metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diagua[5,5'-dicarboxy-2,2'-(propane-1.3-divl)bis(1H-imidazole-4carboxylato)]manganese(II)

Huai-Xia Yang,^a* Xiaoli Zhou,^b Guanghua Jin^c and Xiang-Ru Meng^c

^aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, ^bExperiment Administrative Center, Zhongzhou University, Zhengzhou 450044, People's Republic of China, and ^cDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China Correspondence e-mail: yanghuaixia888@163.com

Received 30 March 2011; accepted 4 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.090; data-to-parameter ratio = 11.4.

The complex molecule of the title compound, $[Mn(C_{13}H_{10}N_4O_8)(H_2O_2)]$ or $[Mn(H_4pbidc)(H_2O_2)]$ (H₆pbidc 2,2'-(propane-1,3-diyl)bis(1H-imidazole-4,5-dicarboxylic acid), has 2 symmetry with the twofold rotation axis running through the Mn²⁺ cation and the central C atom of the propanedivl unit. The cation is six-coordinated by two N atoms and two O atoms from one H₄pbidc²⁻ anion and two water O atoms in a considerably distorted octahedral coordination. In the crystal, adjacent molecules are linked through $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds into a three-dimensional network.

Related literature

For background to complexes based on 1H-imidazole-4,5dicarboxylic acid, see: Ghosh et al. (2009); Liu et al. (2008); Sun & Yang (2007).

Experimental

Crystal data $[Mn(C_{13}H_{10}N_4O_8)(H_2O)_2]$ $M_r = 441.22$

Monoclinic, C2/c a = 15.620 (3) Å

b = 8.5310 (17) Åc = 12.739 (3) Å $\beta = 97.07 (3)^{\circ}$ V = 1684.7 (6) Å³ Z = 4

Data collection . . .

Rigaku Saturn diffractometer	3426 measured reflections
Absorption correction: multi-scan	1464 independent reflections
(CrystalClear; Rigaku/MSC,	1265 reflections with $I > 2\sigma(I)$
2006)	$R_{\rm int} = 0.026$
$T_{\min} = 0.828, \ T_{\max} = 0.862$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 \\ wR(F^2) &= 0.090 \end{split}$$
128 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.09 $\Delta \rho_{\rm min} = -0.45$ e Å⁻³ 1464 reflections

Mo $K\alpha$ radiation

 $0.23 \times 0.21 \times 0.18 \text{ mm}$

 $\mu = 0.85 \text{ mm}^{-3}$

T = 293 K

Table 1

Selected bond lengths (Å).

Mn1–O5	2.107 (2)	Mn1-O1	2.3236 (19)
Mn1-N1	2.237 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	D-H	$[\cdots A]$
$D5 - H2W \cdots O4^{i}$	0.85	1.94	2.780 (3)	168	
$O5 - H1W \cdot \cdot O3^{ii}$	0.85	1.93	2.780 (3)	174	
$N2 - H2A \cdots O4^{iii}$	0.86	1.97	2.785 (3)	159	
O3−H3···O2	0.85	1.68	2.527 (3)	178	
Symmetry codes:	(i) $-r + \frac{1}{2}$	$v = \frac{1}{2} = -7 + \frac{1}{2}$	(ii) $r = \frac{1}{2}$	$-v + \frac{1}{2} - \frac{1}{2}$	(iii)

 $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The study was supported by the Science and Technology Department of Henan Province (082102330003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2475).

References

- Ghosh, A., Rao, K. P., Sanguramath, R. A. & Rao, C. N. R. (2009). J. Mol. Struct. 927, 37-42.
- Liu, W.-L., Ye, L.-H., Liu, X.-F., Yuan, L.-M., Lu, X.-L. & Jiang, J.-X. (2008). Inorg. Chem. Commun. 11, 1250-1252.
- Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y.-Q. & Yang, G.-Y. (2007). Dalton Trans. pp. 3771-3781.

supporting information

Acta Cryst. (2011). E67, m560 [doi:10.1107/S1600536811012566]

Diaqua[5,5'-dicarboxy-2,2'-(propane-1,3-diyl)bis(1*H*-imidazole-4-carboxyl-ato)]manganese(II)

Huai-Xia Yang, Xiaoli Zhou, Guanghua Jin and Xiang-Ru Meng

S1. Comment

Up to date, a large number of metal-organic frameworks derived from 1*H*-imidazole-4,5-dicarboxylic acid (H_3 idc) have been synthesized since it is a good linker and can be successively deprotonated to generate H_2 idc⁻, Hidc²⁻ and idc³⁻ anions (Ghosh *et al.*, 2009; Liu *et al.*, 2008; Sun & Yang, 2007). Compared with H_3 idc, 2,2'-(1,3-propanediyl)bis-1*H*imidazole-4,5-dicarboxylic acid (H_6 pbidc) can provide a greater tunability of structural frameworks because of the presence of the propanediyl spacer. However, complexes derived from this ligand have been scarcely reported. In this work, through the reaction of H_6 pbidc with MnSO₄, we obtained the title complex [Mn(H₄pbidc) (H₂O)₂], (I).

As shown in Figure 1, the Mn²⁺ cation in (I) is hexacoordinated and features a distorted octahedral coordination geometry. N1, O1, N1A, O1A atoms from the tetradentate H₄pbidc²⁻ group coordinate to the cation in a chelating fashion and O5, O5A atoms from water molecules complete the coordination polyhedron. The entire complex molecule has symmetry 2. The bond angles around the Mn²⁺ cation significantly deviate from 90 or 180° (see supplementary material). Intramolecular O—H···O hydrogen bonds between the carboxyl/carboxylate groups stabilize the molecular configuration whereas O—H···O and N—H···O hydrogen bonds between the water molecules and carboxylate O atoms and between imidazole groups and carboxylate O atoms of adjacent molecules consolidate the crystal packing.

S2. Experimental

A mixture of $MnSO_4$ (0.05 mmol), 2,2'-(1,3-propanediyl)bis-1*H*-imidazole-4,5-dicarboxylic (0.05 mmol), methanol (2 ml) and water (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h, then cooled to room temperature. Light yellow crystals with good quality were obtained from the filtrate and dried in air.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å, N—H = 0.86 Å and O—H = 0.85 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C,N,O)$.

Figure 1

View of the title complex, showing the labelling of the atoms which are displayed with their displacement ellipsoids at the 30% probability level. [Symmetry code A: -x, y, -z + 1/2.]

Diaqua[5,5'-dicarboxy-2,2'-(propane-1,3-diyl)bis(1H-imidazole-4- carboxylato)]manganese(II)

Crystal data	
$[Mn(C_{13}H_{10}N_4O_8)(H_2O)_2]$	F(000) = 900
$M_r = 441.22$	$D_{\rm x} = 1.740 { m ~Mg~m^{-3}}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2738 reflections
a = 15.620(3) Å	$\theta = 2.6 - 27.9^{\circ}$
b = 8.5310(17) Å	$\mu = 0.85 ext{ mm}^{-1}$
c = 12.739(3) Å	T = 293 K
$\beta = 97.07 \ (3)^{\circ}$	Prism, light yellow
V = 1684.7 (6) Å ³	$0.23 \times 0.21 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Rigaku Saturn	3426 measured reflections
diffractometer	1464 independent reflections
Radiation source: fine-focus sealed tube	1265 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.6^\circ$
ω scans	$h = -17 \rightarrow 18$
Absorption correction: multi-scan	$k = -10 \rightarrow 8$
(CrystalClear; Rigaku/MSC, 2006)	$l = -15 \rightarrow 12$
$T_{\min} = 0.828, \ T_{\max} = 0.862$	
Refinement	
Refinement on F^2	1464 reflections
Least-squares matrix: full	128 parameters
$R[F^2 > 2\sigma(F^2)] = 0.037$	0 restraints
$wR(F^2) = 0.090$	Primary atom site location: structure-invariant
S = 1.09	direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0405P)^2 + 1.7694P]$ where $P = (F^2 + 2F^2)/2$
Hydrogen site location: inferred from	where $P = (F_0^- + 2F_c^-)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Mn1	0.0000	0.22580 (7)	0.2500	0.0249 (2)	
N1	0.08997 (14)	0.4109 (3)	0.32272 (18)	0.0273 (5)	
N2	0.16454 (14)	0.5985 (3)	0.40995 (19)	0.0308 (6)	
H2A	0.1767	0.6876	0.4397	0.037*	
01	0.13833 (12)	0.1209 (2)	0.26815 (16)	0.0336 (5)	
O2	0.27378 (12)	0.1518 (2)	0.34234 (17)	0.0382 (5)	
03	0.35729 (12)	0.3642 (2)	0.44866 (16)	0.0336 (5)	
Н3	0.3281	0.2937	0.4133	0.040*	
04	0.34141 (12)	0.6152 (2)	0.48617 (17)	0.0370 (5)	
05	0.00284 (13)	0.1299 (3)	0.09807 (16)	0.0466 (6)	
H1W	-0.0390	0.1314	0.0487	0.056*	
H2W	0.0460	0.1216	0.0637	0.056*	
C1	0.19523 (18)	0.2024 (3)	0.3170 (2)	0.0278 (6)	
C2	0.17401 (16)	0.3615 (3)	0.3491 (2)	0.0242 (6)	
C3	0.22101 (16)	0.4777 (3)	0.4038 (2)	0.0258 (6)	
C4	0.31248 (17)	0.4881 (3)	0.4495 (2)	0.0269 (6)	
C5	0.08645 (17)	0.5546 (3)	0.3616 (2)	0.0297 (7)	
C6	0.00932 (19)	0.6586 (4)	0.3507 (3)	0.0462 (9)	
H6A	0.0130	0.7285	0.4111	0.055*	
H6B	-0.0420	0.5947	0.3516	0.055*	
C7	0.0000	0.7559 (5)	0.2500	0.0562 (15)	
H7A	-0.0509	0.8214	0.2480	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0183 (3)	0.0268 (3)	0.0276 (3)	0.000	-0.0048 (2)	0.000
N1	0.0177 (11)	0.0278 (12)	0.0344 (13)	0.0007 (9)	-0.0048 (10)	-0.0048 (10)
N2	0.0222 (12)	0.0279 (12)	0.0396 (14)	-0.0003 (10)	-0.0068 (11)	-0.0085 (10)
01	0.0237 (11)	0.0333 (11)	0.0416 (12)	0.0003 (9)	-0.0051 (9)	-0.0114 (9)
O2	0.0227 (11)	0.0373 (12)	0.0515 (13)	0.0084 (9)	-0.0078 (10)	-0.0074 (10)

supporting information

O3 O4 O5 C1	0.0208 (10) 0.0236 (10) 0.0241 (11) 0.0238 (15)	0.0361 (12) 0.0357 (12) 0.0804 (17) 0.0319 (15)	0.0408 (11) 0.0490 (13) 0.0328 (12) 0.0268 (14)	-0.0011 (9) -0.0055 (9) 0.0111 (11) 0.0015 (12)	-0.0094 (9) -0.0062 (10) -0.0070 (10) -0.0008 (12)	-0.0059 (9) -0.0099 (10) -0.0179 (11) -0.0008 (12)
C2 C3	0.0238 (13) 0.0174 (13) 0.0191 (14)	0.0281 (14) 0.0291 (14) 0.0291 (14)	0.0268 (14) 0.0262 (14) 0.0278 (14) 0.0278 (14)	0.00013 (12) 0.0001 (11) -0.0010 (11)	-0.0008(12) -0.0008(12) -0.0028(11) 0.0002(12)	0.0003 (12) 0.0002 (11) -0.0012 (12)
C5 C6 C7	0.0206 (14) 0.0189 (14) 0.0235 (16) 0.029 (2)	0.0298 (15) 0.0419 (18) 0.023 (2)	0.0261 (14) 0.0381 (16) 0.069 (2) 0.109 (5)	-0.0018 (12) 0.0004 (12) 0.0065 (14) 0.000	$\begin{array}{c} -0.0002 (12) \\ -0.0054 (13) \\ -0.0091 (16) \\ -0.020 (3) \end{array}$	-0.0094 (13) -0.0271 (17) 0.000

Geometric parameters (Å, °)

Mn1—O5	2.107 (2)	O3—H3	0.8500
Mn1—O5 ⁱ	2.107 (2)	O4—C4	1.243 (3)
Mn1—N1	2.237 (2)	O5—H1W	0.8501
Mn1—N1 ⁱ	2.237 (2)	O5—H2W	0.8500
Mn1—O1	2.3236 (19)	C1—C2	1.467 (4)
Mn1—O1 ⁱ	2.3236 (19)	C2—C3	1.371 (4)
N1—C5	1.326 (3)	C3—C4	1.478 (4)
N1—C2	1.380 (3)	C5—C6	1.489 (4)
N2—C5	1.350 (3)	C6—C7	1.520 (4)
N2—C3	1.365 (3)	С6—Н6А	0.9700
N2—H2A	0.8600	С6—Н6В	0.9700
O1—C1	1.235 (3)	C7—C6 ⁱ	1.520 (4)
O2—C1	1.303 (3)	C7—H7A	0.9700
O3—C4	1.269 (3)		
$O5$ — $Mn1$ — $O5^i$	134.29 (13)	H1W—O5—H2W	101.9
O5—Mn1—N1	124.84 (9)	O1—C1—O2	122.4 (3)
O5 ⁱ —Mn1—N1	88.68 (8)	O1—C1—C2	119.2 (2)
O5—Mn1—N1 ⁱ	88.68 (8)	O2—C1—C2	118.4 (2)
$O5^{i}$ —Mn1—N1 ⁱ	124.84 (9)	C3—C2—N1	109.7 (2)
N1-Mn1-N1 ⁱ	90.22 (11)	C3—C2—C1	133.2 (2)
O5—Mn1—O1	79.48 (8)	N1—C2—C1	117.1 (2)
O5 ⁱ —Mn1—O1	83.31 (8)	N2—C3—C2	105.4 (2)
N1—Mn1—O1	72.64 (7)	N2—C3—C4	122.2 (2)
N1 ⁱ —Mn1—O1	147.34 (8)	C2—C3—C4	132.4 (2)
O5—Mn1—O1 ⁱ	83.31 (8)	O4—C4—O3	123.7 (2)
$O5^{i}$ —Mn1—O1 ⁱ	79.48 (8)	O4—C4—C3	119.3 (2)
N1-Mn1-O1 ⁱ	147.34 (8)	O3—C4—C3	117.0 (2)
N1 ⁱ —Mn1—O1 ⁱ	72.64 (7)	N1—C5—N2	110.5 (2)
O1—Mn1—O1 ⁱ	134.71 (10)	N1—C5—C6	125.9 (2)
C5—N1—C2	105.8 (2)	N2—C5—C6	123.5 (2)
C5—N1—Mn1	138.97 (18)	C5—C6—C7	113.4 (3)
C2—N1—Mn1	114.56 (17)	С5—С6—Н6А	108.9
C5—N2—C3	108.6 (2)	С7—С6—Н6А	108.9
C5—N2—H2A	125.7	C5—C6—H6B	108.9

C3—N2—H2A C1—O1—Mn1 C4—O3—H3 Mn1—O5—H1W Mn1—O5—H2W	125.7 115.86 (17) 109.4 124.9 127.8	C7—C6—H6B H6A—C6—H6B C6 ⁱ —C7—C6 C6 ⁱ —C7—H7A C6—C7—H7A	108.9 107.7 113.7 (3) 107.4 109.3
O5—Mn1—N1—C5	121.0 (3)	O2—C1—C2—C3	-0.1 (5)
O5 ⁱ —Mn1—N1—C5	-92.4 (3)	O1-C1-C2-N1	0.3 (4)
$N1^{i}$ — $Mn1$ — $N1$ — $C5$	32.5 (3)	O2—C1—C2—N1	-178.9 (2)
O1—Mn1—N1—C5	-175.8 (3)	C5—N2—C3—C2	0.6 (3)
O1 ⁱ —Mn1—N1—C5	-24.3 (4)	C5—N2—C3—C4	-179.9 (2)
O5—Mn1—N1—C2	-69.7 (2)	N1—C2—C3—N2	-0.2 (3)
$O5^{i}$ —Mn1—N1—C2	76.92 (19)	C1—C2—C3—N2	-179.0 (3)
N1 ⁱ —Mn1—N1—C2	-158.2 (2)	N1—C2—C3—C4	-179.5 (3)
O1—Mn1—N1—C2	-6.49 (17)	C1—C2—C3—C4	1.6 (5)
O1 ⁱ —Mn1—N1—C2	144.92 (17)	N2-C3-C4-O4	-6.9 (4)
O5—Mn1—O1—C1	138.8 (2)	C2—C3—C4—O4	172.4 (3)
O5 ⁱ —Mn1—O1—C1	-83.7 (2)	N2-C3-C4-O3	173.2 (3)
N1—Mn1—O1—C1	7.01 (19)	C2—C3—C4—O3	-7.5 (4)
N1 ⁱ —Mn1—O1—C1	68.3 (3)	C2—N1—C5—N2	0.8 (3)
Ol ⁱ —Mn1—O1—C1	-151.7 (2)	Mn1—N1—C5—N2	170.6 (2)
Mn1—O1—C1—O2	172.9 (2)	C2—N1—C5—C6	178.2 (3)
Mn1—O1—C1—C2	-6.3 (3)	Mn1—N1—C5—C6	-11.9 (5)
C5—N1—C2—C3	-0.4 (3)	C3—N2—C5—N1	-0.9 (3)
Mn1—N1—C2—C3	-173.07 (18)	C3—N2—C5—C6	-178.5 (3)
C5—N1—C2—C1	178.7 (2)	N1—C5—C6—C7	-87.0 (4)
Mn1—N1—C2—C1	6.0 (3)	N2-C5-C6-C7	90.1 (4)
O1—C1—C2—C3	179.1 (3)	C5-C6-C7-C6 ⁱ	60.5 (2)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H··· A
O5—H2 <i>W</i> ···O4 ⁱⁱ	0.85	1.94	2.780 (3)	168
O5—H1 <i>W</i> ···O3 ⁱⁱⁱ	0.85	1.93	2.780 (3)	174
N2—H2A····O4 ^{iv}	0.86	1.97	2.785 (3)	159
O3—H3…O2	0.85	1.68	2.527 (3)	178

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1/2, -y+3/2, -z+1.