inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

RbSn₂(PO₄)₃, a NASICON-type phosphate

Dan Zhao,* FeiFei Li, Shen Qiu, Jiali Jiao and Junran Ren

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China Correspondence e-mail: iamzd@hpu.edu.cn

Received 13 March 2011; accepted 16 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(P-O) = 0.005$ Å; R factor = 0.026; wR factor = 0.043; data-to-parameter ratio = 13.0.

The title compound, rubidium ditin(IV) tris(phosphate), RbSn₂(PO₄)₃, belongs to the NASICON-type family of phosphates and crystallizes in the space group $R\overline{3}$. The structure is composed of PO₄ tetrahedra (1 symmetry) and two slightly distorted SnO₆ octahedra, both with 3. symmetry, which are interlinked through corner-sharing O atoms to form a $^{3}_{\infty}$ [Sn₂(PO₄)₃]⁻ framework. The Rb⁺ cations are located on threefold inversion axes in the voids of this framework and exhibit a coordination number of 12. The crystal studied was twinned by merohedry with a component ratio of 0.503:0.497.

Related literature

For related NASICON-type compounds, see: Boilot *et al.* (1987); Boujelben *et al.* (2007); Duhlev (1994); Zatovskii *et al.* (2006); Zhao *et al.* (2011).

Experimental

Crystal data

RbSn₂(PO₄)₃ $M_r = 607.76$ Trigonal, $R\overline{3}$ a = 8.340 (4) Å c = 24.007 (8) Å V = 1446.1 (6) Å³ Z = 6Mo Kα radiation $\mu = 10.76 \text{ mm}^{-1}$ T = 293 K0.20 × 0.05 × 0.05 mm

Data collection

Rigaku Mercury70 CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.222, T_{\rm max} = 0.615$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	57 parameters
$wR(F^2) = 0.043$	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.16	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$
742 reflections	

Table 1

Selected bond lengths (Å).

Symmetry code: (i) y	$y_{1} - x + y_{2} - z_{2}$		
P1-O2	1.523 (4)	P1-O4	1.537 (4)
Sn1-O3 ⁱ	2.033 (4)	P1-O3	1.533 (4)
Sn1-O2	2.015 (4)	P1-O1	1.529 (4)

3765 measured reflections

 $R_{\rm int} = 0.036$

742 independent reflections

711 reflections with $I > 2\sigma(I)$

Data collection: *CrystalClear* (Rigaku, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) and *PLATON* (Spek, 2009); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2004); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (grant No. B2010–92, 648483).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2466).

References

Boilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669–676.
Boujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157.
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Duhlev, R. (1994). Acta Cryst. C50, 1525–1527.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41–46.
Zhao, D., Liang, P., Su, L., Chang, H. & Yan, S. (2011). Acta Cryst. E67, i23.

supporting information

Acta Cryst. (2011). E67, i32 [doi:10.1107/S1600536811014310]

RbSn₂(PO₄)₃, a NASICON-type phosphate

Dan Zhao, FeiFei Li, Shen Qiu, Jiali Jiao and Junran Ren

S1. Comment

In recent years, the $AM_2(PO_4)_3$ (A = alkali metal; M = Ti, Zr, Ge, Sn) family with NASICON (Na₃Zr₂Si₂PO₁₂; Boilot *et al.*, 1987) -type structures attracted a growing interest due to their intriguing properities, e.g. ionic conductivity of the A cations located in the voids of the three-dimensional NASICON-type framework. This framework is composed of isolated PO₄ tetrahedra sharing corners with MO_6 octahedra (Fig. 1), and is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO₄)₃ (Zatovskii *et al.*, 2006), Rb₂Ca₂(SO₄)₃ (Boujelben *et al.*, 2007) or Al_{0.5}Nb_{1.5}(PO₄)₃ (Zhao *et al.*, 2011). In order to augment this family of compounds, we prepared crystals of the compound RbSn₂(PO₄)₃ using a solid state reaction route. Unlike the analogous Ti compound RbTi₂(PO₄)₃ which crystallises in space group $R\overline{3}c$ (Duhlev, 1994), RbSn₂(PO₄)₃ crystallises in space group $R\overline{3}$.

A projection of the crystal structure of $RbSn_2(PO_4)_3$ is given in Fig. 2. It is characterized by the presence of isolated PO₄ tetrahedra (1 symmetry) and two different SnO₆ octahedra (both 3. symmetry), linked by sharing corner O atoms, to establish a three-dimensional ${}^3_{\infty}[Sn_2(PO_4)_3]^-$ framework. This framwork delimits two types of channels in which the twelve-coordinate Rb⁺ atoms (site symmetry $\overline{3}$.) are located to compensate the negative charges. The PO₄ tetrahedra are quite regular, with P–O distances ranging from 1.523 (4) to 1.537 (4) Å. The two SnO₆ octahedra exhibit Sn–O distances ranging from 2.015 (4) to 2.033 (4) Å.

S2. Experimental

Single crystals of $RbSn_2(PO_4)_3$ have been prepared by a high-temperature method in air. A powder mixture of $RbNO_3$, SnO_2 and $NH_4H_2PO_4$ in the molar ratio of Rb: Sn: P = 10: 1: 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 K h⁻¹. It was kept at 673 K for another 10 h and then quenched to room temperature. The obtained crystals were colorless with a prismatic shape.

S3. Refinement

The $RbSn_2(PO_4)_3$ crystal studies was twinned by merohedry. For refinement the twin law (0 1 0 1 0 0 0 0 1) was used; the twin component ratio refined to 0.503: 0.497. The highest peak in the difference electron density map is at a distance of 1.38 Å from Rb2 while the deepest hole is at a distance of 1.77 Å from O2.

Figure 1

The expanded asymmetric unit of $RbSn_2(PO_4)_3$ showing the coordination environments of the P and Sn atoms. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -*y*, *x*-*y*, *z*; (ii) -*x* + *y*, -*x*, *z*; (iii) 1 - *y*, *x*-*y*, *z*; (iv) 1 - *x* + *y*, 1 - *x*, *z*; (v) 1 - *x*, 1 - *y*, -*z*; (vi) 1 + *x*-*y*, *x*, -*z*; (vii) *y*, -*x* + *y*, -*z*; (Viii) -1/3 + *y*, 1/3 - *x* + *y*, 1/3 - *z*; (ix) 2/3 - *x*, 1/3 - *y*, 1/3 - *z*; (*x*) -1/3 + *x*-*y*, -2/3 + *x*, 1/3 - *z*.]

Figure 2

View of the crystal structure of RbSn₂(PO₄)₃ along [100]. PO₄ and SnO₆ units are given in the polyhedral representation.

rubidium ditin(IV) tris(phosphate)

Crystal data

RbSn₂(PO₄)₃ $M_r = 607.76$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 8.340 (4) Å c = 24.007 (8) Å V = 1446.1 (6) Å³ Z = 6F(000) = 1668

Data collection

Rigaku Mercury70 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.6306 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.222, T_{max} = 0.615$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.043$ S = 1.16 $D_x = 4.187 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1316 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 10.76 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.20 \times 0.05 \times 0.05 \text{ mm}$

3765 measured reflections 742 independent reflections 711 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -9 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -29 \rightarrow 31$

742 reflections57 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{ m max} < 0.001$
map	$\Delta ho_{ m max} = 0.65 \ { m e} \ { m \AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0097P)^2 + 13.5872P]$	$\Delta \rho_{\min} = -0.73 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.6667	0.3333	-0.01707 (2)	0.00467 (15)	
Rb1	0.3333	0.6667	0.1667	0.0164 (3)	
P1	0.3780 (2)	0.3319 (3)	0.08383 (7)	0.0058 (2)	
01	0.2172 (6)	0.1463 (5)	0.10332 (14)	0.0090 (9)	
Sn2	0.0000	0.0000	0.15528 (2)	0.00490 (15)	
Rb2	0.0000	0.0000	0.0000	0.0227 (4)	
O2	0.4497 (6)	0.2928 (6)	0.03015 (16)	0.0119 (10)	
03	0.3083 (6)	0.4664 (6)	0.07059 (16)	0.0093 (9)	
O4	0.5248 (6)	0.4207 (6)	0.12987 (14)	0.0103 (10)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0051 (2)	0.0051 (2)	0.0039 (3)	0.00253 (11)	0.000	0.000
Rb1	0.0221 (5)	0.0221 (5)	0.0051 (5)	0.0111 (2)	0.000	0.000
P1	0.0046 (8)	0.0068 (6)	0.0050 (6)	0.0022 (7)	0.0000 (6)	0.0008 (5)
01	0.008 (2)	0.008 (2)	0.0097 (17)	0.0028 (17)	0.0044 (15)	0.0025 (14)
Sn2	0.0055 (2)	0.0055 (2)	0.0037 (3)	0.00275 (11)	0.000	0.000
Rb2	0.0304 (6)	0.0304 (6)	0.0073 (6)	0.0152 (3)	0.000	0.000
O2	0.009 (2)	0.018 (2)	0.009 (2)	0.008 (2)	0.0020 (17)	-0.0029 (17)
O3	0.014 (2)	0.010 (2)	0.0064 (17)	0.0077 (19)	-0.0023 (16)	0.0001 (16)
O4	0.011 (2)	0.008 (2)	0.0100 (17)	0.003 (2)	-0.0050 (17)	-0.0005 (16)

Geometric parameters (Å, °)

Sn1—O2 ⁱ	2.015 (4)	P1—Rb2	3.595 (2)
Sn1—O2 ⁱⁱ	2.015 (4)	O1—Sn2	2.029 (4)
Sn1—O2	2.015 (4)	O1—Rb2	2.952 (4)
Sn1—O3 ⁱⁱⁱ	2.033 (4)	Sn2—O1 ^{xii}	2.029 (4)
Sn1—O3 ^{iv}	2.033 (4)	Sn2—O1 ^{xiii}	2.029 (4)
Sn1—O3 ^v	2.033 (4)	Sn2—O4 ^{xiv}	2.033 (4)
$Sn1$ — $Rb1^{vi}$	3.5915 (13)	Sn2—O4 ^{xv}	2.033 (4)

Rb1—O3 ^{vii}	2.794 (4)	Sn2—O4 ^{viii}	2.033 (4)
Rb1—O3 ^{viii}	2.794 (4)	Sn2—Rb2	3.7278 (13)
Rb1—O3 ^{ix}	2.794 (4)	Rb2—O1 ^{xvi}	2.952 (4)
Rb1—O3	2.793 (4)	Rb2—O1 ^{xii}	2.952 (4)
Rb1—O3 ^x	2.794 (4)	Rb2—O1 ^{xvii}	2.952 (4)
Rb1—O3 ^{xi}	2.794 (4)	Rb2—O1 ^{iv}	2.952 (4)
Rb1—O4 ^{vii}	3.289 (5)	Rb2—O1 ^{xiii}	2.952 (4)
Rb1—O4 ^x	3.288 (5)	Rb2—O2 ^{xvii}	3.375 (5)
Rb1—O4 ^{ix}	3.288 (5)	Rb2—O2 ^{xvi}	3.375 (5)
Rb1—O4 ^{viii}	3.288 (5)	Rb2—O2 ^{xii}	3.375 (5)
Rb1—O4 ^{xi}	3.288 (5)	Rb2—O2 ^{iv}	3.375 (5)
Rb1—O4	3.288 (5)	Rb2—O2 ^{xiii}	3.375 (5)
P1—O2	1.523 (4)	Rb2—O2	3.376 (5)
P1—01	1.529 (4)	$O3-Sn1^{v}$	2.034 (4)
P1-03	1.533 (4)	04—Sn2 ^{xiv}	2.033 (4)
P1_04	1.537 (4)		
$O2^{i}$ —Sn1— $O2^{ii}$	91.47 (17)	Rb2—P1—Rb1	121.07 (4)
$O2^{i}$ —Sn1—O2	91.47 (17)	P1-01-Sn2	149.8 (3)
$O2^{ii}$ —Sn1—O2	91.47 (17)	P1-01-Rb2	101.98 (17)
$O2^{i}$ Sn1 $O2^{i}$	83.62 (17)	sn2-O1-Rb2	95.11 (15)
$O2^{ii}$ —Sn1—O3 ⁱⁱⁱ	102.00 (17)	Ω_1 — Sn_2 — Ω_1^{xii}	86.16 (16)
02—Sn1— 03 ⁱⁱⁱ	165.74 (17)	01 — $Sn2$ — 01^{xiii}	86.16 (16)
Ω^{2i} Sn1 Ω^{2iv}	102.00(17)	01^{xii} Sn^2 01^{xiii}	86 16 (16)
$O2^{ii}$ Sn1- $O3^{iv}$	165.74 (17)	01 — $Sn2$ — 04^{xiv}	93.48 (16)
$O2$ — $Sn1$ — $O3^{iv}$	83.62 (17)	$O1^{xii}$ $Sn2$ $O4^{xiv}$	89.54 (16)
$O3^{iii}$ Sn1 $O3^{iv}$	84.32 (17)	$O1^{xiii}$ $Sn2$ $O4^{xiv}$	175.70 (16)
$O2^{i}$ —Sn1—O3 ^v	165.74 (17)	01 — $Sn2$ — 04^{xv}	175.70 (16)
$O2^{ii}$ —Sn1—O3 ^v	83.62 (17)	$O1^{xii}$ $Sn2 O4^{xv}$	93.48 (16)
$O2$ —Sn1— $O3^{v}$	102.00 (17)	$O1^{xiii}$ $Sn2$ $O4^{xv}$	89.54 (16)
$O3^{iii}$ —Sn1—O3 ^v	84.32 (17)	$O4^{xiv}$ — $Sn2$ — $O4^{xv}$	90.80 (16)
$O3^{iv}$ —Sn1—O3 ^v	84.32 (17)	01 — $Sn2$ — 04^{viii}	89.54 (16)
$O2^{i}$ _Sn1_Rb1 ^{vi}	124.22(12)	$O1^{xii}$ $Sn2 O4^{viii}$	175.70 (16)
$O2^{ii}$ —Sn1—Rb1 ^{vi}	124.22 (12)	$O1^{xiii}$ $Sn2$ $O4^{viii}$	93.48 (16)
$O2$ — $Sn1$ — $Rb1^{vi}$	124.22 (12)	$O4^{xiv}$ — $Sn2$ — $O4^{viii}$	90.80 (16)
$O3^{iii}$ —Sn1—Rb1 ^{vi}	50.81 (11)	$O4^{xv}$ — $Sn2$ — $O4^{viii}$	90.80 (16)
O3 ^{iv} —Sn1—Rb1 ^{vi}	50.81 (11)	O1—Sn2—Rb2	52.06 (11)
$O3^{v}$ —Sn1—Rb1 ^{vi}	50.81 (11)	$O1^{xii}$ —Sn2—Rb2	52.06 (11)
$O3^{vii}$ —Rb1— $O3^{viii}$	58.49 (13)	$O1^{xiii}$ —Sn2—Rb2	52.06 (11)
$O3^{vii}$ —Rb1— $O3^{ix}$	58.49 (13)	$O4^{xiv}$ —Sn2—Rb2	124.70 (11)
$O3^{\text{viii}}$ Rb1 $O3^{\text{ix}}$	58.49 (13)	$O4^{xv}$ —Sn2—Rb2	124.69 (11)
$O3^{\text{vii}}$ Rb1 $O3$	180.0	$O4^{\text{viii}}$ Sn2 Rb2	124 69 (11)
O_3^{viii} Rb1 O_3	121 51 (13)	01^{xvi} Rb2 01^{xii}	12000(3)
$O3^{ix}$ —Rb1—O3	121.51 (13)	$O1^{xvi}$ $Bb2 O1^{xvii}$	56.00 (13)
$O3^{\text{vii}}$ Rb1 $O3^{\text{x}}$	121.51 (13)	$O1^{xii}$ Bb2 $O1^{xvii}$	124.00 (13)
$O3^{\text{viii}}$ Rb1 $O3^{\text{x}}$	121.51 (13)	Ω_1^{xvi} Rb2 Ω_1^{iv}	56 00 (13)
$O3^{ix}$ Rb1 $O3^{x}$	180.0	Ω_1^{xii} Bb2 Ω_1^{iv}	$124\ 00\ (13)$
Ω_3 —Rb1— Ω_3^{\times}	58 49 (13)	Ω_1^{xvii} Rb2 Ω_1^{iv}	56 00 (13)
0.5 101 0.5		01 102 01	20.00 (12)

O3 ^{vii} —Rb1—O3 ^{xi}	121.51 (13)	O1 ^{xvi} —Rb2—O1 ^{xiii}	124.00 (13)
O3 ^{viii} —Rb1—O3 ^{xi}	180.0	O1 ^{xii} —Rb2—O1 ^{xiii}	56.00 (13)
O3 ^{ix} —Rb1—O3 ^{xi}	121.51 (13)	O1 ^{xvii} —Rb2—O1 ^{xiii}	124.00 (13)
O3—Rb1—O3 ^{xi}	58.49 (13)	O1 ^{iv} —Rb2—O1 ^{xiii}	180.00 (17)
O3 ^x —Rb1—O3 ^{xi}	58.49 (13)	O1 ^{xvi} —Rb2—O1	124.00 (13)
O3 ^{vii} —Rb1—O4 ^{vii}	47.14 (10)	O1 ^{xii} —Rb2—O1	56.00 (13)
O3 ^{viii} —Rb1—O4 ^{vii}	75.80 (10)	O1 ^{xvii} —Rb2—O1	180.0
O3 ^{ix} —Rb1—O4 ^{vii}	105.07 (10)	O1 ^{iv} —Rb2—O1	124.00 (13)
O3—Rb1—O4 ^{vii}	132.87 (10)	O1 ^{xiii} —Rb2—O1	56.00 (13)
O3 ^x —Rb1—O4 ^{vii}	74.93 (10)	O1 ^{xvi} —Rb2—O2 ^{xvii}	94.20 (11)
O3 ^{xi} —Rb1—O4 ^{vii}	104.20 (10)	O1 ^{xii} —Rb2—O2 ^{xvii}	85.80 (11)
$O3^{vii}$ —Rb1—O4 ^x	104.20 (11)	$O1^{xvii}$ Rb2 $O2^{xvii}$	44.81 (10)
$O3^{viii}$ Rb1 $O4^x$	74 93 (10)	$O1^{iv}$ Rb2 $O2^{xvii}$	95 50 (10)
$O3^{ix}$ —Rb1— $O4^{x}$	132.86 (10)	$O1^{xiii}$ Rb2 $O2^{xvii}$	84 50 (10)
Ω_3 —Rb1— Ω_4^x	75 80 (11)	$\Omega_1 - Rb^2 - \Omega_2^{xvii}$	135 19 (10)
$O3^{x}$ Rb1 $O4^{x}$	47 14 (10)	$O1^{xvi}$ Bb2 $O2^{xvi}$	44 81 (10)
$O3^{xi}$ _Rb1_ $O4^{x}$	105.07(10)	$O1^{xii}$ Rb2 $O2^{xvi}$	135 19 (10)
O_{1}^{vii} B D_{1}^{vii} O_{1}^{vii}	66 94 (5)	O1 - R02 - O2 $O1^{xvii}$ Bb 2 $O2^{xvi}$	155.19(10) 95 50(10)
$O_4 - R O_1 - O_4$	75.80(11)	O1 - RO2 - O2	93.30(10)
$O_3 = R_0 I = O_4$	105.07(10)	O1 - R02 - O2	94.20 (11)
O_2 ix $P_{b1} = O_4$ ix	103.07(10)	O1 $Rb2$ $O2$ Vi	83.80 (11) 84.50 (10)
$O_3 = K_0 = O_4^{ix}$	47.14 (10)	$O1 - Kb2 - O2^{xyi}$	84.30 (10) 115.54 (5)
O_3 —RDI— O_4 ⁱⁿ	104.20 (11)	$O2^{\text{AVA}}$ Rb2 $O2^{\text{AVA}}$	115.54 (5)
O_3^{A} RDI 1 O_4^{A}	132.87 (10)	$O1^{xii}$ Rb2- $O2^{xii}$	135.19 (10)
$O_{3^{\text{AL}}}$ Rb1 $O_{4^{\text{AL}}}$	74.93 (10)	$O1^{xn}$ Rb2 $O2^{xn}$	44.81 (10)
$O4^{vn}$ Rb1 $O4^{vn}$	113.06 (5)	$O1^{xvn}$ Rb2 $O2^{xn}$	84.50 (10)
$O4^{x}$ —Rb1— $O4^{1x}$	180.0	$O1^{iv}$ —Rb2— $O2^{xii}$	85.80 (11)
$O3^{vn}$ —Rb1—O4 vm	105.07 (10)	$O1^{xm}$ —Rb2— $O2^{xn}$	94.20 (11)
$O3^{vm}$ —Rb1— $O4^{vm}$	47.14 (10)	$O1$ — $Rb2$ — $O2^{xu}$	95.50 (10)
$O3^{ix}$ —Rb1— $O4^{vin}$	75.80 (11)	$O2^{xvn}$ —Rb2— $O2^{xn}$	64.46 (5)
O3—Rb1—O4 ^{viii}	74.93 (10)	$O2^{xvi}$ —Rb2— $O2^{xii}$	180.00 (19)
$O3^{x}$ —Rb1—O4 ^{viii}	104.20 (11)	$O1^{xvi}$ —Rb2— $O2^{iv}$	95.50 (10)
O3 ^{xi} —Rb1—O4 ^{viii}	132.87 (10)	$O1^{xii}$ —Rb2— $O2^{iv}$	84.50 (10)
O4 ^{vii} —Rb1—O4 ^{viii}	113.06 (5)	$O1^{xvii}$ —Rb2— $O2^{iv}$	94.20 (11)
O4 ^x —Rb1—O4 ^{viii}	66.94 (5)	$O1^{iv}$ —Rb2— $O2^{iv}$	44.81 (10)
O4 ^{ix} —Rb1—O4 ^{viii}	113.06 (5)	O1 ^{xiii} —Rb2—O2 ^{iv}	135.19 (10)
O3 ^{vii} —Rb1—O4 ^{xi}	74.93 (10)	$O1$ — $Rb2$ — $O2^{iv}$	85.80 (11)
O3 ^{viii} —Rb1—O4 ^{xi}	132.86 (10)	O2 ^{xvii} —Rb2—O2 ^{iv}	115.54 (5)
O3 ^{ix} —Rb1—O4 ^{xi}	104.20 (11)	O2 ^{xvi} —Rb2—O2 ^{iv}	115.54 (5)
O3—Rb1—O4 ^{xi}	105.08 (10)	O2 ^{xii} —Rb2—O2 ^{iv}	64.46 (5)
$O3^{x}$ —Rb1—O4 ^{xi}	75.80 (11)	O1 ^{xvi} —Rb2—O2 ^{xiii}	84.50 (10)
$O3^{xi}$ —Rb1—O4 ^{xi}	47.14 (10)	O1 ^{xii} —Rb2—O2 ^{xiii}	95.50 (10)
O4 ^{vii} —Rb1—O4 ^{xi}	66.94 (5)	O1 ^{xvii} —Rb2—O2 ^{xiii}	85.80 (11)
O4 ^x —Rb1—O4 ^{xi}	113.06 (5)	O1 ^{iv} —Rb2—O2 ^{xiii}	135.19 (10)
O4 ^{ix} —Rb1—O4 ^{xi}	66.94 (5)	O1 ^{xiii} —Rb2—O2 ^{xiii}	44.81 (10)
O4 ^{viii} —Rb1—O4 ^{xi}	180.0	O1—Rb2—O2 ^{xiii}	94.20 (11)
O3 ^{vii} —Rb1—O4	132.86 (10)	O2 ^{xvii} —Rb2—O2 ^{xiii}	64.46 (5)
O3 ^{viii} —Rb1—O4	104.20 (10)	$O2^{xvi}$ —Rb2— $O2^{xiii}$	64.46 (5)
O3 ^{ix} —Rb1—O4	74.92 (10)	O2 ^{xii} —Rb2—O2 ^{xiii}	115.54 (5)
	× /		× /

O3—Rb1—O4	47.14 (10)	O2 ^{iv} —Rb2—O2 ^{xiii}	180.0 (2)
O3 ^x —Rb1—O4	105.08 (10)	O1 ^{xvi} —Rb2—O2	85.80 (11)
O3 ^{xi} —Rb1—O4	75.80 (10)	O1 ^{xii} —Rb2—O2	94.20 (11)
O4 ^{vii} —Rb1—O4	180.0	O1 ^{xvii} —Rb2—O2	135.19 (10)
O4 ^x —Rb1—O4	113.06 (5)	O1 ^{iv} —Rb2—O2	84.50 (10)
O4 ^{ix} —Rb1—O4	66.94 (5)	O1 ^{xiii} —Rb2—O2	95.50 (10)
O4 ^{viii} —Rb1—O4	66.94 (5)	O1—Rb2—O2	44.81 (10)
O4 ^{xi} —Rb1—O4	113.06 (5)	O2 ^{xvii} —Rb2—O2	180.0
O2—P1—O1	106.4 (3)	O2 ^{xvi} —Rb2—O2	64.47 (5)
O2—P1—O3	108.3 (2)	O2 ^{xii} —Rb2—O2	115.53 (5)
O1—P1—O3	110.1 (3)	O2 ^{iv} —Rb2—O2	64.46 (5)
O2—P1—O4	114.1 (2)	O2 ^{xiii} —Rb2—O2	115.54 (5)
O1—P1—O4	110.6 (2)	P1	148.8 (3)
O3—P1—O4	107.4 (2)	P1—O2—Rb2	85.6 (2)
O2—P1—Rb2	69.43 (19)	Sn1—O2—Rb2	125.48 (17)
O1—P1—Rb2	53.44 (15)	P1—O3—Sn1 ^v	144.2 (3)
O3—P1—Rb2	86.57 (16)	P1	108.91 (19)
O4—P1—Rb2	162.60 (19)	Sn1 ^v —O3—Rb1	94.85 (15)
O2—P1—Rb1	147.0 (2)	P1—O4—Sn2 ^{xiv}	134.6 (3)
O1—P1—Rb1	103.79 (16)	P1	88.59 (19)
O3—P1—Rb1	47.30 (15)	Sn2 ^{xiv} —O4—Rb1	128.46 (15)
O4—P1—Rb1	66.10 (17)		

Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) x-y+1, x, -z; (iv) y, -x+y, -z; (v) -x+1, -y+1, -z; (vi) x+1/3, y-1/3, z-1/3; (vii) -x+2/3, -y+4/3, -z+1/3; (viii) y-1/3, -x+y+1/3, -z+1/3; (ix) x-y+2/3, x+1/3, -z+1/3; (x) -x+y, -x+1, z; (xi) -y+1, x-y+1, z; (xii) -x+y, -x, z; (xiii) -y, x-y, z; (xiii) -y, x-y, z; (xiii) -x+2/3, -y+1/3, -z+1/3; (xv) x-y-1/3, x-2/3, -z+1/3; (xv) x-y, -z; (xvii) -x, -y, -z.