supplementary materials


tk2733 scheme

Acta Cryst. (2011). E67, o1040    [ doi:10.1107/S1600536811011639 ]

(S)-[5-Methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol

Y. K. Ko, J. W. Ryu, D. W. Koo, J. C. Woo and C.-H. Kim

Abstract top

In the title compound, C10H13NO2S, the thiophene and isoxazoline rings are almost coplanar, the dihedral angle between their least-squares planes being 2.08 (1)°. The O-H atoms of the methyl hydroxy group and the N atom of the isoxazole ring are orientated in the same direction to allow for the formation of intermolecular O-H...N hydrogen bonds that lead to a supramolecular chain along the a axis.

Comment top

Weed control is very important for the improvment of agricultural efficiency Boger et al., 2002; Bryant et al., 2010). A number of herbicides have been used for the purpose of weed killing. Recently a new isoxazoline herbicide MRC-01 has been developed (Ryu et al., 2005; Hwang et al., 2005; Koo et al., 2007; Koo & Hwang, 2008; Bryant & Bite, 2010). MRC-01 was synthesized by the reaction of [5-methyl-3-(3-methylthiophen -2-yl)-4,5-dihydroisoxazol-5-yl]methanol and 2,6-difluorobenzylbromide in the presence of base. The key intermediate [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol was used as racemic compound but could be separated into enantiomers by employing chiral HPLC column technology. Herein, we report the crystal structure of title compound (Fig. 1). The thiophene ring and the isoxazole ring are almost coplanar with the dihedral angle being 2.08 (1) °. The conformation of the O—H of the methyl hydroxy group and the N atom of the isoxazole ring are in the same direction to allow intermolecular hydrogen bonds to form. In the crystal structure (Fig. 2), the molecules are linked by these O—H···N hydrogen bonds into a one-dimensional chain running along the a axis.

Related literature top

For the synthesis, biological activity and mode of action of herbicides, see; Ryu et al. (2005); Hwang et al. (2005); Koo et al. (2007); Koo & Hwang (2008). For relevant reviews of herbicides, see; Boger et al. (2002); Bryant & Bite (2010).

Experimental top

The title compound was obtained by a chiral separation of racemic [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol employing chiral prep-HPLC under the condition shown below. HPLC conditions: Column: (R,R) WHELK-01 (25 cm x 10.0 mm). Regis.Co.; Eluent: 25% 2-propanol + 75% n-hexane; Flow Rate 4.0 ml/min; Detection: 254 nm; Injection volume: 0.1 ml. The first eluting fraction was concentrated under reduced pressure to provide the title compound [α]D (+) 59.96 (c = 1, dichloromethane). Single crystals suitable for X-ray diffraction were prepared by recrystallization from its ethyl acetate solution at room temperature.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing structure of the title compound, viewed down the c axis showing the O—H···N hydrogen bonds as dashed lines.
(S)-[5-Methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol top
Crystal data top
C10H13NO2SF(000) = 448
Mr = 211.27Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4205 reflections
a = 7.3672 (9) Åθ = 2.5–26.1°
b = 8.8534 (11) ŵ = 0.28 mm1
c = 16.0632 (19) ÅT = 296 K
V = 1047.7 (2) Å3Block, silver
Z = 40.39 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube2096 reflections with I > 2σ(I)
graphiteRint = 0.025
φ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.898, Tmax = 0.970k = 1111
11038 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.086P)2 + 0.1644P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.47 e Å3
127 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1087 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (14)
Crystal data top
C10H13NO2SV = 1047.7 (2) Å3
Mr = 211.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3672 (9) ŵ = 0.28 mm1
b = 8.8534 (11) ÅT = 296 K
c = 16.0632 (19) Å0.39 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2096 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.970Rint = 0.025
11038 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.36 e Å3
2619 reflectionsAbsolute structure: Flack (1983), 1087 Friedel pairs
127 parametersFlack parameter: 0.02 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00757 (12)0.90745 (7)0.64150 (4)0.0503 (2)
C20.0074 (4)0.8815 (3)0.53306 (13)0.0390 (4)
C30.0070 (5)0.7321 (3)0.51314 (15)0.0446 (5)
C40.0075 (4)0.6395 (3)0.58618 (17)0.0525 (6)
H4A0.00800.53450.58410.063*
C50.0071 (5)0.7169 (3)0.65749 (17)0.0568 (6)
H50.00670.67210.70990.068*
C60.0104 (4)1.0139 (2)0.47984 (12)0.0368 (4)
N70.0045 (4)1.1462 (2)0.51234 (11)0.0448 (4)
O80.0178 (4)1.25711 (18)0.45051 (10)0.0490 (5)
C90.0104 (4)1.1857 (3)0.36792 (13)0.0405 (5)
C100.0244 (4)1.0174 (3)0.38670 (13)0.0423 (6)
H10A0.13940.97630.36790.051*
H10B0.07400.96150.36100.051*
C110.1691 (4)1.2299 (4)0.3280 (2)0.0630 (9)
H11A0.17071.33690.31820.094*
H11B0.18281.17740.27600.094*
H11C0.26721.20330.36450.094*
C120.1672 (4)1.2500 (4)0.31872 (17)0.0452 (6)
H12A0.16271.35930.32190.054*
H12B0.15271.22190.26070.054*
O130.3406 (2)1.2007 (2)0.34646 (11)0.0489 (5)
H130.35541.22610.39510.073*
C140.0073 (5)0.6707 (3)0.42966 (17)0.0507 (6)
H14A0.00800.75180.39000.076*
H14B0.11340.60930.42200.076*
H14C0.09940.61010.42160.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0500 (4)0.0629 (4)0.0381 (3)0.0022 (4)0.0002 (4)0.0035 (2)
C20.0289 (10)0.0484 (11)0.0399 (9)0.0021 (13)0.0002 (12)0.0035 (8)
C30.0314 (11)0.0483 (12)0.0540 (13)0.0039 (14)0.0010 (14)0.0021 (9)
C40.0406 (12)0.0495 (13)0.0673 (16)0.0052 (15)0.0003 (17)0.0198 (11)
C50.0458 (13)0.0715 (17)0.0529 (13)0.0036 (18)0.0057 (16)0.0222 (12)
C60.0320 (10)0.0401 (10)0.0383 (10)0.0011 (13)0.0029 (12)0.0017 (8)
N70.0555 (12)0.0430 (9)0.0361 (8)0.0010 (14)0.0045 (13)0.0004 (7)
O80.0711 (14)0.0379 (8)0.0380 (8)0.0026 (11)0.0086 (11)0.0009 (6)
C90.0412 (11)0.0465 (11)0.0340 (9)0.0041 (14)0.0004 (13)0.0005 (8)
C100.0525 (15)0.0389 (10)0.0355 (9)0.0021 (12)0.0024 (12)0.0035 (8)
C110.0416 (15)0.079 (2)0.069 (2)0.0069 (16)0.0063 (15)0.0075 (18)
C120.0408 (14)0.0556 (15)0.0391 (12)0.0012 (13)0.0003 (12)0.0045 (11)
O130.0397 (9)0.0606 (11)0.0462 (10)0.0008 (9)0.0025 (8)0.0063 (9)
C140.0455 (12)0.0429 (12)0.0637 (14)0.0026 (15)0.0004 (16)0.0016 (10)
Geometric parameters (Å, °) top
S1—C51.706 (3)C9—C111.522 (4)
S1—C21.757 (2)C9—C101.524 (3)
C2—C31.361 (3)C10—H10A0.9700
C2—C61.451 (3)C10—H10B0.9700
C3—C41.431 (3)C11—H11A0.9600
C3—C141.447 (3)C11—H11B0.9600
C4—C51.335 (4)C11—H11C0.9600
C4—H4A0.9300C12—O131.422 (3)
C5—H50.9300C12—H12A0.9700
C6—N71.283 (3)C12—H12B0.9700
C6—C101.500 (3)O13—H130.8200
N7—O81.400 (2)C14—H14A0.9600
O8—C91.470 (3)C14—H14B0.9600
C9—C121.511 (4)C14—H14C0.9600
C5—S1—C291.14 (12)C6—C10—H10A111.3
C3—C2—C6130.3 (2)C9—C10—H10A111.3
C3—C2—S1111.12 (17)C6—C10—H10B111.3
C6—C2—S1118.57 (17)C9—C10—H10B111.3
C2—C3—C4111.4 (2)H10A—C10—H10B109.2
C2—C3—C14125.7 (2)C9—C11—H11A109.5
C4—C3—C14123.0 (2)C9—C11—H11B109.5
C5—C4—C3114.1 (2)H11A—C11—H11B109.5
C5—C4—H4A122.9C9—C11—H11C109.5
C3—C4—H4A122.9H11A—C11—H11C109.5
C4—C5—S1112.24 (19)H11B—C11—H11C109.5
C4—C5—H5123.9O13—C12—C9114.0 (2)
S1—C5—H5123.9O13—C12—H12A108.7
N7—C6—C2119.83 (19)C9—C12—H12A108.7
N7—C6—C10112.94 (18)O13—C12—H12B108.7
C2—C6—C10127.22 (19)C9—C12—H12B108.7
C6—N7—O8110.42 (17)H12A—C12—H12B107.6
N7—O8—C9109.65 (16)C12—O13—H13109.5
O8—C9—C12106.4 (2)C3—C14—H14A109.5
O8—C9—C11107.6 (2)C3—C14—H14B109.5
C12—C9—C11110.33 (19)H14A—C14—H14B109.5
O8—C9—C10103.84 (16)C3—C14—H14C109.5
C12—C9—C10114.8 (2)H14A—C14—H14C109.5
C11—C9—C10113.2 (3)H14B—C14—H14C109.5
C6—C10—C9102.27 (17)
C5—S1—C2—C30.0 (3)C2—C6—N7—O8177.1 (3)
C5—S1—C2—C6179.1 (2)C10—C6—N7—O81.6 (4)
C6—C2—C3—C4178.8 (3)C6—N7—O8—C97.3 (3)
S1—C2—C3—C40.2 (4)N7—O8—C9—C12131.1 (2)
C6—C2—C3—C140.8 (6)N7—O8—C9—C11110.7 (3)
S1—C2—C3—C14179.8 (3)N7—O8—C9—C109.5 (3)
C2—C3—C4—C50.4 (4)N7—C6—C10—C94.4 (4)
C14—C3—C4—C5180.0 (3)C2—C6—C10—C9177.1 (3)
C3—C4—C5—S10.4 (4)O8—C9—C10—C68.0 (3)
C2—S1—C5—C40.2 (3)C12—C9—C10—C6123.7 (2)
C3—C2—C6—N7177.8 (4)C11—C9—C10—C6108.3 (3)
S1—C2—C6—N73.3 (4)O8—C9—C12—O1370.1 (3)
C3—C2—C6—C103.7 (5)C11—C9—C12—O13173.5 (3)
S1—C2—C6—C10175.2 (3)C10—C9—C12—O1344.2 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N7i0.822.172.905 (3)150
Symmetry codes: (i) x−1/2, −y+5/2, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O13—H13···N7i0.822.172.905 (3)150
Symmetry codes: (i) x−1/2, −y+5/2, −z+1.
Acknowledgements top

This work was supported by the R&D Program of MKE/KEIT [10035240, Development of new herbicides for resistance weeds with mutated genes].

references
References top

Boger, P., Wakabayashi, K. & Hirai, K. (2002). Herbicide Classeses in Development (mode of action, targets, genetic engineering, chemistry), edited by P. Boger, K. Wakabayashi & K. Hirai. Berlin Heidelberg: Springer-Verlag.

Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bryant, R. & Bite, M. (2010). Ag Chem New Compound Review, Vol 28, p. 59. Orpington: Agranova.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643.

Koo, S. J. & Hwang, K. H. (2008). Korea Patent 0814420.

Koo, S. J., Hwang, K. H., Hwang, I. T., Jeon, D. J. & Kim, H. R. (2007). Proceedings of the 21th Asian Pacific Weed Science Society Conference, pp. 591–601.

Ryu, E. K., Kim, H. R., Jeon, D. J., Song, J. H., Kim, K. M., Lee, J. N., Kim, H. C. & Hong, K. S. (2005). US Patent 6838416.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.