

ISSN 1600-5368

cyclo-Tetrakis(μ_2 -3-sulfidopropyl- $\kappa^3 C^1$,S:S)tetrakis[chloridocobalt(III)]. Retraction

Shafique Ahmad Awan,^a M. Nawaz Tahir,^b* Iram Khushi Muhammad,^c Saeed Ahmad^c and Muhammad Ilyas Tariq^d

^aPAEC, PO Box No. 1114, Islamabad GPO 44000, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and ^dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 18 May 2012; accepted 18 May 2012

The paper by Awan *et al.* [*Acta Cryst.* (2011), E**67**, m576–m577] is retracted. It has subsequently been shown that the crystal studied was an already known zinc compound, $[Zn_4Cl_4(C_2H_6NS)_4]$.

We wish to withdraw the paper by Awan *et al.* (2011) on a compound reported to be $[Co_4Cl_4(C_3H_6S)_4]$. It has subsequently been shown that the crystal studied was a related zinc compound, $[Zn_4Cl_4(C_2H_6NS)_4]$, which was reported by Fleischer *et al.* (2006).

References

 Awan, S. A., Tahir, M. N., Muhammad, I. K., Ahmad, S. & Tariq, M. I. (2011). Acta Cryst. E67, m576–m577.
 Fleischer, H., Hardt, S. & Schollmeyer, D. (2006). Inorg. Chem. 45, 8318–8325.

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cyclo-Tetrakis(μ_2 -3-sulfidopropyl- $\kappa^3 C^1$, S:S)tetrakis[chloridocobalt(III)]

Shafique Ahmad Awan,^a M. Nawaz Tahir,^b* Iram Khushi Muhammad,^c Saeed Ahmad^c and Muhammad Ilyas Tariq^d

^aPAEC, PO Box # 1114, Islamabad GPO 44000, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and ^dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 2 April 2011; accepted 7 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.041; w*R* factor = 0.125; data-to-parameter ratio = 19.7.

In the centrosymmetric title compound, $[Co_4Cl_4(C_3H_6S)]_4]$, the two independent Co^{III} ions are each coordinated in a distorted tetrahedral geometry by one C, one Cl and two S atoms. The molecules are stabilized by C-H···Cl hydrogen bonds. In the crystal, intermolecular C-H···Cl and C-H···S hydrogen bonds with $R_2^2(8)$, $R_4^2(8)$ and $R_2^2(6)$ ring motifs generate a polymeric network.

Related literature

For related background see: Shahid *et al.* (2009), Altaf *et al.* (2010). For related structures, see: Duan *et al.* (1997); Tremel *et al.* (1992). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data $[Co_4Cl_4(C_3H_6S)]_4]$ $M_r = 674.07$ Monoclinic, C2/c a = 23.6135 (12) Å b = 7.8465 (3) Å c = 16.8693 (9) Å $\beta = 130.440$ (4)°

 $V = 2378.9 (2) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.54 \text{ mm}^{-1}$ T = 296 K $0.24 \times 0.16 \times 0.14 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.675, T_{\max} = 0.683$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.125$ S = 1.042152 reflections 13736 measured reflections 2152 independent reflections 1782 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$

Table 1

Selected bond lengths (Å).

Co1-Cl1	2.228 (2)) Co2-	S1	2.305 (2)
Co1-S1	2.3570 (1	17) Co2-	S2 ⁱ	2.3648 (16)
Co1-S2	2.318 (2)) Co2-	C6 ⁱ	2.051 (6)
Co1-C3	2.038 (6)	S1-C	1	1.826 (7)
Co2-Cl2	2.236 (3)	S2-C	4	1.837 (8)
Symmetry code: (i) $-x$	$x + \frac{1}{2}, -y - \frac{1}{2}, -y$	z + 1.		
Table 2				
Hydrogen-bond ge	ometry (Å, ^o	?).		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3 - H3A \cdot \cdot \cdot S2^{ii}$	0.97	2.57	3.539 (8)	175
$C3 - H3B \cdot \cdot \cdot Cl2^{iii}$	0.97	2.74	3.512 (7)	138
$C3-H3B\cdots Cl2^{iv}$	0.97	2.81	3.412 (6)	121
C6−H6A···Cl1 ⁱ	0.97	2.62	3.379 (7)	135

Symmetry codes: (i) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x, y, -z + \frac{1}{2}$; (iv) $x, -y, z - \frac{1}{2}$; (v) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2349).

References

- Altaf, M., Stoeckli-Evans, H., Batool, S. S., Isab, A. A., Ahmad, S., Saleem, M., Awan, S. A. & Shaheen, M. A. (2010). J. Coord. Chem. 63, 1176–1185.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

- Duan, C.-Y., Liu, Z.-H., You, X.-Z., Xue, F. & Mak, T. C. W. (1997). Chem. Commun. pp. 381–382.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Shahid, M., Rüffer, T., Lang, H., Awan, S. A. & Ahmad, S. (2009). J. Coord. Chem. 62, 440–445.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tremel, W., Krebs, B., Greiwe, K., Simon, W., Stephan, H.-O. & Henkel, G. (1992). Z. Naturforsch. Teil B, 47, 1580–1592.

supporting information

Acta Cryst. (2011). E67, m576-m577 [doi:10.1107/S1600536811013067]

cyclo-Tetrakis(μ_2 -3-sulfidopropyl- $\kappa^3 C^1$, S:S)tetrakis[chloridocobalt(III)]

Shafique Ahmad Awan, M. Nawaz Tahir, Iram Khushi Muhammad, Saeed Ahmad and Muhammad Ilyas Tariq

S1. Comment

Recently, we have reported the crystal structure of zinc(II) and mercury(II) complexes of pyrrolidinedithiocarbamate (PDTC) (Shahid *et al.*, 2009) & (Altaf, *et al.*, 2010). In the present study, we attempted to prepare a cobalt(II) complex with PDTC, but surprisingly the title compound (I, Fig. 1) was isolated, the crystal structure of which is being presented.

The crystal structure of (II) i.e, tetranuclear molecular square $[Co(HL)]_4^{4+}$ [H₂L = tetra(2-pyridyl)thiocarbazone] (Duan *et al.*, 1997) and (III) *i.e.*, bis(tetraethylammonium) hexakis(μ_2 -phenylthiolato)-tetrachloro-tetra -cobalt acetonitrile solvate (Tremel *et al.*, 1992) have been published which are related to the title compound (I).

The crystal structure of the title compound (I) is centrosymmetric. The coordination around two independent Coⁱⁱⁱ ions is distorted tetrahedral from one C, Cl and two S-atoms. The range of Co–C [2.038 (6)–2.051 (6) Å] is shorter compared to Co–S [2.305 (2)–2.3648 (16) Å]. The Co–Cl bonds have values of 2.228 (2) and 2.236 (2) Å. The important bond distances are given in Table 1. The molecules are stabilized in the form of a polymeric network due to C–H…Cl and C–H…S intermolecular H-bonds (Table 2) forming $R_2^2(8)$, $R_4^2(8)$ and $R_2^2(6)$ ring motifs (Bernstein *et al.*, 1995).

S2. Experimental

The title compound was prepared by adding two equivalents of ammonium pyrrolidinedithiocarbamate (PDTC) in 15 ml methanol to a solution of $CoCl_{2.6}H_2O$ in 10 ml methanol. The addition of PDTC in the pink colored metal ion solution resulted in the formation of green precipitates immediately. After stirring for half an hour, the precipitates were filtered off and dried. The blackish brown crystals of the title compound (I) were prepared by dissolving 0.03 g precipitates in 3 ml DMSO on heating in a vial and then cooling the resulting solution at room temperature.

S3. Refinement

The H-atoms were positioned geometrically (C–H = 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for all H-atoms.

Figure 1

View of the centrosymmetric title compound. Symmetry code i = -x + 1/2, -y - 1/2, -z + 1. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form a polymeric network with ring motifs. Hatoms not involved in H-bondings are omitted for clarity.

cyclo-Tetrakis(μ_2 -3-sulfidopropyl- $\kappa^3 C^1$, S:S)tetrakis[chloridocobalt(III)]

Crystal data [Co₄Cl₄(C₃H₆S)]₄] $M_r = 674.07$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.6135 (12) Å b = 7.8465 (3) Å c = 16.8693 (9) Å $\beta = 130.440 (4)^\circ$ $V = 2378.9 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.10 pixels mm⁻¹ ω scans F(000) = 1344 $D_x = 1.882 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1782 reflections $\theta = 2.3-25.2^{\circ}$ $\mu = 3.54 \text{ mm}^{-1}$ T = 296 KPrisms, white $0.24 \times 0.16 \times 0.14 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.675$, $T_{max} = 0.683$ 13736 measured reflections 2152 independent reflections 1782 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$

$k = -9 \longrightarrow 8$
$l = -20 \rightarrow 20$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 15.5359P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	7	$U_{\rm iso}*/U_{\rm eq}$
Col	0.17597 (4)	-0.17781 (9)	0.30876 (5)	0.0323 (2)
Co2	0.14629 (4)	-0.12119 (9)	0.50575 (5)	0.0336 (2)
C11	0.09923 (9)	-0.3988 (2)	0.25283 (12)	0.0555 (5)
C12	0.07469 (11)	0.0860 (3)	0.49043 (15)	0.0694 (7)
S1	0.21157 (8)	-0.0272 (2)	0.45587 (11)	0.0460 (4)
S2	0.28224 (8)	-0.2358 (2)	0.33225 (11)	0.0481 (5)
C1	0.1631 (4)	0.1666 (8)	0.3814 (5)	0.066 (3)
C2	0.0959 (4)	0.1316 (9)	0.2708 (5)	0.061 (2)
C3	0.1163 (3)	0.0287 (7)	0.2182 (4)	0.0362 (17)
C4	0.3356 (4)	-0.0372 (9)	0.3904 (6)	0.064 (3)
C5	0.4140 (4)	-0.0689 (10)	0.4862 (6)	0.065 (3)
C6	0.4164 (3)	-0.1622 (7)	0.5638 (4)	0.0417 (17)
H1A	0.14799	0.22914	0.41469	0.0787*
H1B	0.19711	0.23811	0.38263	0.0787*
H2A	0.05934	0.07031	0.26878	0.0733*
H2B	0.07391	0.23855	0.23404	0.0733*
H3A	0.14572	0.09690	0.20863	0.0435*
H3B	0.07165	-0.00820	0.15024	0.0435*
H4A	0.33533	0.02242	0.33979	0.0769*
H4B	0.31166	0.03559	0.40757	0.0769*
H5A	0.43922	-0.13460	0.46849	0.0783*
H5B	0.43980	0.03894	0.51537	0.0783*
H6A	0.39644	-0.09200	0.58805	0.0502*
H6B	0.46733	-0.19168	0.62322	0.0502*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.0275 (4)	0.0399 (4)	0.0300 (4)	-0.0012 (3)	0.0189 (3)	-0.0025 (3)
Co2	0.0338 (4)	0.0373 (4)	0.0312 (4)	-0.0014 (3)	0.0217 (3)	0.0004 (3)
Cl1	0.0496 (9)	0.0537 (9)	0.0545 (9)	-0.0089 (7)	0.0299 (8)	-0.0081 (7)
Cl2	0.0683 (11)	0.0733 (11)	0.0725 (12)	0.0219 (9)	0.0483 (10)	0.0114 (9)
S 1	0.0485 (8)	0.0520 (8)	0.0377 (7)	-0.0099 (7)	0.0281 (7)	-0.0045 (6)
S2	0.0407 (8)	0.0667 (10)	0.0398 (8)	0.0055 (7)	0.0274 (7)	0.0030 (7)
C1	0.091 (5)	0.045 (4)	0.054 (4)	-0.010 (4)	0.044 (4)	-0.004 (3)
C2	0.066 (4)	0.047 (4)	0.056 (4)	0.003 (3)	0.033 (4)	0.008 (3)
C3	0.034 (3)	0.045 (3)	0.030 (3)	-0.003 (2)	0.021 (2)	0.005 (2)
C4	0.056 (4)	0.064 (4)	0.074 (5)	0.000 (3)	0.043 (4)	0.022 (4)
C5	0.056 (4)	0.067 (4)	0.074 (5)	-0.010 (3)	0.043 (4)	0.003 (4)
C6	0.038 (3)	0.047 (3)	0.037 (3)	-0.012 (2)	0.023 (3)	-0.005 (2)
					KV	
Geomet	tric parameters (A,	,)				
Co1—0	C11	2.228 (2	2)	C5—C6	1.	469 (11)
Co1—S	51	2.3570	(17)	C1—H1A	0.	9700
Co1—S	52	2.318 (2	2)	C1—H1B	0.	9700
Co1—C	C3	2.038 (6	5)	С2—Н2А	0.9700	
Co2—C	C12	2.236 (3	3)	C2—H2B	0.9700	
Co2—S	51	2.305 (2	2)	C3—H3A	H3A 0.9700	
Co2—S	2.3648 (16)		(16)	C3_H3B	0.	9700
Co2—(<u>6</u>	2.051 (0	(\mathbf{b})	C4—H4A	0.	9700
SI-CI	1	1.826 (C4—H4B	0.	9700
S2—C4	+ 2	1.837 (8	3)	C5—H5A	0.	9700
CI - C	2	1.495 (1		С5—Н5В	0.	9700
$C_2 - C_3$	3 5	1.492 (C6—H6A	0.	9700
C4—C:	5	1.490 ((3)	Со—Нов	0.	9700
Со1…Н	[4A ⁱⁱ	3.3200		S2…H4A ⁱⁱ	3.	0500
Cl1…C	3	3.473 (0	6)	C2…Cl2 ^{iv}	3.	570 (7)
Cl1…C	6 ⁱⁱⁱ	3.343 (7	7)	C3…Cl1	3.	473 (6)
Cl1…C	6 ⁱ	3.379 (1	7)	C3…S1 3.103 (5)		103 (5)
Cl2…C	1	3.623 (2	11)	C3…S2 3.686		686 (7)
Cl2…C.	3 ^{iv}	3.512 (*	7)	C3…C1		455 (9)
Cl2…C	6 ⁱ	3.492 (0	6)	C3···Cl2 ^{iv} 3.512 (7)		512 (7)
Cl2…C	Cl2…C3 ^v 3.412 (6)		6)	C3…Cl2 ^{viii}		412 (6)
Cl2…S1	Cl2···S1 3.744 (4)		4)	C3····S2 ^{ix}		539 (8)
Cl2…C2	$2C2^{iv}$ 3.570 (7)		7)	C6…Cl1 ⁱ		379 (7)
Cl1…H	4A ⁱⁱ	2.8900		C6…Cl2 ⁱ		491 (6)
Cl1…H	$2B^{vi}$	2.8800		C6…Cl1 ^x	3.	343 (7)
Cl1…H	6A ⁱ	2.6200		H1A····Cl2	2.	9600
Cl1…H	6B ⁱⁱⁱ	2.4800		Н1В…НЗА	2.	5900
С12…Н	1A	2.9600		H1B…S1 ^{vii}	3.	1000
С12…Н	3B ^v	2.8100		H2A…H2A ^{iv}	2.	4400

Cl2…H3B ^{iv}	2.7400	H2B····Cl1 ^{xi}	2.8800
Cl2…H5B ^{vii}	2.9600	H3A…H1B	2.5900
S1Cl2	3.744 (4)	H3A…S2 ^{ix}	2.5700
S1S2	3.785 (3)	H3B…Cl2 ^{iv}	2.7400
S1…C2	2.774 (7)	H3B…Cl2 ^{viii}	2.8100
\$1C3	3.103 (5)	H4A…Co1 ^{ix}	3.3200
S1…Co1 ⁱ	3.8074 (16)	H4A…Cl1 ^{ix}	2.8900
S1···S1 ⁱ	3.773 (2)	H4A…S2 ^{ix}	3.0500
S2…C3 ⁱⁱ	3.539 (8)	H4B…S1	3.0000
\$2…\$1	3.785 (3)	Н4В…Н6А	2.5200
\$2···C3	3.686 (7)	H5B····Cl2 ^{vii}	2.9600
S1H4B	3.0000	H6A…H4B	2.5200
S1…H1B ^{vii}	3.1000		2.6200
S2···H3A ⁱⁱ	2.5700	H6B···Cl1 ^x	2,4800
	,		
Cl1—Co1—S1	118.22 (8)	С2—С1—Н1В	109.00
Cl1—Co1—S2	114.37 (8)	H1A—C1—H1B	108.00
Cl1—Co1—C3	108.9 (2)	C1—C2—H2A	110.00
S1—Co1—S2	108.14 (7)	С1—С2—Н2В	109.00
S1—Co1—C3	89.52 (17)	C3—C2—H2A	110.00
S2—Co1—C3	115.5 (2)	C3—C2—H2B	109.00
Cl2—Co2—S1	111.09 (9)	H2A—C2—H2B	108.00
Cl2—Co2—S2 ⁱ	113.44 (8)	Col-C3-H3A	110.00
Cl2—Co2—C6 ⁱ	109.0 (2)	Col-C3-H3B	110.00
S1—Co2—S2 ⁱ	115.39 (8)	C2—Q3—H3A	110.00
S1—Co2—C6 ⁱ	117.5 (2)	С2—С3—НЗВ	110.00
S2 ⁱ —Co2—C6 ⁱ	88.68 (15)	НЗА—СЗ—НЗВ	108.00
Co1—S1—Co2	110.96(8)	S2—C4—H4A	109.00
Co1—S1—C1	93.3 (2)	S2—C4—H4B	109.00
Co2—S1—C1	104.4 (4)	C5—C4—H4A	109.00
Co1—S2—C4	102.5 (4)	C5—C4—H4B	109.00
Co1—S2—Co2 ⁱ	99.94 (8)	H4A—C4—H4B	108.00
Co2 ⁱ —S2—C4	93.3 (2)	С4—С5—Н5А	110.00
S1—C1—C2	113.0 (5)	C4—C5—H5B	110.00
C1—C2—C3	110.6 (8)	С6—С5—Н5А	109.00
Co1—C3—C2	108.5 (4)	С6—С5—Н5В	110.00
S2—C4—C5	112.1 (5)	H5A—C5—H5B	108.00
C4—C5—C6	110.6 (9)	С5—С6—Н6А	110.00
Co2 ⁱ —C6—C5	107.9 (4)	С5—С6—Н6В	110.00
S1—C1—H1A	109.00	H6A—C6—H6B	108.00
S1—C1—H1B	109.00	Co2 ⁱ —C6—H6A	110.00
C2—C1—H1A	109.00	Co2 ⁱ —C6—H6B	110.00
Cl1—Co1—Sl—Co2	-7.06 (11)	S2 ¹ —Co2—S1—C1	-148.1 (2)
CII—CoI—SI—CI	-113.8 (3)	C6 ¹ —Co2—S1—Co1	10.1 (2)
S2—Co1—S1—Co2	-139.02 (7)	C6'-Co2-S1-C1	109.3 (3)
S2—Co1—S1—C1	114.2 (3)	Cl2—Co2—S2 ¹ —Co1 ¹	-145.79 (9)
C3—Co1—S1—Co2	104.3 (2)	$Cl2$ — $Co2$ — $S2^{i}$ — $C4^{i}$	110.9 (4)

C3—Co1—S1—C1	-2.5 (4)	S1—Co2—S2 ⁱ —Co1 ⁱ	-16.01 (8)
Cl1—Co1—S2—C4	-174.3 (3)	$S1$ — $Co2$ — $S2^{i}$ — $C4^{i}$	-119.3 (4)
Cl1—Co1—S2—Co2 ⁱ	-78.66 (7)	$Cl2$ — $Co2$ — $C6^{i}$ — $C5^{i}$	-87.1 (6)
S1—Co1—S2—C4	-40.3 (3)	$S1$ — $Co2$ — $C6^{i}$ — $C5^{i}$	145.4 (5)
S1-Co1-S2-Co2 ⁱ	55.34 (7)	Co1—S1—C1—C2	30.3 (8)
C3—Co1—S2—C4	58.1 (3)	Co2—S1—C1—C2	-82.3 (7)
C3—Co1—S2—Co2 ⁱ	153.74 (17)	Co1—S2—C4—C5	130.1 (7)
Cl1—Co1—C3—C2	95.3 (5)	Co2 ⁱ —S2—C4—C5	29.2 (7)
S1—Co1—C3—C2	-24.5 (5)	S1—C1—C2—C3	-56.3 (9)
S2—Co1—C3—C2	-134.5 (5)	C1-C2-C3-Co1	51.0 (7)
Cl2—Co2—S1—Co1	-116.41 (8)	S2—C4—C5—C6	-57.7 (9)
Cl2—Co2—S1—C1	-17.1 (2)	C4—C5—C6—Co2 ⁱ	54.4 (7)
S2 ⁱ —Co2—S1—Co1	112.67 (7)		

Symmetry codes: (i) -x+1/2, -y-1/2, -z+1; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x-1/2, -y-1/2, z-1/2; (iv) -x, y, -z+1/2; (v) x, -y, z+1/2; (vi) x, y-1, z; (vii) -x+1/2, -y+1/2, -z+1; (viii) x, -y, z-1/2; (iv) -x+1/2, (x+1/2, -y-1/2, z+1/2); (vi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
C3—H3A····S2 ^{ix}	0.97	2.57	3.539 (8)	175	
C3—H3B····Cl2 ^{iv}	0.97	2.74	3.512 (7)	138	
C3—H3B····Cl2 ^{viii}	0.97	2.81	3.412 (6)	121	
C6—H6A···Cl1 ⁱ	0.97	2.62	3.379 (7)	135	
C6—H6 <i>B</i> ···Cl1 ^x	0.97	2.48	3.343 (7)	148	

Symmetry codes: (i) -x+1/2, -y-1/2, -z+1; (iv) -x, y, -z+1/2; (viii) x, y, z-1/2; (ix) -x+1/2, y+1/2, -z+1/2; (x) x+1/2, -y-1/2, z+1/2.