organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1136

Bis(4-eth­­oxy­phen­yl) sulfoxide

aPharmacy Department of the Second Artillery General Hospital, Beijing 100088, People's Republic of China
*Correspondence e-mail: lihongliu2011@yahoo.cn

(Received 25 March 2011; accepted 8 April 2011; online 16 April 2011)

In the title compound, C16H18O3S, the dihedral angle between the benzene rings is 82.7 (2)°. The O atom of the sulfoxide group is disordered over two orientations with refined occupancy factors of 0.563 (3):0.437 (3). In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature

For background to Friedel–Crafts acyl­ation, see: Edward & Sibelle (1963[Edward, J. W. R. & Sibelle, E. C. (1963). J. Org. Chem. 28, 674-676.]); DeHaan et al. (1979[DeHaan, F. P., Covey, W. D., Delker, G. L., Baker, N. J., Feigon, J. F., Miller, K. D. & Stelter, E. D. (1979). J. Am. Chem. Soc. 101, 1336-1337.]); Fillion & Fishlock (2005[Fillion, E. & Fishlock, D. (2005). J. Am. Chem. Soc. 127, 13144-13145.]); Nishimoto et al. (2008[Nishimoto, Y., Babu, S. A., Yasuda, M. & Baba, A. (2008). J. Org. Chem. 73, 9465-9468.]). For the structures of related aryl­sulfoxides, see: Casarini et al. (2004[Casarini, D., Lunazzi, L., Mazzanti, A., Mercandelli, P. & Sironi, A. (2004). J. Org. Chem. 69, 3574-3577.]); Noland & Kedrowski (2000[Noland, W. E. & Kedrowski, B. L. (2000). Org. Lett. 2, 2109-2111.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O3S

  • Mr = 290.36

  • Triclinic, [P \overline 1]

  • a = 8.2052 (16) Å

  • b = 9.856 (2) Å

  • c = 10.196 (2) Å

  • α = 64.71 (3)°

  • β = 83.78 (3)°

  • γ = 82.88 (3)°

  • V = 738.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.974

  • 6624 measured reflections

  • 3450 independent reflections

  • 2590 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.06

  • 3450 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.51 3.3013 (18) 143
Symmetry code: (i) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Friedel-Crafts acylation is a potent method for building acylbenzene derivatives (Edward & Sibelle, 1963; DeHaan et al., 1979; Fillion & Fishlock, 2005; Nishimoto et al., 2008). Thiocarbonylbenzenes may be prepared by Friedel-Crafts acylation of benzene derivatives with thiocarbonyl chloride in the presence of anhydrous aluminium chloride. Thus, in order to investigate the potentiality of the method, the title compound was prepared by Friedel-Crafts acylation of phenetol, an electron-rich benzene derivative.

In the title compound (Fig. 1) the dihedral angle between the two benzene rings (C3—C8 and C9—C14) is 82.7 (2)°. The S=O bond length is shorter than those found in previously reported arylsulfoxides (Casarini et al., 2004; Noland & Kedrowski, 2000). The oxygen atom of the sulfoxide group is disordered over two orientations with site occupancies of 0.563 (3) and 0.437 (3) for the major and minor components, repectively. In the crystal structure, molecules are linkied by intermolecular C—H···O hydrogen bonds (Table 1) to form chains along the b axis.

Related literature top

For background to Friedel–Crafts acylation, see: Edward & Sibelle (1963); DeHaan et al. (1979); Fillion & Fishlock (2005); Nishimoto et al. (2008). For the structures of related arylsulfoxides, see: Casarini et al. (2004); Noland & Kedrowski (2000).

Experimental top

A round-bottomed flask was charged with 1.19 g (10 mmol) of freshly distilled thionyl chloride, 2.44 g (20 mmol) of phenetol and 20 ml of dried dichloromethane, and the mixture was stirred on an ice-water bath followed by addition of 2.67 g (20 mmol) of anhydrous aluminium chloride in a portionwise manner. The resulting mixture was stirred at room temperature overnight and poured into 200 ml of ice-water. The mixture thus formed was exacted with three 50-ml portions of dichloromethane, and the combined exacts were washed with saturated brine, dried over sodium sulfate and evaporated on a rotary evaporator to afford the crude title compound. Pure title compound was obtained by column chromatography. Crystals suitable for X-ray diffraction were obtained through slow evaporation of a ethyl acetate/petroleum ether (1:10 v/v) solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 40% probability displacement ellipsoids. Only the major component of disorder is shown.
Bis(4-ethoxyphenyl) sulfoxide top
Crystal data top
C16H18O3SZ = 2
Mr = 290.36F(000) = 308
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2052 (16) ÅCell parameters from 2289 reflections
b = 9.856 (2) Åθ = 2.2–27.9°
c = 10.196 (2) ŵ = 0.22 mm1
α = 64.71 (3)°T = 113 K
β = 83.78 (3)°Block, colourless
γ = 82.88 (3)°0.20 × 0.16 × 0.12 mm
V = 738.4 (3) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3450 independent reflections
Radiation source: rotating anode2590 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.022
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 129
Tmin = 0.957, Tmax = 0.974l = 1312
6624 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.2002P]
where P = (Fo2 + 2Fc2)/3
3450 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H18O3Sγ = 82.88 (3)°
Mr = 290.36V = 738.4 (3) Å3
Triclinic, P1Z = 2
a = 8.2052 (16) ÅMo Kα radiation
b = 9.856 (2) ŵ = 0.22 mm1
c = 10.196 (2) ÅT = 113 K
α = 64.71 (3)°0.20 × 0.16 × 0.12 mm
β = 83.78 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3450 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2590 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.974Rint = 0.022
6624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3450 reflectionsΔρmin = 0.40 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.00304 (4)0.50094 (4)0.73977 (4)0.02589 (12)
O10.32089 (14)0.11895 (11)0.97342 (11)0.0264 (2)
O2A0.0884 (2)0.5328 (2)0.8531 (2)0.0284 (5)0.563 (3)
O2B0.0815 (3)0.5217 (3)0.6188 (3)0.0274 (7)0.437 (3)
O30.60436 (12)0.81887 (11)0.56357 (10)0.0237 (2)
C10.4363 (2)0.35101 (18)1.14478 (18)0.0316 (4)
H1A0.45530.40981.24570.047*
H1B0.53960.33641.08870.047*
H1C0.36940.40281.11260.047*
C20.34927 (19)0.20046 (16)1.12487 (15)0.0248 (3)
H2A0.24560.21381.18270.030*
H2B0.41670.14601.15510.030*
C30.24360 (17)0.02257 (15)0.92796 (15)0.0205 (3)
C40.18830 (19)0.09277 (17)1.01871 (16)0.0247 (3)
H40.20180.04261.11800.030*
C50.11249 (18)0.23851 (17)0.96065 (16)0.0252 (3)
H50.07520.28621.02110.030*
C60.09267 (17)0.31234 (15)0.81312 (16)0.0211 (3)
C70.14640 (19)0.24226 (17)0.72137 (16)0.0261 (3)
H70.13150.29210.62230.031*
C80.2223 (2)0.09749 (17)0.77930 (16)0.0259 (3)
H80.25920.04990.71880.031*
C90.17993 (17)0.59829 (15)0.68666 (16)0.0217 (3)
C100.23615 (18)0.64787 (16)0.78032 (16)0.0223 (3)
H100.17840.63100.86880.027*
C110.37828 (17)0.72262 (15)0.74289 (15)0.0211 (3)
H110.41610.75610.80570.025*
C120.46333 (17)0.74683 (15)0.61065 (15)0.0191 (3)
C130.40644 (19)0.69756 (16)0.51575 (15)0.0240 (3)
H130.46430.71410.42740.029*
C140.26404 (18)0.62420 (16)0.55302 (16)0.0240 (3)
H140.22480.59240.48950.029*
C150.67526 (18)0.85931 (17)0.66294 (16)0.0235 (3)
H15A0.69600.77120.75290.028*
H15B0.60140.93260.68500.028*
C160.83409 (18)0.92527 (18)0.58926 (17)0.0278 (3)
H16A0.89000.94720.65500.042*
H16B0.81101.01640.50430.042*
H16C0.90250.85430.56160.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01736 (17)0.02001 (18)0.0400 (2)0.00022 (12)0.00217 (15)0.01266 (16)
O10.0373 (6)0.0221 (5)0.0180 (5)0.0067 (4)0.0050 (4)0.0082 (4)
O2A0.0233 (10)0.0257 (10)0.0363 (12)0.0013 (7)0.0091 (8)0.0159 (9)
O2B0.0276 (13)0.0241 (13)0.0301 (14)0.0007 (10)0.0155 (10)0.0081 (11)
O30.0258 (5)0.0279 (6)0.0200 (5)0.0089 (4)0.0021 (4)0.0116 (4)
C10.0339 (9)0.0257 (8)0.0287 (9)0.0021 (6)0.0069 (7)0.0054 (7)
C20.0304 (8)0.0239 (7)0.0173 (7)0.0016 (6)0.0049 (6)0.0054 (6)
C30.0223 (7)0.0193 (7)0.0199 (7)0.0006 (5)0.0017 (5)0.0082 (6)
C40.0310 (8)0.0258 (8)0.0171 (7)0.0021 (6)0.0006 (6)0.0093 (6)
C50.0278 (8)0.0259 (8)0.0245 (8)0.0015 (6)0.0049 (6)0.0150 (6)
C60.0161 (6)0.0194 (7)0.0279 (8)0.0025 (5)0.0005 (5)0.0101 (6)
C70.0338 (8)0.0233 (7)0.0210 (7)0.0008 (6)0.0064 (6)0.0089 (6)
C80.0360 (8)0.0239 (7)0.0201 (7)0.0036 (6)0.0034 (6)0.0127 (6)
C90.0189 (7)0.0163 (6)0.0284 (8)0.0012 (5)0.0031 (6)0.0081 (6)
C100.0217 (7)0.0224 (7)0.0240 (7)0.0001 (5)0.0027 (6)0.0124 (6)
C110.0229 (7)0.0216 (7)0.0218 (7)0.0009 (5)0.0012 (6)0.0124 (6)
C120.0212 (7)0.0154 (6)0.0195 (7)0.0012 (5)0.0017 (5)0.0061 (5)
C130.0302 (8)0.0241 (7)0.0171 (7)0.0043 (6)0.0010 (6)0.0076 (6)
C140.0301 (8)0.0219 (7)0.0213 (7)0.0029 (6)0.0066 (6)0.0090 (6)
C150.0221 (7)0.0291 (8)0.0225 (7)0.0045 (6)0.0014 (6)0.0134 (6)
C160.0231 (7)0.0342 (8)0.0285 (8)0.0065 (6)0.0001 (6)0.0149 (7)
Geometric parameters (Å, º) top
S1—O2B1.379 (2)C6—C71.391 (2)
S1—O2A1.4156 (18)C7—C81.383 (2)
S1—C91.7902 (15)C7—H70.9300
S1—C61.7913 (16)C8—H80.9300
O1—C31.3619 (17)C9—C101.383 (2)
O1—C21.4338 (17)C9—C141.393 (2)
O3—C121.3659 (17)C10—C111.3873 (19)
O3—C151.4331 (16)C10—H100.9300
C1—C21.505 (2)C11—C121.387 (2)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C131.3949 (19)
C1—H1C0.9600C13—C141.382 (2)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—H140.9300
C3—C41.385 (2)C15—C161.505 (2)
C3—C81.394 (2)C15—H15A0.9700
C4—C51.390 (2)C15—H15B0.9700
C4—H40.9300C16—H16A0.9600
C5—C61.381 (2)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
O2B—S1—O2A120.99 (14)C6—C7—H7120.4
O2B—S1—C9110.29 (12)C7—C8—C3120.34 (13)
O2A—S1—C9107.71 (9)C7—C8—H8119.8
O2B—S1—C6107.72 (11)C3—C8—H8119.8
O2A—S1—C6109.65 (10)C10—C9—C14120.52 (13)
C9—S1—C698.07 (7)C10—C9—S1118.90 (11)
C3—O1—C2118.08 (11)C14—C9—S1120.58 (11)
C12—O3—C15117.39 (11)C9—C10—C11120.32 (13)
C2—C1—H1A109.5C9—C10—H10119.8
C2—C1—H1B109.5C11—C10—H10119.8
H1A—C1—H1B109.5C12—C11—C10119.24 (13)
C2—C1—H1C109.5C12—C11—H11120.4
H1A—C1—H1C109.5C10—C11—H11120.4
H1B—C1—H1C109.5O3—C12—C11123.89 (12)
O1—C2—C1107.09 (12)O3—C12—C13115.57 (12)
O1—C2—H2A110.3C11—C12—C13120.54 (13)
C1—C2—H2A110.3C14—C13—C12120.01 (13)
O1—C2—H2B110.3C14—C13—H13120.0
C1—C2—H2B110.3C12—C13—H13120.0
H2A—C2—H2B108.6C13—C14—C9119.37 (13)
O1—C3—C4124.36 (13)C13—C14—H14120.3
O1—C3—C8115.56 (12)C9—C14—H14120.3
C4—C3—C8120.08 (13)O3—C15—C16106.61 (11)
C3—C4—C5119.69 (13)O3—C15—H15A110.4
C3—C4—H4120.2C16—C15—H15A110.4
C5—C4—H4120.2O3—C15—H15B110.4
C6—C5—C4119.88 (13)C16—C15—H15B110.4
C6—C5—H5120.1H15A—C15—H15B108.6
C4—C5—H5120.1C15—C16—H16A109.5
C5—C6—C7120.83 (14)C15—C16—H16B109.5
C5—C6—S1119.31 (11)H16A—C16—H16B109.5
C7—C6—S1119.86 (12)C15—C16—H16C109.5
C8—C7—C6119.17 (14)H16A—C16—H16C109.5
C8—C7—H7120.4H16B—C16—H16C109.5
C3—O1—C2—C1179.66 (12)O2B—S1—C9—C10152.14 (15)
C2—O1—C3—C40.9 (2)O2A—S1—C9—C1018.17 (15)
C2—O1—C3—C8178.78 (13)C6—S1—C9—C1095.51 (12)
O1—C3—C4—C5179.25 (13)O2B—S1—C9—C1427.63 (17)
C8—C3—C4—C50.4 (2)O2A—S1—C9—C14161.60 (13)
C3—C4—C5—C60.0 (2)C6—S1—C9—C1484.72 (13)
C4—C5—C6—C70.6 (2)C14—C9—C10—C110.7 (2)
C4—C5—C6—S1179.25 (11)S1—C9—C10—C11179.49 (11)
O2B—S1—C6—C5150.37 (15)C9—C10—C11—C120.1 (2)
O2A—S1—C6—C516.90 (15)C15—O3—C12—C115.76 (19)
C9—S1—C6—C595.24 (13)C15—O3—C12—C13174.52 (12)
O2B—S1—C6—C729.81 (17)C10—C11—C12—O3179.91 (13)
O2A—S1—C6—C7163.29 (13)C10—C11—C12—C130.4 (2)
C9—S1—C6—C784.58 (13)O3—C12—C13—C14179.60 (13)
C5—C6—C7—C80.8 (2)C11—C12—C13—C140.1 (2)
S1—C6—C7—C8179.03 (11)C12—C13—C14—C90.9 (2)
C6—C7—C8—C30.4 (2)C10—C9—C14—C131.2 (2)
O1—C3—C8—C7179.49 (13)S1—C9—C14—C13178.98 (11)
C4—C3—C8—C70.2 (2)C12—O3—C15—C16175.76 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.513.3013 (18)143
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H18O3S
Mr290.36
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.2052 (16), 9.856 (2), 10.196 (2)
α, β, γ (°)64.71 (3), 83.78 (3), 82.88 (3)
V3)738.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.957, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6624, 3450, 2590
Rint0.022
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.06
No. of reflections3450
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.40

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.513.3013 (18)143
Symmetry code: (i) x, y+1, z.
 

References

First citationCasarini, D., Lunazzi, L., Mazzanti, A., Mercandelli, P. & Sironi, A. (2004). J. Org. Chem. 69, 3574–3577.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeHaan, F. P., Covey, W. D., Delker, G. L., Baker, N. J., Feigon, J. F., Miller, K. D. & Stelter, E. D. (1979). J. Am. Chem. Soc. 101, 1336–1337.  CrossRef CAS Google Scholar
First citationEdward, J. W. R. & Sibelle, E. C. (1963). J. Org. Chem. 28, 674–676.  Google Scholar
First citationFillion, E. & Fishlock, D. (2005). J. Am. Chem. Soc. 127, 13144–13145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishimoto, Y., Babu, S. A., Yasuda, M. & Baba, A. (2008). J. Org. Chem. 73, 9465–9468.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoland, W. E. & Kedrowski, B. L. (2000). Org. Lett. 2, 2109–2111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds