supplementary materials


wm2465 scheme

Acta Cryst. (2011). E67, m524    [ doi:10.1107/S1600536811011263 ]

catena-Poly[[diaquabis[2-(4-tolylsulfanyl)acetato-[kappa]O]manganese(II)]-[mu]-4,4'-bipyridine-[kappa]2N:N']

X.-Y. Zheng

Abstract top

In the polymeric title complex, [Mn(C9H9O2S)2(C10H8N2)(H2O)2]n, the Mn2+ cation and the 4,4'-bipyridine ligand lie on a twofold rotation axis. The cation has an MnN2O4 octahedral environment, being coordinated by the O atoms of two water molecules and two monodentate (4-tolylsulfanyl)acetate anions, and by two N atoms of two 4,4'-bipyridine ligands. The latter bridge adjacent cations into linear chains parallel to [010]. The chains are further linked with each other into a two-dimensional network parallel to (100) via intermolecular O-H...O hydrogen bonds.

Comment top

The title complex, (I), is isotypic with the Ni2+ (Lin et al., 2006), Co2+ (Zheng et al., 2006) and Cd2+ analogues (Cai et al., 2008).

The structure of (I) (Fig. 1) consists of linear polymeric chains parallel to [010]. The chains are formed through 4,4'-bipyridine ligands bridging the Mn2+ cations. The latter are in a slightly distorted MnN2O4 octahedral coordination environment defined by four O atoms of pairs of water molecules and monodentate (4-tolylsulfanyl)acetate anions. Intermolecular O—H···O hydrogen bonding between the water molecules and the carboxylate O atoms link neighboring chains into a two-dimensional network parallel to (100).

In comparison with the isotypic structures, the structural parameters are very similar; as expected, the metal—N and metal—O bond lengths differ slightly due to the differences of the ionic radii of Cd2+, Co2+, Mn2+ and Ni2+.

Related literature top

For isotypic structures, see: Cai et al. (2008) for the Cd, Lin et al. (2006) for the Ni, and Zheng et al. (2006) for the Co analogue.

Experimental top

Mn(CH3COO)2.4H2O (0.132 g, 0.5 mmol), (4-tolylsulfanyl)acetic acid (0.091 g, 0.5 mmol), 4,4'-bipyridine (0.039 g, 0.25 mmol) and water (18 ml) were sealed in a 25 ml Teflon-lined stainless-steel reactor. The solution was heated at 433 K for 72 h and then cooled to room temperature over a period of 72 h. Yellow crystals suitable for X-ray analysis were obtained.

Refinement top

The methyl groups were allowed to rotate with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C); the other H atoms were positioned geometrically [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. Water H atoms were located from difference Fourier maps and were refined with distance restraints of O—H = 0.85 Å and H···H = 1.30 Å; their displacement parameters were set to 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of part of the title structure, showing 30% probability displacement ellipsoids. [Symmetry codes: (A -x, y, -z + 1/2; B x, y + 1, z; C x, y - 1,z.]
[Figure 2] Fig. 2. The chain structure of the title compound. All H atoms have been omitted for clarity.
catena-Poly[[diaquabis[2-(4-tolylsulfanyl)acetato- κO]manganese(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Mn(C9H9O2S)2(C10H8N2)(H2O)2]F(000) = 1268
Mr = 609.60Dx = 1.455 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6375 reflections
a = 21.750 (4) Åθ = 2.7–27.4°
b = 11.618 (2) ŵ = 0.67 mm1
c = 11.028 (2) ÅT = 293 K
β = 93.24 (3)°Prism, yellow
V = 2782.4 (10) Å30.33 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube2806 reflections with I > 2σ(I)
graphiteRint = 0.016
ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2727
Tmin = 0.800, Tmax = 0.835k = 1414
12205 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 1.086P]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.67 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mn(C9H9O2S)2(C10H8N2)(H2O)2]V = 2782.4 (10) Å3
Mr = 609.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.750 (4) ŵ = 0.67 mm1
b = 11.618 (2) ÅT = 293 K
c = 11.028 (2) Å0.33 × 0.28 × 0.27 mm
β = 93.24 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2806 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.835Rint = 0.016
12205 measured reflectionsθmax = 27.4°
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.67 e Å3
S = 1.07Δρmin = 0.27 e Å3
3129 reflectionsAbsolute structure: ?
187 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.04840 (2)0.25000.02718 (11)
S10.14740 (2)0.20715 (5)0.05268 (4)0.05323 (15)
N10.00000.14607 (14)0.25000.0327 (4)
N20.00000.75618 (14)0.25000.0308 (3)
O1W0.06150 (6)0.05814 (10)0.41324 (10)0.0408 (3)
O10.15201 (6)0.11457 (15)0.27247 (12)0.0670 (4)
O20.07976 (5)0.05427 (8)0.13627 (10)0.0351 (2)
C10.16178 (7)0.34725 (17)0.00465 (15)0.0451 (4)
C20.14383 (8)0.43759 (18)0.07231 (16)0.0504 (4)
H2A0.12450.42180.14780.060*
C30.15447 (9)0.55104 (18)0.03766 (18)0.0556 (5)
H3A0.14160.61020.09000.067*
C40.18407 (9)0.57787 (19)0.07401 (17)0.0553 (5)
C50.20159 (9)0.4866 (2)0.14879 (17)0.0584 (5)
H5A0.22170.50250.22360.070*
C60.19070 (8)0.3737 (2)0.11752 (16)0.0535 (5)
H6A0.20250.31510.17130.064*
C70.19602 (12)0.7009 (2)0.1120 (2)0.0775 (7)
H7A0.18080.75170.04850.116*
H7B0.23950.71250.12690.116*
H7C0.17530.71680.18480.116*
C80.17674 (8)0.11137 (18)0.06561 (16)0.0509 (4)
H8A0.18570.03750.02950.061*
H8B0.21520.14230.10040.061*
C90.13315 (7)0.09210 (14)0.16781 (14)0.0395 (3)
C100.02740 (9)0.20527 (13)0.33381 (16)0.0482 (4)
H10A0.04690.16490.39350.058*
C110.02857 (9)0.32390 (13)0.33721 (15)0.0446 (4)
H11A0.04860.36160.39810.054*
C120.00000.38670 (15)0.25000.0266 (4)
C130.00000.51414 (16)0.25000.0276 (4)
C140.02495 (7)0.57707 (13)0.15769 (14)0.0377 (3)
H14A0.04260.53930.09390.045*
C150.02350 (8)0.69595 (13)0.16070 (14)0.0389 (3)
H15A0.03980.73610.09700.047*
H1WA0.0956 (8)0.0744 (18)0.3876 (19)0.064 (7)*
H1WB0.0694 (9)0.0118 (17)0.4691 (17)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03535 (18)0.02069 (17)0.02614 (17)0.0000.00737 (12)0.000
S10.0562 (3)0.0687 (3)0.0356 (2)0.0121 (2)0.00958 (18)0.00533 (19)
N10.0397 (9)0.0278 (8)0.0313 (8)0.0000.0069 (7)0.000
N20.0386 (9)0.0230 (8)0.0316 (8)0.0000.0081 (7)0.000
O1W0.0475 (7)0.0457 (7)0.0293 (5)0.0007 (5)0.0034 (5)0.0052 (4)
O10.0484 (7)0.1124 (12)0.0401 (7)0.0236 (8)0.0019 (5)0.0076 (7)
O20.0367 (5)0.0357 (6)0.0338 (5)0.0019 (4)0.0108 (4)0.0030 (4)
C10.0324 (8)0.0698 (11)0.0339 (8)0.0073 (7)0.0097 (6)0.0037 (7)
C20.0431 (9)0.0744 (13)0.0337 (8)0.0040 (8)0.0032 (7)0.0023 (8)
C30.0524 (11)0.0698 (13)0.0455 (10)0.0008 (9)0.0106 (8)0.0033 (8)
C40.0450 (9)0.0745 (12)0.0481 (10)0.0094 (9)0.0168 (8)0.0092 (9)
C50.0466 (10)0.0917 (15)0.0373 (9)0.0111 (10)0.0053 (7)0.0085 (10)
C60.0440 (9)0.0824 (14)0.0344 (8)0.0030 (9)0.0048 (7)0.0060 (8)
C70.0748 (15)0.0851 (17)0.0749 (15)0.0180 (13)0.0249 (12)0.0183 (13)
C80.0378 (8)0.0680 (12)0.0483 (10)0.0040 (8)0.0147 (7)0.0096 (8)
C90.0355 (8)0.0449 (9)0.0389 (8)0.0017 (6)0.0082 (6)0.0060 (7)
C100.0746 (12)0.0263 (8)0.0468 (9)0.0013 (7)0.0300 (8)0.0036 (6)
C110.0692 (11)0.0258 (7)0.0417 (8)0.0008 (7)0.0284 (8)0.0014 (6)
C120.0304 (9)0.0213 (8)0.0281 (9)0.0000.0030 (7)0.000
C130.0311 (9)0.0225 (9)0.0294 (9)0.0000.0038 (7)0.000
C140.0544 (9)0.0258 (7)0.0350 (8)0.0026 (6)0.0203 (7)0.0035 (6)
C150.0570 (9)0.0259 (7)0.0355 (7)0.0048 (6)0.0181 (7)0.0002 (6)
Geometric parameters (Å, °) top
Mn1—O1W2.1843 (13)C4—C51.383 (3)
Mn1—O1Wi2.1843 (13)C4—C71.508 (3)
Mn1—O22.1985 (12)C5—C61.373 (3)
Mn1—O2i2.1985 (12)C5—H5A0.9300
Mn1—N12.2593 (17)C6—H6A0.9300
Mn1—N2ii2.2704 (17)C7—H7A0.9600
S1—C11.768 (2)C7—H7B0.9600
S1—C81.8037 (19)C7—H7C0.9600
N1—C101.3209 (18)C8—C91.530 (2)
N1—C10i1.3209 (18)C8—H8A0.9700
N2—C15i1.3333 (17)C8—H8B0.9700
N2—C151.3333 (17)C10—C111.379 (2)
N2—Mn1iii2.2704 (17)C10—H10A0.9300
O1W—H1WA0.830 (15)C11—C121.3824 (18)
O1W—H1WB0.829 (15)C11—H11A0.9300
O1—C91.231 (2)C12—C11i1.3824 (18)
O2—C91.2717 (19)C12—C131.481 (3)
C1—C21.392 (3)C13—C141.3885 (17)
C1—C61.397 (3)C13—C14i1.3885 (17)
C2—C31.388 (3)C14—C151.382 (2)
C2—H2A0.9300C14—H14A0.9300
C3—C41.392 (3)C15—H15A0.9300
C3—H3A0.9300
O1W—Mn1—O1Wi174.06 (6)C6—C5—H5A118.5
O1W—Mn1—O290.14 (5)C4—C5—H5A118.5
O1Wi—Mn1—O289.68 (5)C5—C6—C1119.79 (19)
O1W—Mn1—O2i89.68 (5)C5—C6—H6A120.1
O1Wi—Mn1—O2i90.14 (5)C1—C6—H6A120.1
O2—Mn1—O2i176.44 (5)C4—C7—H7A109.5
O1W—Mn1—N192.97 (3)C4—C7—H7B109.5
O1Wi—Mn1—N192.97 (3)H7A—C7—H7B109.5
O2—Mn1—N191.78 (3)C4—C7—H7C109.5
O2i—Mn1—N191.78 (3)H7A—C7—H7C109.5
O1W—Mn1—N2ii87.03 (3)H7B—C7—H7C109.5
O1Wi—Mn1—N2ii87.03 (3)C9—C8—S1114.49 (12)
O2—Mn1—N2ii88.22 (3)C9—C8—H8A108.6
O2i—Mn1—N2ii88.22 (3)S1—C8—H8A108.6
N1—Mn1—N2ii180.0C9—C8—H8B108.6
C1—S1—C8105.14 (9)S1—C8—H8B108.6
C10—N1—C10i117.24 (18)H8A—C8—H8B107.6
C10—N1—Mn1121.38 (9)O1—C9—O2125.49 (15)
C10i—N1—Mn1121.38 (9)O1—C9—C8118.19 (15)
C15i—N2—C15116.68 (17)O2—C9—C8116.32 (14)
C15i—N2—Mn1iii121.66 (9)N1—C10—C11123.32 (14)
C15—N2—Mn1iii121.66 (9)N1—C10—H10A118.3
Mn1—O1W—H1WA104.3 (16)C11—C10—H10A118.3
Mn1—O1W—H1WB132.1 (15)C10—C11—C12119.92 (14)
H1WA—O1W—H1WB104.5 (17)C10—C11—H11A120.0
C9—O2—Mn1126.33 (10)C12—C11—H11A120.0
C2—C1—C6118.29 (18)C11—C12—C11i116.29 (18)
C2—C1—S1116.00 (13)C11—C12—C13121.85 (9)
C6—C1—S1125.68 (15)C11i—C12—C13121.85 (9)
C3—C2—C1120.76 (17)C14—C13—C14i116.45 (17)
C3—C2—H2A119.6C14—C13—C12121.78 (9)
C1—C2—H2A119.6C14i—C13—C12121.78 (9)
C2—C3—C4121.2 (2)C15—C14—C13119.89 (13)
C2—C3—H3A119.4C15—C14—H14A120.1
C4—C3—H3A119.4C13—C14—H14A120.1
C5—C4—C3117.0 (2)N2—C15—C14123.54 (14)
C5—C4—C7121.6 (2)N2—C15—H15A118.2
C3—C4—C7121.5 (2)C14—C15—H15A118.2
C6—C5—C4122.98 (18)
O1W—Mn1—N1—C1069.60 (11)C2—C1—C6—C51.1 (3)
O1Wi—Mn1—N1—C10110.40 (11)S1—C1—C6—C5177.01 (13)
O2—Mn1—N1—C10159.83 (11)C1—S1—C8—C981.32 (15)
O2i—Mn1—N1—C1020.17 (11)Mn1—O2—C9—O112.4 (2)
O1W—Mn1—N1—C10i110.40 (11)Mn1—O2—C9—C8167.18 (11)
O1Wi—Mn1—N1—C10i69.60 (11)S1—C8—C9—O1123.02 (17)
O2—Mn1—N1—C10i20.17 (11)S1—C8—C9—O256.6 (2)
O2i—Mn1—N1—C10i159.83 (11)C10i—N1—C10—C110.05 (15)
O1W—Mn1—O2—C921.00 (12)Mn1—N1—C10—C11179.95 (15)
O1Wi—Mn1—O2—C9153.06 (12)N1—C10—C11—C120.1 (3)
N1—Mn1—O2—C9113.98 (12)C10—C11—C12—C11i0.05 (14)
N2ii—Mn1—O2—C966.02 (12)C10—C11—C12—C13179.95 (14)
C8—S1—C1—C2178.98 (13)C11—C12—C13—C14175.42 (12)
C8—S1—C1—C60.82 (17)C11i—C12—C13—C144.58 (12)
C6—C1—C2—C30.1 (3)C11—C12—C13—C14i4.58 (12)
S1—C1—C2—C3178.26 (14)C11i—C12—C13—C14i175.42 (12)
C1—C2—C3—C40.9 (3)C14i—C13—C14—C150.57 (12)
C2—C3—C4—C50.7 (3)C12—C13—C14—C15179.43 (12)
C2—C3—C4—C7179.74 (18)C15i—N2—C15—C140.62 (13)
C3—C4—C5—C60.4 (3)Mn1iii—N2—C15—C14179.38 (13)
C7—C4—C5—C6179.16 (18)C13—C14—C15—N21.2 (2)
C4—C5—C6—C11.3 (3)
Symmetry codes: (i) −x, y, −z+1/2; (ii) x, y+1, z; (iii) x, y−1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2iv0.83 (2)2.00 (2)2.7934 (16)161 (2)
O1W—H1WA···O10.83 (2)1.87 (2)2.6571 (19)157 (2)
Symmetry codes: (iv) x, −y, z+1/2.
Table 1
Selected geometric parameters (Å)
top
Mn1—O1W2.1843 (13)Mn1—N12.2593 (17)
Mn1—O22.1985 (12)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2i0.83 (2)2.00 (2)2.7934 (16)161 (2)
O1W—H1WA···O10.83 (2)1.87 (2)2.6571 (19)157 (2)
Symmetry codes: (i) x, −y, z+1/2.
Acknowledgements top

The author thanks the Foundation of the Technology Department of Wenzhou City for financial support of this project (Y20090138).

references
References top

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cai, W.-X., Zheng, X.-Y., Geng, X.-H. & Feng, Y.-L. (2008). Acta Cryst. E64, m1137.

Lin, H., Su, H. & Feng, Y. (2006). Acta Cryst. E62, m747–m749.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zheng, X.-Y., Su, H. & Feng, Y.-L. (2006). Acta Cryst. E62, m1393–m1394.