inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

RbSn2(PO4)3, a NASICON-type phosphate

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 13 March 2011; accepted 16 April 2011; online 29 April 2011)

The title compound, rubidium ditin(IV) tris­(phosphate), RbSn2(PO4)3, belongs to the NASICON-type family of phosphates and crystallizes in the space group R[\overline{3}]. The structure is composed of PO4 tetra­hedra (1 symmetry) and two slightly distorted SnO6 octa­hedra, both with 3. symmetry, which are inter­linked through corner-sharing O atoms to form a 3[Sn2(PO4)3] framework. The Rb+ cations are located on threefold inversion axes in the voids of this framework and exhibit a coordination number of 12. The crystal studied was twinned by merohedry with a component ratio of 0.503:0.497.

Related literature

For related NASICON-type compounds, see: Boilot et al. (1987[Boilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669-676.]); Boujelben et al. (2007[Boujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157.]); Duhlev (1994[Duhlev, R. (1994). Acta Cryst. C50, 1525-1527.]); Zatovskii et al. (2006[Zatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41-46.]); Zhao et al. (2011[Zhao, D., Liang, P., Su, L., Chang, H. & Yan, S. (2011). Acta Cryst. E67, i23.]).

Experimental

Crystal data
  • RbSn2(PO4)3

  • Mr = 607.76

  • Trigonal, [R \overline 3]

  • a = 8.340 (4) Å

  • c = 24.007 (8) Å

  • V = 1446.1 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 10.76 mm−1

  • T = 293 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.222, Tmax = 0.615

  • 3765 measured reflections

  • 742 independent reflections

  • 711 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.043

  • S = 1.16

  • 742 reflections

  • 57 parameters

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O2 2.015 (4)
Sn1—O3i 2.033 (4)
P1—O2 1.523 (4)
P1—O1 1.529 (4)
P1—O3 1.533 (4)
P1—O4 1.537 (4)
Symmetry code: (i) y, -x+y, -z.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, the AM2(PO4)3 (A = alkali metal; M = Ti, Zr, Ge, Sn) family with NASICON (Na3Zr2Si2PO12; Boilot et al., 1987) -type structures attracted a growing interest due to their intriguing properities, e.g. ionic conductivity of the A cations located in the voids of the three-dimensional NASICON-type framework. This framework is composed of isolated PO4 tetrahedra sharing corners with MO6 octahedra (Fig. 1), and is amenable to a wide variety of chemical substitutions at the various crystallographic positions, thus yielding a large number of closely related compounds, such as NaFeNb(PO4)3 (Zatovskii et al., 2006), Rb2Ca2(SO4)3 (Boujelben et al., 2007) or Al0.5Nb1.5(PO4)3 (Zhao et al., 2011). In order to augment this family of compounds, we prepared crystals of the compound RbSn2(PO4)3 using a solid state reaction route. Unlike the analogous Ti compound RbTi2(PO4)3 which crystallises in space group R3c (Duhlev, 1994), RbSn2(PO4)3 crystallises in space group R3.

A projection of the crystal structure of RbSn2(PO4)3 is given in Fig. 2. It is characterized by the presence of isolated PO4 tetrahedra (1 symmetry) and two different SnO6 octahedra (both 3. symmetry), linked by sharing corner O atoms, to establish a three-dimensional 3[Sn2(PO4)3]- framework. This framwork delimits two types of channels in which the twelve-coordinate Rb+ atoms (site symmetry 3.) are located to compensate the negative charges. The PO4 tetrahedra are quite regular, with P–O distances ranging from 1.523 (4) to 1.537 (4) Å. The two SnO6 octahedra exhibit Sn—O distances ranging from 2.015 (4) to 2.033 (4) Å.

Related literature top

For related NASICON-type compounds, see: Boilot et al. (1987); Boujelben et al. (2007); Duhlev (1994); Zatovskii et al. (2006); Zhao et al. (2011).

Experimental top

Single crystals of RbSn2(PO4)3 have been prepared by a high-temperature method in air. A powder mixture of RbNO3, SnO2 and NH4H2PO4 in the molar ratio of Rb: Sn: P = 10: 1: 15 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 K h-1. It was kept at 673 K for another 10 h and then quenched to room temperature. The obtained crystals were colorless with a prismatic shape.

Refinement top

The RbSn2(PO4)3 crystal studies was twinned by merohedry. For refinement the twin law (0 1 0 1 0 0 0 0 1) was used; the twin component ratio refined to 0.503: 0.497. The highest peak in the difference electron density map is at a distance of 1.38 Å from Rb2 while the deepest hole is at a distance of 1.77 Å from O2.

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of RbSn2(PO4)3 showing the coordination environments of the P and Sn atoms. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -y, x-y, z; (ii) -x + y, -x, z; (iii) 1 - y, x-y, z; (iv) 1 - x + y, 1 - x, z; (v) 1 - x, 1 - y, -z; (vi) 1 + x-y, x, -z; (vii) y, -x + y, -z; (Viii) -1/3 + y, 1/3 - x + y, 1/3 - z; (ix) 2/3 - x, 1/3 - y, 1/3 - z; (x) -1/3 + x-y, -2/3 + x, 1/3 - z.]
[Figure 2] Fig. 2. View of the crystal structure of RbSn2(PO4)3 along [100]. PO4 and SnO6 units are given in the polyhedral representation.
rubidium ditin(IV) tris(phosphate) top
Crystal data top
RbSn2(PO4)3Dx = 4.187 Mg m3
Mr = 607.76Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1316 reflections
Hall symbol: -R 3θ = 2.6–27.5°
a = 8.340 (4) ŵ = 10.76 mm1
c = 24.007 (8) ÅT = 293 K
V = 1446.1 (6) Å3Prism, colourless
Z = 60.20 × 0.05 × 0.05 mm
F(000) = 1668
Data collection top
Rigaku Mercury70 CCD
diffractometer
742 independent reflections
Radiation source: fine-focus sealed tube711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.222, Tmax = 0.615l = 2931
3765 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
742 reflectionsΔρmax = 0.65 e Å3
57 parametersΔρmin = 0.73 e Å3
Crystal data top
RbSn2(PO4)3Z = 6
Mr = 607.76Mo Kα radiation
Trigonal, R3µ = 10.76 mm1
a = 8.340 (4) ÅT = 293 K
c = 24.007 (8) Å0.20 × 0.05 × 0.05 mm
V = 1446.1 (6) Å3
Data collection top
Rigaku Mercury70 CCD
diffractometer
742 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
711 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 0.615Rint = 0.036
3765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P]
where P = (Fo2 + 2Fc2)/3
S = 1.16Δρmax = 0.65 e Å3
742 reflectionsΔρmin = 0.73 e Å3
57 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.66670.33330.01707 (2)0.00467 (15)
Rb10.33330.66670.16670.0164 (3)
P10.3780 (2)0.3319 (3)0.08383 (7)0.0058 (2)
O10.2172 (6)0.1463 (5)0.10332 (14)0.0090 (9)
Sn20.00000.00000.15528 (2)0.00490 (15)
Rb20.00000.00000.00000.0227 (4)
O20.4497 (6)0.2928 (6)0.03015 (16)0.0119 (10)
O30.3083 (6)0.4664 (6)0.07059 (16)0.0093 (9)
O40.5248 (6)0.4207 (6)0.12987 (14)0.0103 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0051 (2)0.0051 (2)0.0039 (3)0.00253 (11)0.0000.000
Rb10.0221 (5)0.0221 (5)0.0051 (5)0.0111 (2)0.0000.000
P10.0046 (8)0.0068 (6)0.0050 (6)0.0022 (7)0.0000 (6)0.0008 (5)
O10.008 (2)0.008 (2)0.0097 (17)0.0028 (17)0.0044 (15)0.0025 (14)
Sn20.0055 (2)0.0055 (2)0.0037 (3)0.00275 (11)0.0000.000
Rb20.0304 (6)0.0304 (6)0.0073 (6)0.0152 (3)0.0000.000
O20.009 (2)0.018 (2)0.009 (2)0.008 (2)0.0020 (17)0.0029 (17)
O30.014 (2)0.010 (2)0.0064 (17)0.0077 (19)0.0023 (16)0.0001 (16)
O40.011 (2)0.008 (2)0.0100 (17)0.003 (2)0.0050 (17)0.0005 (16)
Geometric parameters (Å, º) top
Sn1—O2i2.015 (4)P1—Rb23.595 (2)
Sn1—O2ii2.015 (4)O1—Sn22.029 (4)
Sn1—O22.015 (4)O1—Rb22.952 (4)
Sn1—O3iii2.033 (4)Sn2—O1xii2.029 (4)
Sn1—O3iv2.033 (4)Sn2—O1xiii2.029 (4)
Sn1—O3v2.033 (4)Sn2—O4xiv2.033 (4)
Sn1—Rb1vi3.5915 (13)Sn2—O4xv2.033 (4)
Rb1—O3vii2.794 (4)Sn2—O4viii2.033 (4)
Rb1—O3viii2.794 (4)Sn2—Rb23.7278 (13)
Rb1—O3ix2.794 (4)Rb2—O1xvi2.952 (4)
Rb1—O32.793 (4)Rb2—O1xii2.952 (4)
Rb1—O3x2.794 (4)Rb2—O1xvii2.952 (4)
Rb1—O3xi2.794 (4)Rb2—O1iv2.952 (4)
Rb1—O4vii3.289 (5)Rb2—O1xiii2.952 (4)
Rb1—O4x3.288 (5)Rb2—O2xvii3.375 (5)
Rb1—O4ix3.288 (5)Rb2—O2xvi3.375 (5)
Rb1—O4viii3.288 (5)Rb2—O2xii3.375 (5)
Rb1—O4xi3.288 (5)Rb2—O2iv3.375 (5)
Rb1—O43.288 (5)Rb2—O2xiii3.375 (5)
P1—O21.523 (4)Rb2—O23.376 (5)
P1—O11.529 (4)O3—Sn1v2.034 (4)
P1—O31.533 (4)O4—Sn2xiv2.033 (4)
P1—O41.537 (4)
O2i—Sn1—O2ii91.47 (17)Rb2—P1—Rb1121.07 (4)
O2i—Sn1—O291.47 (17)P1—O1—Sn2149.8 (3)
O2ii—Sn1—O291.47 (17)P1—O1—Rb2101.98 (17)
O2i—Sn1—O3iii83.62 (17)Sn2—O1—Rb295.11 (15)
O2ii—Sn1—O3iii102.00 (17)O1—Sn2—O1xii86.16 (16)
O2—Sn1—O3iii165.74 (17)O1—Sn2—O1xiii86.16 (16)
O2i—Sn1—O3iv102.00 (17)O1xii—Sn2—O1xiii86.16 (16)
O2ii—Sn1—O3iv165.74 (17)O1—Sn2—O4xiv93.48 (16)
O2—Sn1—O3iv83.62 (17)O1xii—Sn2—O4xiv89.54 (16)
O3iii—Sn1—O3iv84.32 (17)O1xiii—Sn2—O4xiv175.70 (16)
O2i—Sn1—O3v165.74 (17)O1—Sn2—O4xv175.70 (16)
O2ii—Sn1—O3v83.62 (17)O1xii—Sn2—O4xv93.48 (16)
O2—Sn1—O3v102.00 (17)O1xiii—Sn2—O4xv89.54 (16)
O3iii—Sn1—O3v84.32 (17)O4xiv—Sn2—O4xv90.80 (16)
O3iv—Sn1—O3v84.32 (17)O1—Sn2—O4viii89.54 (16)
O2i—Sn1—Rb1vi124.22 (12)O1xii—Sn2—O4viii175.70 (16)
O2ii—Sn1—Rb1vi124.22 (12)O1xiii—Sn2—O4viii93.48 (16)
O2—Sn1—Rb1vi124.22 (12)O4xiv—Sn2—O4viii90.80 (16)
O3iii—Sn1—Rb1vi50.81 (11)O4xv—Sn2—O4viii90.80 (16)
O3iv—Sn1—Rb1vi50.81 (11)O1—Sn2—Rb252.06 (11)
O3v—Sn1—Rb1vi50.81 (11)O1xii—Sn2—Rb252.06 (11)
O3vii—Rb1—O3viii58.49 (13)O1xiii—Sn2—Rb252.06 (11)
O3vii—Rb1—O3ix58.49 (13)O4xiv—Sn2—Rb2124.70 (11)
O3viii—Rb1—O3ix58.49 (13)O4xv—Sn2—Rb2124.69 (11)
O3vii—Rb1—O3180.0O4viii—Sn2—Rb2124.69 (11)
O3viii—Rb1—O3121.51 (13)O1xvi—Rb2—O1xii180.0 (3)
O3ix—Rb1—O3121.51 (13)O1xvi—Rb2—O1xvii56.00 (13)
O3vii—Rb1—O3x121.51 (13)O1xii—Rb2—O1xvii124.00 (13)
O3viii—Rb1—O3x121.51 (13)O1xvi—Rb2—O1iv56.00 (13)
O3ix—Rb1—O3x180.0O1xii—Rb2—O1iv124.00 (13)
O3—Rb1—O3x58.49 (13)O1xvii—Rb2—O1iv56.00 (13)
O3vii—Rb1—O3xi121.51 (13)O1xvi—Rb2—O1xiii124.00 (13)
O3viii—Rb1—O3xi180.0O1xii—Rb2—O1xiii56.00 (13)
O3ix—Rb1—O3xi121.51 (13)O1xvii—Rb2—O1xiii124.00 (13)
O3—Rb1—O3xi58.49 (13)O1iv—Rb2—O1xiii180.00 (17)
O3x—Rb1—O3xi58.49 (13)O1xvi—Rb2—O1124.00 (13)
O3vii—Rb1—O4vii47.14 (10)O1xii—Rb2—O156.00 (13)
O3viii—Rb1—O4vii75.80 (10)O1xvii—Rb2—O1180.0
O3ix—Rb1—O4vii105.07 (10)O1iv—Rb2—O1124.00 (13)
O3—Rb1—O4vii132.87 (10)O1xiii—Rb2—O156.00 (13)
O3x—Rb1—O4vii74.93 (10)O1xvi—Rb2—O2xvii94.20 (11)
O3xi—Rb1—O4vii104.20 (10)O1xii—Rb2—O2xvii85.80 (11)
O3vii—Rb1—O4x104.20 (11)O1xvii—Rb2—O2xvii44.81 (10)
O3viii—Rb1—O4x74.93 (10)O1iv—Rb2—O2xvii95.50 (10)
O3ix—Rb1—O4x132.86 (10)O1xiii—Rb2—O2xvii84.50 (10)
O3—Rb1—O4x75.80 (11)O1—Rb2—O2xvii135.19 (10)
O3x—Rb1—O4x47.14 (10)O1xvi—Rb2—O2xvi44.81 (10)
O3xi—Rb1—O4x105.07 (10)O1xii—Rb2—O2xvi135.19 (10)
O4vii—Rb1—O4x66.94 (5)O1xvii—Rb2—O2xvi95.50 (10)
O3vii—Rb1—O4ix75.80 (11)O1iv—Rb2—O2xvi94.20 (11)
O3viii—Rb1—O4ix105.07 (10)O1xiii—Rb2—O2xvi85.80 (11)
O3ix—Rb1—O4ix47.14 (10)O1—Rb2—O2xvi84.50 (10)
O3—Rb1—O4ix104.20 (11)O2xvii—Rb2—O2xvi115.54 (5)
O3x—Rb1—O4ix132.87 (10)O1xvi—Rb2—O2xii135.19 (10)
O3xi—Rb1—O4ix74.93 (10)O1xii—Rb2—O2xii44.81 (10)
O4vii—Rb1—O4ix113.06 (5)O1xvii—Rb2—O2xii84.50 (10)
O4x—Rb1—O4ix180.0O1iv—Rb2—O2xii85.80 (11)
O3vii—Rb1—O4viii105.07 (10)O1xiii—Rb2—O2xii94.20 (11)
O3viii—Rb1—O4viii47.14 (10)O1—Rb2—O2xii95.50 (10)
O3ix—Rb1—O4viii75.80 (11)O2xvii—Rb2—O2xii64.46 (5)
O3—Rb1—O4viii74.93 (10)O2xvi—Rb2—O2xii180.00 (19)
O3x—Rb1—O4viii104.20 (11)O1xvi—Rb2—O2iv95.50 (10)
O3xi—Rb1—O4viii132.87 (10)O1xii—Rb2—O2iv84.50 (10)
O4vii—Rb1—O4viii113.06 (5)O1xvii—Rb2—O2iv94.20 (11)
O4x—Rb1—O4viii66.94 (5)O1iv—Rb2—O2iv44.81 (10)
O4ix—Rb1—O4viii113.06 (5)O1xiii—Rb2—O2iv135.19 (10)
O3vii—Rb1—O4xi74.93 (10)O1—Rb2—O2iv85.80 (11)
O3viii—Rb1—O4xi132.86 (10)O2xvii—Rb2—O2iv115.54 (5)
O3ix—Rb1—O4xi104.20 (11)O2xvi—Rb2—O2iv115.54 (5)
O3—Rb1—O4xi105.08 (10)O2xii—Rb2—O2iv64.46 (5)
O3x—Rb1—O4xi75.80 (11)O1xvi—Rb2—O2xiii84.50 (10)
O3xi—Rb1—O4xi47.14 (10)O1xii—Rb2—O2xiii95.50 (10)
O4vii—Rb1—O4xi66.94 (5)O1xvii—Rb2—O2xiii85.80 (11)
O4x—Rb1—O4xi113.06 (5)O1iv—Rb2—O2xiii135.19 (10)
O4ix—Rb1—O4xi66.94 (5)O1xiii—Rb2—O2xiii44.81 (10)
O4viii—Rb1—O4xi180.0O1—Rb2—O2xiii94.20 (11)
O3vii—Rb1—O4132.86 (10)O2xvii—Rb2—O2xiii64.46 (5)
O3viii—Rb1—O4104.20 (10)O2xvi—Rb2—O2xiii64.46 (5)
O3ix—Rb1—O474.92 (10)O2xii—Rb2—O2xiii115.54 (5)
O3—Rb1—O447.14 (10)O2iv—Rb2—O2xiii180.0 (2)
O3x—Rb1—O4105.08 (10)O1xvi—Rb2—O285.80 (11)
O3xi—Rb1—O475.80 (10)O1xii—Rb2—O294.20 (11)
O4vii—Rb1—O4180.0O1xvii—Rb2—O2135.19 (10)
O4x—Rb1—O4113.06 (5)O1iv—Rb2—O284.50 (10)
O4ix—Rb1—O466.94 (5)O1xiii—Rb2—O295.50 (10)
O4viii—Rb1—O466.94 (5)O1—Rb2—O244.81 (10)
O4xi—Rb1—O4113.06 (5)O2xvii—Rb2—O2180.0
O2—P1—O1106.4 (3)O2xvi—Rb2—O264.47 (5)
O2—P1—O3108.3 (2)O2xii—Rb2—O2115.53 (5)
O1—P1—O3110.1 (3)O2iv—Rb2—O264.46 (5)
O2—P1—O4114.1 (2)O2xiii—Rb2—O2115.54 (5)
O1—P1—O4110.6 (2)P1—O2—Sn1148.8 (3)
O3—P1—O4107.4 (2)P1—O2—Rb285.6 (2)
O2—P1—Rb269.43 (19)Sn1—O2—Rb2125.48 (17)
O1—P1—Rb253.44 (15)P1—O3—Sn1v144.2 (3)
O3—P1—Rb286.57 (16)P1—O3—Rb1108.91 (19)
O4—P1—Rb2162.60 (19)Sn1v—O3—Rb194.85 (15)
O2—P1—Rb1147.0 (2)P1—O4—Sn2xiv134.6 (3)
O1—P1—Rb1103.79 (16)P1—O4—Rb188.59 (19)
O3—P1—Rb147.30 (15)Sn2xiv—O4—Rb1128.46 (15)
O4—P1—Rb166.10 (17)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) xy+1, x, z; (iv) y, x+y, z; (v) x+1, y+1, z; (vi) x+1/3, y1/3, z1/3; (vii) x+2/3, y+4/3, z+1/3; (viii) y1/3, x+y+1/3, z+1/3; (ix) xy+2/3, x+1/3, z+1/3; (x) x+y, x+1, z; (xi) y+1, xy+1, z; (xii) x+y, x, z; (xiii) y, xy, z; (xiv) x+2/3, y+1/3, z+1/3; (xv) xy1/3, x2/3, z+1/3; (xvi) xy, x, z; (xvii) x, y, z.

Experimental details

Crystal data
Chemical formulaRbSn2(PO4)3
Mr607.76
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)8.340 (4), 24.007 (8)
V3)1446.1 (6)
Z6
Radiation typeMo Kα
µ (mm1)10.76
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.222, 0.615
No. of measured, independent and
observed [I > 2σ(I)] reflections
3765, 742, 711
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.043, 1.16
No. of reflections742
No. of parameters57
w = 1/[σ2(Fo2) + (0.0097P)2 + 13.5872P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.65, 0.73

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—O22.015 (4)P1—O11.529 (4)
Sn1—O3i2.033 (4)P1—O31.533 (4)
P1—O21.523 (4)P1—O41.537 (4)
Symmetry code: (i) y, x+y, z.
 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (grant No. B2010–92, 648483).

References

First citationBoilot, J. P., Collin, G. & Colomban, Ph. (1987). Mater. Res. Bull. 22, 669–676.  CrossRef CAS Google Scholar
First citationBoujelben, M., Toumi, M. & Mhiri, T. (2007). Acta Cryst. E63, i157.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuhlev, R. (1994). Acta Cryst. C50, 1525–1527.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZatovskii, I. V., Ushchapovskaya, T. I., Slobodyanik, N. S. & Ogorodnik, I. V. (2006). Zh. Neorg. Khim. 51, 41–46.  CAS Google Scholar
First citationZhao, D., Liang, P., Su, L., Chang, H. & Yan, S. (2011). Acta Cryst. E67, i23.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds