supplementary materials


rn2081 scheme

Acta Cryst. (2011). E67, m543    [ doi:10.1107/S1600536811011809 ]

Tris(allylthiourea-[kappa]S)bromidozinc(II) bromide

H.-Q. Sun, X.-Q. Wang and T. Jin

Abstract top

In the title compound, [ZnBr(C4H8N2S)3]Br, the ZnII atom is coordinated by one Br atom and the S atoms of three N-allylthiourea ligands in a distorted tetrahedral geometry. The ZnII atom and the two Br atoms are located on a threefold axis.

Comment top

Coordination compounds with N-allylthiourea (abbreviated as ATU) ligands have many kinds of applications, such as electroplating (Gambino et al., 2002), radiotherapeutic (Olijnyk et al., 2003) and nonlinear optical materials(Zhang et al., 1990; Yuan et al., 1990; Hou et al., 1993; Sun et al., 2004).

The title compound consists of [ZnBr(ATU)3]+ and Br- ions. The ZnII atom is coordinated to a Br atom and three ATU ligands through their S atoms in a distorted tetrahedral arrangement. The bond angles around the Zn atom range from 101.64 (2)° to 116.038 (14)°, which show an obvious deviation from the ideal tetrahedral value of 109.5°. Zn and Br1 atoms lie on the threefold axis which is perpendicular to the plane of the three S atoms. The Br2 atom also lies on the axis(Fig.1). The Zn—Br1 distance [2.4640 (6) Å] is comparable with the average values reported in other complexes containing Zn—Br bonds, e.g. 2.4367 (9) and 2.445 (1)Å (Bermejo et al., 2001), 2.4394 (8) and 2.4457 (7)Å (Castineiras et al., 2000), 2.4207 (7) and 2.4654 (8)Å (Bermejo et al., 2000).

Related literature top

For transition metal complexes containing allylthiourea ligands, see: Gambino et al. (2002); Olijnyk et al. (2003). For similar structures of N-allylthiourea coordination compounds, see: Zhang et al. (1990); Yuan et al. (1990); Hou et al. (1993); Sun et al. (2004). For compounds that have similar Zn—Br bond lengths, see: Bermejo et al. (2000, 2001); Castineiras et al. (2000).

Experimental top

To 2.252 g ZnBr2 (0.01 mol) in 5 ml water, 3.486 g ATU (0.03 mol) in 10 ml water was slowly added with stirring. After standing for 1 h, the lower layer of oily solid was separated and dissolved in small volume of ethanol. Small single crystals of Zn[Br(ATU)3]Br were obtained by slow evaporation of this solution.

Refinement top

H atoms were placed geometrically (C—H = 0.93 - 0.97 Å, N—H = 0.86 Å) and refined using the riding model approximation, with Uiso = 1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule structure of ATZB with 30% displacement ellipsoids. H atoms are omitted for clarity. [Symmetry codes: (A)-y + 1, x-y, z; (B)-x + y+1, -x + 1, z]
Tris(allylthiourea-κS)bromidozinc(II) bromide top
Crystal data top
[ZnBr(C4H8N2S)3]BrDx = 1.762 Mg m3
Mr = 573.74Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2071 reflections
a = 11.3591 (2) Åθ = 2.5–27.5°
c = 14.5172 (4) ŵ = 5.13 mm1
V = 1622.19 (6) Å3T = 296 K
Z = 3Block, colourless
F(000) = 8580.35 × 0.32 × 0.32 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1359 independent reflections
Radiation source: fine-focus sealed tube1305 reflections with I > 2σ(I)
graphiteRint = 0.018
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1314
Tmin = 0.265, Tmax = 0.294k = 1410
2605 measured reflectionsl = 1518
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
1359 reflectionsΔρmax = 0.25 e Å3
73 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 522 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.047 (8)
Crystal data top
[ZnBr(C4H8N2S)3]BrZ = 3
Mr = 573.74Mo Kα radiation
Trigonal, R3µ = 5.13 mm1
a = 11.3591 (2) ÅT = 296 K
c = 14.5172 (4) Å0.35 × 0.32 × 0.32 mm
V = 1622.19 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1359 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1305 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.294Rint = 0.018
2605 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.25 e Å3
S = 0.95Δρmin = 0.33 e Å3
1359 reflectionsAbsolute structure: Flack (1983), 522 Friedel pairs
73 parametersFlack parameter: 0.047 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33330.66670.59387 (3)0.02676 (12)
Br20.33330.66670.33457 (3)0.03334 (12)
Br10.33330.66670.76360 (3)0.04428 (15)
S10.19315 (8)0.43514 (7)0.56132 (5)0.03569 (18)
N20.2489 (3)0.2409 (2)0.53827 (17)0.0356 (5)
H20.17810.19930.57270.043*
N10.3941 (3)0.4382 (2)0.46202 (16)0.0380 (6)
H1A0.43790.40090.44020.046*
H1B0.41900.52110.44830.046*
C20.3134 (3)0.1641 (3)0.5097 (2)0.0397 (7)
H2A0.28220.08610.55010.048*
H2B0.41070.22070.51880.048*
C10.2880 (3)0.3680 (3)0.51681 (16)0.0280 (5)
C30.2890 (4)0.1143 (4)0.4121 (2)0.0526 (9)
H30.33230.06730.39310.063*
C40.2152 (5)0.1295 (4)0.3523 (3)0.0690 (11)
H4A0.16970.17570.36770.083*
H4B0.20690.09430.29320.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02154 (17)0.02154 (17)0.0372 (3)0.01077 (8)0.0000.000
Br20.03343 (18)0.03343 (18)0.0332 (2)0.01672 (9)0.0000.000
Br10.0489 (2)0.0489 (2)0.0351 (2)0.02443 (11)0.0000.000
S10.0256 (4)0.0211 (3)0.0567 (4)0.0089 (3)0.0086 (3)0.0029 (3)
N20.0387 (14)0.0236 (12)0.0457 (11)0.0164 (11)0.0132 (11)0.0082 (10)
N10.0420 (15)0.0247 (12)0.0473 (12)0.0166 (12)0.0169 (11)0.0073 (10)
C20.0461 (19)0.0288 (15)0.0507 (15)0.0236 (14)0.0055 (14)0.0045 (13)
C10.0317 (15)0.0225 (14)0.0312 (11)0.0146 (12)0.0006 (11)0.0038 (10)
C30.061 (2)0.0367 (18)0.063 (2)0.0268 (18)0.0123 (18)0.0036 (16)
C40.079 (3)0.058 (2)0.059 (2)0.026 (2)0.005 (2)0.0069 (18)
Geometric parameters (Å, °) top
Zn1—S1i2.3426 (7)N1—H1A0.8600
Zn1—S12.3426 (7)N1—H1B0.8600
Zn1—S1ii2.3426 (7)C2—C31.499 (5)
Zn1—Br12.4640 (6)C2—H2A0.9700
S1—C11.727 (3)C2—H2B0.9700
N2—C11.318 (4)C3—C41.278 (6)
N2—C21.452 (4)C3—H30.9300
N2—H20.8600C4—H4A0.9300
N1—C11.327 (3)C4—H4B0.9300
S1i—Zn1—S1116.038 (14)N2—C2—H2A108.2
S1i—Zn1—S1ii116.038 (14)C3—C2—H2A108.2
S1—Zn1—S1ii116.038 (13)N2—C2—H2B108.2
S1i—Zn1—Br1101.64 (2)C3—C2—H2B108.2
S1—Zn1—Br1101.64 (2)H2A—C2—H2B107.4
S1ii—Zn1—Br1101.64 (2)N2—C1—N1120.5 (3)
C1—S1—Zn1110.33 (10)N2—C1—S1116.9 (2)
C1—N2—C2126.6 (3)N1—C1—S1122.6 (2)
C1—N2—H2116.7C4—C3—C2127.0 (4)
C2—N2—H2116.7C4—C3—H3116.5
C1—N1—H1A120.0C2—C3—H3116.5
C1—N1—H1B120.0C3—C4—H4A120.0
H1A—N1—H1B120.0C3—C4—H4B120.0
N2—C2—C3116.3 (3)H4A—C4—H4B120.0
S1i—Zn1—S1—C1141.40 (9)C2—N2—C1—S1179.4 (2)
S1ii—Zn1—S1—C10.08 (10)Zn1—S1—C1—N2145.88 (19)
Br1—Zn1—S1—C1109.34 (9)Zn1—S1—C1—N135.4 (2)
C1—N2—C2—C375.8 (4)N2—C2—C3—C41.8 (6)
C2—N2—C1—N11.8 (4)
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, xy+1, z.
Acknowledgements top

The authors thank the State Key Laboratory of Crystal Materials Open Project (KF0804) for financial support.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bermejo, E., Castineiras, A., Dominguez, R., Carballo, R., Maichle-Mossmer, C., Strahle, J., Liberta, A. E. & West, D. X. (2000). Z. Anorg. Allg. Chem. 626, 878–884.

Bermejo, E., Castineiras, A., Fostiak, L. M., Garcia, I., Llamas-Saiz, A. L., Swearingen, J. K. & West, D. X. (2001). Z. Naturforsch. Teil B, 56, 1297–1305.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Castineiras, A., Garcia, I., Bermejo, E. & West, D. X. (2000). Z. Naturforsch. Teil B, 55, 511–518.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gambino, D., Kremer, E. & Baran, E. J. (2002). Spectrochim. Acta, A58, 3085–3092.

Hou, W. B., Yuan, D. R., Xu, D., Zhang, N., Yu, W. T., Liu, M. G., Tao, X. T., Sun, S. Y. & Jiang, M. H. (1993). J. Cryst. Growth, 133, 71–74.

Olijnyk, V. V., Filinchuk, Ya. E. & Pandiak, N. L. (2003). Z. Anorg. Allg. Chem. 629, 1904–1905.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Gang, X. (2004). Acta Cryst. E60, m1431–m1433.

Yuan, D. R., Zhang, N., Tao, X. T., Xu, D. & Jiang, M. H. (1990). Chin. Phys. Lett. 7, 334–336.

Zhang, N., Jiang, M. H., Yuan, D. R., Xu, D., Yu, W. T. & Tao, X. T. (1990). Chin. Sci. Bull. 35, 646–649.