organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1040

(S)-[5-Methyl-3-(3-methyl­thio­phen-2-yl)-4,5-di­hydro­isoxazol-5-yl]methanol

aBiomaterials Research Center, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, bDrug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and cCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: ykko@krict.re.kr

(Received 24 March 2011; accepted 29 March 2011; online 7 April 2011)

In the title compound, C10H13NO2S, the thio­phene and isoxazoline rings are almost coplanar, the dihedral angle between their least-squares planes being 2.08 (1)°. The O—H atoms of the methyl hy­droxy group and the N atom of the isoxazole ring are orientated in the same direction to allow for the formation of inter­molecular O—H⋯N hydrogen bonds that lead to a supra­molecular chain along the a axis.

Related literature

For the synthesis, biological activity and mode of action of herbicides, see; Ryu et al. (2005[Ryu, E. K., Kim, H. R., Jeon, D. J., Song, J. H., Kim, K. M., Lee, J. N., Kim, H. C. & Hong, K. S. (2005). US Patent 6838416.]); Hwang et al. (2005[Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639-8643.]); Koo et al. (2007[Koo, S. J., Hwang, K. H., Hwang, I. T., Jeon, D. J. & Kim, H. R. (2007). Proceedings of the 21th Asian Pacific Weed Science Society Conference, pp. 591-601.]); Koo & Hwang (2008[Koo, S. J. & Hwang, K. H. (2008). Korea Patent 0814420.]). For relevant reviews of herbicides, see; Boger et al. (2002[Boger, P., Wakabayashi, K. & Hirai, K. (2002). Herbicide Classeses in Development (mode of action, targets, genetic engineering, chemistry), edited by P. Boger, K. Wakabayashi & K. Hirai. Berlin, Heidelberg: Springer-Verlag.]); Bryant & Bite (2010[Bryant, R. & Bite, M. (2010). Ag Chem New Compound Review, Vol 28, p. 59. Orpington: Agranova.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO2S

  • Mr = 211.27

  • Orthorhombic, P 21 21 21

  • a = 7.3672 (9) Å

  • b = 8.8534 (11) Å

  • c = 16.0632 (19) Å

  • V = 1047.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.39 × 0.20 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.970

  • 11038 measured reflections

  • 2619 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.08

  • 2619 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1087 Friedel pairs

  • Flack parameter: 0.02 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N7i 0.82 2.17 2.905 (3) 150
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Weed control is very important for the improvment of agricultural efficiency Boger et al., 2002; Bryant et al., 2010). A number of herbicides have been used for the purpose of weed killing. Recently a new isoxazoline herbicide MRC-01 has been developed (Ryu et al., 2005; Hwang et al., 2005; Koo et al., 2007; Koo & Hwang, 2008; Bryant & Bite, 2010). MRC-01 was synthesized by the reaction of [5-methyl-3-(3-methylthiophen -2-yl)-4,5-dihydroisoxazol-5-yl]methanol and 2,6-difluorobenzylbromide in the presence of base. The key intermediate [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol was used as racemic compound but could be separated into enantiomers by employing chiral HPLC column technology. Herein, we report the crystal structure of title compound (Fig. 1). The thiophene ring and the isoxazole ring are almost coplanar with the dihedral angle being 2.08 (1) °. The conformation of the O—H of the methyl hydroxy group and the N atom of the isoxazole ring are in the same direction to allow intermolecular hydrogen bonds to form. In the crystal structure (Fig. 2), the molecules are linked by these O—H···N hydrogen bonds into a one-dimensional chain running along the a axis.

Related literature top

For the synthesis, biological activity and mode of action of herbicides, see; Ryu et al. (2005); Hwang et al. (2005); Koo et al. (2007); Koo & Hwang (2008). For relevant reviews of herbicides, see; Boger et al. (2002); Bryant & Bite (2010).

Experimental top

The title compound was obtained by a chiral separation of racemic [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol employing chiral prep-HPLC under the condition shown below. HPLC conditions: Column: (R,R) WHELK-01 (25 cm x 10.0 mm). Regis.Co.; Eluent: 25% 2-propanol + 75% n-hexane; Flow Rate 4.0 ml/min; Detection: 254 nm; Injection volume: 0.1 ml. The first eluting fraction was concentrated under reduced pressure to provide the title compound [α]D (+) 59.96 (c = 1, dichloromethane). Single crystals suitable for X-ray diffraction were prepared by recrystallization from its ethyl acetate solution at room temperature.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing structure of the title compound, viewed down the c axis showing the O—H···N hydrogen bonds as dashed lines.
(S)-[5-Methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol top
Crystal data top
C10H13NO2SF(000) = 448
Mr = 211.27Dx = 1.339 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4205 reflections
a = 7.3672 (9) Åθ = 2.5–26.1°
b = 8.8534 (11) ŵ = 0.28 mm1
c = 16.0632 (19) ÅT = 296 K
V = 1047.7 (2) Å3Block, silver
Z = 40.39 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube2096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.898, Tmax = 0.970k = 1111
11038 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.086P)2 + 0.1644P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.47 e Å3
127 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1087 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (14)
Crystal data top
C10H13NO2SV = 1047.7 (2) Å3
Mr = 211.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3672 (9) ŵ = 0.28 mm1
b = 8.8534 (11) ÅT = 296 K
c = 16.0632 (19) Å0.39 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2096 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.970Rint = 0.025
11038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.36 e Å3
2619 reflectionsAbsolute structure: Flack (1983), 1087 Friedel pairs
127 parametersAbsolute structure parameter: 0.02 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00757 (12)0.90745 (7)0.64150 (4)0.0503 (2)
C20.0074 (4)0.8815 (3)0.53306 (13)0.0390 (4)
C30.0070 (5)0.7321 (3)0.51314 (15)0.0446 (5)
C40.0075 (4)0.6395 (3)0.58618 (17)0.0525 (6)
H4A0.00800.53450.58410.063*
C50.0071 (5)0.7169 (3)0.65749 (17)0.0568 (6)
H50.00670.67210.70990.068*
C60.0104 (4)1.0139 (2)0.47984 (12)0.0368 (4)
N70.0045 (4)1.1462 (2)0.51234 (11)0.0448 (4)
O80.0178 (4)1.25711 (18)0.45051 (10)0.0490 (5)
C90.0104 (4)1.1857 (3)0.36792 (13)0.0405 (5)
C100.0244 (4)1.0174 (3)0.38670 (13)0.0423 (6)
H10A0.13940.97630.36790.051*
H10B0.07400.96150.36100.051*
C110.1691 (4)1.2299 (4)0.3280 (2)0.0630 (9)
H11A0.17071.33690.31820.094*
H11B0.18281.17740.27600.094*
H11C0.26721.20330.36450.094*
C120.1672 (4)1.2500 (4)0.31872 (17)0.0452 (6)
H12A0.16271.35930.32190.054*
H12B0.15271.22190.26070.054*
O130.3406 (2)1.2007 (2)0.34646 (11)0.0489 (5)
H130.35541.22610.39510.073*
C140.0073 (5)0.6707 (3)0.42966 (17)0.0507 (6)
H14A0.00800.75180.39000.076*
H14B0.11340.60930.42200.076*
H14C0.09940.61010.42160.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0500 (4)0.0629 (4)0.0381 (3)0.0022 (4)0.0002 (4)0.0035 (2)
C20.0289 (10)0.0484 (11)0.0399 (9)0.0021 (13)0.0002 (12)0.0035 (8)
C30.0314 (11)0.0483 (12)0.0540 (13)0.0039 (14)0.0010 (14)0.0021 (9)
C40.0406 (12)0.0495 (13)0.0673 (16)0.0052 (15)0.0003 (17)0.0198 (11)
C50.0458 (13)0.0715 (17)0.0529 (13)0.0036 (18)0.0057 (16)0.0222 (12)
C60.0320 (10)0.0401 (10)0.0383 (10)0.0011 (13)0.0029 (12)0.0017 (8)
N70.0555 (12)0.0430 (9)0.0361 (8)0.0010 (14)0.0045 (13)0.0004 (7)
O80.0711 (14)0.0379 (8)0.0380 (8)0.0026 (11)0.0086 (11)0.0009 (6)
C90.0412 (11)0.0465 (11)0.0340 (9)0.0041 (14)0.0004 (13)0.0005 (8)
C100.0525 (15)0.0389 (10)0.0355 (9)0.0021 (12)0.0024 (12)0.0035 (8)
C110.0416 (15)0.079 (2)0.069 (2)0.0069 (16)0.0063 (15)0.0075 (18)
C120.0408 (14)0.0556 (15)0.0391 (12)0.0012 (13)0.0003 (12)0.0045 (11)
O130.0397 (9)0.0606 (11)0.0462 (10)0.0008 (9)0.0025 (8)0.0063 (9)
C140.0455 (12)0.0429 (12)0.0637 (14)0.0026 (15)0.0004 (16)0.0016 (10)
Geometric parameters (Å, º) top
S1—C51.706 (3)C9—C111.522 (4)
S1—C21.757 (2)C9—C101.524 (3)
C2—C31.361 (3)C10—H10A0.9700
C2—C61.451 (3)C10—H10B0.9700
C3—C41.431 (3)C11—H11A0.9600
C3—C141.447 (3)C11—H11B0.9600
C4—C51.335 (4)C11—H11C0.9600
C4—H4A0.9300C12—O131.422 (3)
C5—H50.9300C12—H12A0.9700
C6—N71.283 (3)C12—H12B0.9700
C6—C101.500 (3)O13—H130.8200
N7—O81.400 (2)C14—H14A0.9600
O8—C91.470 (3)C14—H14B0.9600
C9—C121.511 (4)C14—H14C0.9600
C5—S1—C291.14 (12)C6—C10—H10A111.3
C3—C2—C6130.3 (2)C9—C10—H10A111.3
C3—C2—S1111.12 (17)C6—C10—H10B111.3
C6—C2—S1118.57 (17)C9—C10—H10B111.3
C2—C3—C4111.4 (2)H10A—C10—H10B109.2
C2—C3—C14125.7 (2)C9—C11—H11A109.5
C4—C3—C14123.0 (2)C9—C11—H11B109.5
C5—C4—C3114.1 (2)H11A—C11—H11B109.5
C5—C4—H4A122.9C9—C11—H11C109.5
C3—C4—H4A122.9H11A—C11—H11C109.5
C4—C5—S1112.24 (19)H11B—C11—H11C109.5
C4—C5—H5123.9O13—C12—C9114.0 (2)
S1—C5—H5123.9O13—C12—H12A108.7
N7—C6—C2119.83 (19)C9—C12—H12A108.7
N7—C6—C10112.94 (18)O13—C12—H12B108.7
C2—C6—C10127.22 (19)C9—C12—H12B108.7
C6—N7—O8110.42 (17)H12A—C12—H12B107.6
N7—O8—C9109.65 (16)C12—O13—H13109.5
O8—C9—C12106.4 (2)C3—C14—H14A109.5
O8—C9—C11107.6 (2)C3—C14—H14B109.5
C12—C9—C11110.33 (19)H14A—C14—H14B109.5
O8—C9—C10103.84 (16)C3—C14—H14C109.5
C12—C9—C10114.8 (2)H14A—C14—H14C109.5
C11—C9—C10113.2 (3)H14B—C14—H14C109.5
C6—C10—C9102.27 (17)
C5—S1—C2—C30.0 (3)C2—C6—N7—O8177.1 (3)
C5—S1—C2—C6179.1 (2)C10—C6—N7—O81.6 (4)
C6—C2—C3—C4178.8 (3)C6—N7—O8—C97.3 (3)
S1—C2—C3—C40.2 (4)N7—O8—C9—C12131.1 (2)
C6—C2—C3—C140.8 (6)N7—O8—C9—C11110.7 (3)
S1—C2—C3—C14179.8 (3)N7—O8—C9—C109.5 (3)
C2—C3—C4—C50.4 (4)N7—C6—C10—C94.4 (4)
C14—C3—C4—C5180.0 (3)C2—C6—C10—C9177.1 (3)
C3—C4—C5—S10.4 (4)O8—C9—C10—C68.0 (3)
C2—S1—C5—C40.2 (3)C12—C9—C10—C6123.7 (2)
C3—C2—C6—N7177.8 (4)C11—C9—C10—C6108.3 (3)
S1—C2—C6—N73.3 (4)O8—C9—C12—O1370.1 (3)
C3—C2—C6—C103.7 (5)C11—C9—C12—O13173.5 (3)
S1—C2—C6—C10175.2 (3)C10—C9—C12—O1344.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N7i0.822.172.905 (3)150
Symmetry code: (i) x1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H13NO2S
Mr211.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.3672 (9), 8.8534 (11), 16.0632 (19)
V3)1047.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.39 × 0.20 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.898, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
11038, 2619, 2096
Rint0.025
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.08
No. of reflections2619
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.36
Absolute structureFlack (1983), 1087 Friedel pairs
Absolute structure parameter0.02 (14)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N7i0.822.172.905 (3)150
Symmetry code: (i) x1/2, y+5/2, z+1.
 

Acknowledgements

This work was supported by the R&D Program of MKE/KEIT [10035240, Development of new herbicides for resistant weeds with mutated genes].

References

First citationBoger, P., Wakabayashi, K. & Hirai, K. (2002). Herbicide Classeses in Development (mode of action, targets, genetic engineering, chemistry), edited by P. Boger, K. Wakabayashi & K. Hirai. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryant, R. & Bite, M. (2010). Ag Chem New Compound Review, Vol 28, p. 59. Orpington: Agranova.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoo, S. J. & Hwang, K. H. (2008). Korea Patent 0814420.  Google Scholar
First citationKoo, S. J., Hwang, K. H., Hwang, I. T., Jeon, D. J. & Kim, H. R. (2007). Proceedings of the 21th Asian Pacific Weed Science Society Conference, pp. 591–601.  Google Scholar
First citationRyu, E. K., Kim, H. R., Jeon, D. J., Song, J. H., Kim, K. M., Lee, J. N., Kim, H. C. & Hong, K. S. (2005). US Patent 6838416.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1040
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds