., Yuan, D. R., Xu, D., Yu, W. T. & Tao, X. T. (1990). Chin. Sci. Bull. 35, 646-649.

supporting information

Acta Cryst. (2011). E67, m543 [doi:10.1107/S1600536811011809]

Tris(allylthiourea-*kS*)bromidozinc(II) bromide

Hai-Qing Sun, Xin-Qiang Wang and Tao Jin

S1. Comment

Coordination compounds with *N*-allylthiourea (abbreviated as ATU) ligands have many kinds of applications, such as electroplating (Gambino *et al.*, 2002), radiotherapeutic (Olijnyk *et al.*, 2003) and nonlinear optical materials(Zhang *et al.*, 1990; Yuan *et al.*, 1990; Hou *et al.*, 1993; Sun *et al.*, 2004).

The title compound consists of $[ZnBr(ATU)_3]^+$ and Br⁻ ions. The Zn^{II} atom is coordinated to a Br atom and three ATU ligands through their S atoms in a distorted tetrahedral arrangement. The bond angles around the Zn atom range from 101.64 (2)° to 116.038 (14)°, which show an obvious deviation from the ideal tetrahedral value of 109.5°. Zn and Br1 atoms lie on the threefold axis which is perpendicular to the plane of the three S atoms. The Br2 atom also lies on the axis(Fig.1). The Zn—Br1 distance [2.4640 (6) Å] is comparable with the average values reported in other complexes containing Zn—Br bonds, *e.g.* 2.4367 (9) and 2.445 (1)Å (Bermejo *et al.*, 2001), 2.4394 (8) and 2.4457 (7)Å (Castineiras *et al.*, 2000), 2.4207 (7) and 2.4654 (8)Å (Bermejo *et al.*, 2000).

S2. Experimental

To 2.252 g $ZnBr_2$ (0.01 mol) in 5 ml water, 3.486 g ATU (0.03 mol) in 10 ml water was slowly added with stirring. After standing for 1 h, the lower layer of oily solid was separated and dissolved in small volume of ethanol. Small single crystals of $Zn[Br(ATU)_3]Br$ were obtained by slow evaporation of this solution.

S3. Refinement

H atoms were placed geometrically (C—H = 0.93 - 0.97 Å, N—H = 0.86 Å) and refined using the riding model approximation, with $U_{iso} = 1.2U_{eq}$.

Figure 1

The molecule structure of ATZB with 30% displacement ellipsoids. H atoms are omitted for clarity. [Symmetry codes: (A)-y + 1, x-y, z; (B)-x + y+1, -x + 1, z]

Tris(allylthiourea-*кS*)bromidozinc(II) bromide

Crystal data
[ZnBr(C ₄ H ₈ N ₂ S) ₃]Br
$M_r = 573.74$
Trigonal, R3
<i>a</i> = 11.3591 (2) Å
c = 14.5172 (4) Å
V = 1622.19 (6) Å ³
Z = 3
F(000) = 858

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans $D_x = 1.762 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2071 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 5.13 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.32 \times 0.32 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.265$, $T_{max} = 0.294$ 2605 measured reflections 1359 independent reflections

1305 reflections with $I > 2\sigma(I)$	$h = -13 \rightarrow 14$
$R_{\rm int} = 0.018$	$k = -14 \rightarrow 10$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.5^{\circ}$	$l = -15 \rightarrow 18$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
S = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
1359 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
73 parameters	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 522 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.047 (8)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.3333	0.6667	0.59387 (3)	0.02676 (12)	
Br2	0.3333	0.6667	0.33457 (3)	0.03334 (12)	
Br1	0.3333	0.6667	0.76360 (3)	0.04428 (15)	
S1	0.19315 (8)	0.43514 (7)	0.56132 (5)	0.03569 (18)	
N2	0.2489 (3)	0.2409 (2)	0.53827 (17)	0.0356 (5)	
H2	0.1781	0.1993	0.5727	0.043*	
N1	0.3941 (3)	0.4382 (2)	0.46202 (16)	0.0380 (6)	
H1A	0.4379	0.4009	0.4402	0.046*	
H1B	0.4190	0.5211	0.4483	0.046*	
C2	0.3134 (3)	0.1641 (3)	0.5097 (2)	0.0397 (7)	
H2A	0.2822	0.0861	0.5501	0.048*	
H2B	0.4107	0.2207	0.5188	0.048*	
C1	0.2880 (3)	0.3680 (3)	0.51681 (16)	0.0280 (5)	
C3	0.2890 (4)	0.1143 (4)	0.4121 (2)	0.0526 (9)	
Н3	0.3323	0.0673	0.3931	0.063*	
C4	0.2152 (5)	0.1295 (4)	0.3523 (3)	0.0690 (11)	
H4A	0.1697	0.1757	0.3677	0.083*	
H4B	0.2069	0.0943	0.2932	0.083*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02154 (17)	0.02154 (17)	0.0372 (3)	0.01077 (8)	0.000	0.000
Br2	0.03343 (18)	0.03343 (18)	0.0332 (2)	0.01672 (9)	0.000	0.000
Br1	0.0489 (2)	0.0489 (2)	0.0351 (2)	0.02443 (11)	0.000	0.000
S1	0.0256 (4)	0.0211 (3)	0.0567 (4)	0.0089 (3)	0.0086 (3)	-0.0029 (3)
N2	0.0387 (14)	0.0236 (12)	0.0457 (11)	0.0164 (11)	0.0132 (11)	0.0082 (10)
N1	0.0420 (15)	0.0247 (12)	0.0473 (12)	0.0166 (12)	0.0169 (11)	0.0073 (10)
C2	0.0461 (19)	0.0288 (15)	0.0507 (15)	0.0236 (14)	0.0055 (14)	0.0045 (13)
C1	0.0317 (15)	0.0225 (14)	0.0312 (11)	0.0146 (12)	-0.0006 (11)	-0.0038 (10)
C3	0.061 (2)	0.0367 (18)	0.063 (2)	0.0268 (18)	0.0123 (18)	-0.0036 (16)
C4	0.079 (3)	0.058 (2)	0.059 (2)	0.026 (2)	-0.005(2)	-0.0069 (18)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Zn1—S1 ⁱ	2.3426 (7)	N1—H1A	0.8600
Zn1—S1	2.3426 (7)	N1—H1B	0.8600
Zn1—S1 ⁱⁱ	2.3426 (7)	C2—C3	1.499 (5)
Zn1—Br1	2.4640 (6)	C2—H2A	0.9700
S1—C1	1.727 (3)	C2—H2B	0.9700
N2—C1	1.318 (4)	C3—C4	1.278 (6)
N2—C2	1.452 (4)	С3—Н3	0.9300
N2—H2	0.8600	C4—H4A	0.9300
N1—C1	1.327 (3)	C4—H4B	0.9300
S1 ⁱ —Zn1—S1	116.038 (14)	N2—C2—H2A	108.2
S1 ⁱ —Zn1—S1 ⁱⁱ	116.038 (14)	C3—C2—H2A	108.2
S1—Zn1—S1 ⁱⁱ	116.038 (13)	N2—C2—H2B	108.2
S1 ⁱ —Zn1—Br1	101.64 (2)	C3—C2—H2B	108.2
S1—Zn1—Br1	101.64 (2)	H2A—C2—H2B	107.4
S1 ⁱⁱ —Zn1—Br1	101.64 (2)	N2—C1—N1	120.5 (3)
C1—S1—Zn1	110.33 (10)	N2—C1—S1	116.9 (2)
C1—N2—C2	126.6 (3)	N1—C1—S1	122.6 (2)
C1—N2—H2	116.7	C4—C3—C2	127.0 (4)
C2—N2—H2	116.7	С4—С3—Н3	116.5
C1—N1—H1A	120.0	С2—С3—Н3	116.5
C1—N1—H1B	120.0	C3—C4—H4A	120.0
H1A—N1—H1B	120.0	C3—C4—H4B	120.0
N2—C2—C3	116.3 (3)	H4A—C4—H4B	120.0
S1 ⁱ —Zn1—S1—C1	141.40 (9)	C2—N2—C1—S1	-179.4 (2)
S1 ⁱⁱ —Zn1—S1—C1	-0.08 (10)	Zn1—S1—C1—N2	145.88 (19)
Br1—Zn1—S1—C1	-109.34 (9)	Zn1—S1—C1—N1	-35.4 (2)
C1—N2—C2—C3	-75.8 (4)	N2-C2-C3-C4	-1.8 (6)
C2-N2-C1-N1	1.8 (4)		

Symmetry codes: (i) -x+y, -x+1, z; (ii) -y+1, x-y+1, z.