Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ethyl 1-benzyl-1,2,3,3a,4,10b-hexahydropyrrolo[$\left.2^{\prime}, 3^{\prime}: 3,4\right]$ pyrrolo[1,2-a]-benzimidazole-2-carboxylate

Liping Meng, James C. Fettinger and Mark J. Kurth*

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
Correspondence e-mail: mjkurth@ucdavis.edu

Received 29 March 2011; accepted 15 April 2011
Key indicators: single-crystal X-ray study; $T=90 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA ; R$ factor $=$ $0.037 ; w R$ factor $=0.095$; data-to-parameter ratio $=12.5$.

The title molecule, $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$, was obtained via an intramolecular cycloaddition of an azomethine ylide and an alkene tethered by a benzimidazole unit. The benzoimidazole unit is essentially planar, with an r.m.s. deviation of $0.0087 \AA$ from the nine constituent atoms. It has a cis fusion of the two pyrrolidine rings as well as a cis ester appendage. The two pyrrolidine rings rings have envelope conformations. The crystal packing is stabilized by aromatic $\pi-\pi$ stacking of parallel benzimidazole ring systems, with a centroid-tocentroid distance of 3.518 (6) Å. Weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ contacts may also play a role in the stability of the packing.

Related literature

Polycyclic nitrogen-containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active compounds, see: Southon \& Buckingham (1989). Conformational studies have been reported for related pyrrolidino[3,4b]pyrrolidine-2-carboxylates obtained from intramolecular cycloaddition of azomethine ylides, see: Cheng et al. (2001); Meng et al. (2007). For related literature on the pharmaceutical properties of benzimidazole and pyrrolidine, see: Gudmundsson et al. (2000); Hamilton \& Steiner (1997). For related literature on the azomethine ylide cycloaddition in similar systems, Pedrosa et al. (2006); Yang et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=361.43$
Monoclinic, $P 2_{1} / n$
$a=9.2498$ (5) \AA
$b=13.8999$ (7) \AA
$c=14.2258$ (7) \AA
$\beta=90.345(1)^{\circ}$

Data collection

Bruker SMART1000 CCD areadetector diffractometer
Absorption correction: numerical (SADABS; Blessing, 1995;
Sheldrick, 2007)
$T_{\text {min }}=0.962, T_{\text {max }}=0.989$

$$
V=1829.00(16) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
$0.39 \times 0.16 \times 0.13 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 336$ parameters
$w R\left(F^{2}\right)=0.095$
All H-atom parameters refined
$S=1.09$
4194 reflections
$\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C11-H11B $\cdots \mathrm{O} 12^{\mathrm{i}}$	$1.005(15)$	$2.399(15)$	$3.3344(17)$	$154.5(12)$
C18-H18 $\mathrm{O}_{1} 1^{\text {ii }}$	$0.968(15)$	$2.514(16)$	$3.3505(17)$	$144.6(12)$

Symmetry codes: (i) $-x,-y+2,-z+2$; (ii) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation (grant No. CHE-0910870) and the National Institutes of Health (grant No. GM0891583) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2427).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, Q., Zhang, W., Tagamia, Y. \& Oritani, T. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 452-456.
Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. \& Townsend, L. B. (2000). J. Med. Chem. 43, 2464 2472.

Hamilton, G. S. \& Steiner, J. P. (1997). Curr. Pharm. Des. 3, 405-428.
Meng, L., Fettinger, C. J. \& Kurth, J. M. (2007). Org. Lett. 9, 5055-5058.
Pedrosa, R., Andres, C., Nieto, J., Perez-Cuadrado, C. \& Francisco, I. S. (2006). Eur. J. Org. Chem. pp. 3259-3265.
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Southon, I. W. \& Buckingham, J. (1989). Editors. Dictionary of Alkaloids. New York: Chapman \& Hall.
Yang, X., Luo, S., Fang, F., Liu, P., Lu, Y., He, M. \& Zhai, H. (2006). Tetrahedron, 62, 2240-2246.

supporting information

Acta Cryst. (2011). E67, o1214 [doi:10.1107/S1600536811014292]

Ethyl 1-benzyl-1,2,3,3a,4,10b-hexahydropyrrolo[2',3':3,4]pyrrolo[1,2-a]benzimidazole-2-carboxylate

Liping Meng, James C. Fettinger and Mark J. Kurth

S1. Comment

Polycyclic nitrogen-containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active compounds (Southon \& Buckingham, 1989). The title polycyclic N-heterocycle, ethyl 1-benzylpyrrolidino $\left[2^{\prime}, 3^{\prime}: 3,4\right]$ pyrrolidino $[1,2-a]$ benzimidazole-2-carboxylate, was obtained via an intramolecular azomethine ylide cycloaddition and possesses two medicinally relevant pharmacophores - benzimidazole and pyrrolidine (Gudmundsson et al., 2000; Hamilton \& Steiner, 1997)- in one rigid molecule; the title compound may afford important bioactivity.
In the structure of the title compound (Fig. 1), the benzoimidazole unit is essentially planar, with a root mean square deviation of $0.0087 \AA$ from the nine constituent atoms. The two pyrrolidine rings have envelope forms and are cis fused, which is consistent with conventional azomethine ylide cycloadditions in similar systems (Pedrosa et al., 2006; Yang et al., 2006). However, unlike the previously reported analogues obtained from an intramolecular azomethine ylide and alkene cycloaddition tethered by an oxazolidin-2-one (Cheng et al., 2001), the ester appendage in the title structure was unambiguously assigned as cis to the angular protons H2A and H10A by X-ray crystallography. The crystal packing (Fig. 2) exhibits $\pi-\pi$ stacking of parallel benzimidazole ring systems, with a $C g 1 \cdots C g 2$ distance of $3.518 \AA[C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$ benzene ring in one molecule and the $\mathrm{C} 2 \mathrm{~B} / \mathrm{N} 2 / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 8 \mathrm{~A} / \mathrm{N} 8$ imidazole ring in the other molecule, respectively]. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts may also play a role in the stability of the packing.

S2. Experimental

The title compound was prepared from 1-allyl- 1 H -benzimidazole-2-carbaldehyde, N -benzylglycine ethyl ester hydrochloride, and triethylamine according to the procedure reported by Meng et al. (2007). Colourless blocks of the title compound were obtained by recrystallization from EtOAc/n-hexane $1: 1$ with slow evaporation at room temperature. These crystals were suitable for X-ray crystallography.

S3. Refinement

H atoms were located directly in a difference Fourier map and then allowed to refine freely throughout the final convergence stage. The final structure was refined to convergence $[\Delta / \sigma \leq 0.001]$. The final difference Fourier map was featureless, indicating that the structure is both correct and complete.

Figure 1
The molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Figure 2
The crystal packing of the title compound with a view of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (dashed lines) and $\pi-\pi$ interactions.
ethyl 11-benzyl-1,8,11-triazatetracyclo[7.6.0.0 $\left.{ }^{2,7} .0^{10,14}\right]$ pentadeca- 2(7),3,5,8-tetraene-12-carboxylate

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$

$M_{r}=361.43$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=9.2498$ (5) \AA
$b=13.8999$ (7) \AA
$c=14.2258$ (7) \AA
$\beta=90.345$ (1) ${ }^{\circ}$
$V=1829.00(16) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω and φ scans
$F(000)=768$
$D_{\mathrm{x}}=1.313 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7133 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Block, colourless
$0.39 \times 0.16 \times 0.13 \mathrm{~mm}$

Absorption correction: numerical
(SADABS; Blessing, 1995; Sheldrick, 2007)
$T_{\min }=0.962, T_{\text {max }}=0.989$
16147 measured reflections
4194 independent reflections
3080 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.095$
$S=1.09$
4194 reflections
336 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& k=-18 \rightarrow 18 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0417 P)^{2}+0.3839 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.37$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Special details

Experimental. A colourless block with approximate orthogonal dimensions $0.39 \times 0.16 \times 0.13 \mathrm{~mm}^{3}$ was placed and optically centered on the Bruker SMART 1000 CCD system at $-183^{\circ} \mathrm{C}$. The initial unit cell was indexed using a leastsquares analysis of a random set of reflections collected from three series of 0.3° wide ω scans, 10 s per frame, and 25 frames per series that were well distributed in reciprocal space. Four ω-scan data frame series were collected [Mo $K \alpha$] with 0.3° wide scans, 30 s per frame and $606,435,606,435$ frames collected per series at varying φ angles $\left(\varphi=0^{\circ}, 90^{\circ}\right.$, $180^{\circ}, 270^{\circ}$), respectively.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The crystal to detector distance was 4.123 cm , thus providing a complete sphere of data to $2 \theta_{\max }=55.06^{\circ}$. A total of 23465 reflections were collected and corrected for Lorentz and polarization effects and absorption using Blessing's method (Blessing, 1995) as incorporated into the program $S A D A B S$ with 4390 unique. All crystallographic calculations were performed on a personal computer (PC) with a Pentium 3.20 GHz processor and 1 GB of extended memory. The SHELXTL program package was implemented to determine the probable space group and set up the initial files. System symmetry, systematic absences and intensity statistics indicated the centrosymmetric monoclinic nonstandard space group $P 2_{1} / n$ (No. 14). The structure was determined by direct methods with the successful location of a majority of the molecule within the asymmetric unit using the program XS. The structure was refined with XL. The 23465 data collected were merged based upon identical indices yielding 16536 data $[R(\mathrm{int})=0.0245]$ that were truncated to $2 \theta_{\max }=55.0^{\circ}$ resulting in 16147 data that were further merged during least-squares refinement to 4194 unique data $[R(\mathrm{int})=0.0373]$. A single least-squares difference Fourier cycle was required to locate the remaining non-H atoms. All non-H atoms were refined anisotropically.
Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.11370(13)$	$0.83406(9)$	$0.93388(9)$	$0.0171(3)$
H1	$0.1841(15)$	$0.8014(10)$	$0.8905(10)$	$0.016(3)^{*}$
N1	$-0.03076(11)$	$0.79245(7)$	$0.92753(7)$	$0.0167(2)$
C2A	$-0.02373(14)$	$0.70281(9)$	$0.98214(9)$	$0.0168(3)$
H2A	$-0.1230(16)$	$0.6828(10)$	$0.9972(10)$	$0.021(4)^{*}$
C2B	$0.05845(13)$	$0.61970(9)$	$0.93939(9)$	$0.0164(3)$

N2	0.04725 (11)	0.56851 (8)	0.86159 (7)	0.0188 (2)
C3A	0.15526 (14)	0.49885 (9)	0.87233 (9)	0.0178 (3)
C4	0.19276 (15)	0.42310 (10)	0.81285 (9)	0.0215 (3)
H4	0.1418 (16)	0.4118 (10)	0.7547 (11)	0.024 (4)*
C5	0.30288 (15)	0.36208 (10)	0.84115 (10)	0.0239 (3)
H5	0.3296 (16)	0.3071 (11)	0.8029 (11)	0.024 (4)*
C6	0.37646 (15)	0.37548 (10)	0.92687 (10)	0.0231 (3)
H6	0.4508 (16)	0.3301 (11)	0.9460 (10)	0.025 (4)*
C7	0.34082 (14)	0.44980 (10)	0.98730 (10)	0.0205 (3)
H7	0.3892 (16)	0.4588 (10)	1.0466 (11)	0.023 (4)*
C8A	0.22957 (14)	0.51062 (9)	0.95859 (9)	0.0176 (3)
N8	0.16544 (11)	0.58997 (8)	0.99883 (7)	0.0173 (2)
C9	0.16669 (15)	0.63878 (10)	1.08991 (9)	0.0191 (3)
H9A	0.2688 (16)	0.6555 (10)	1.1086 (10)	0.021 (4)*
H9B	0.1242 (15)	0.5967 (10)	1.1379 (10)	0.022 (4)*
C10A	0.07245 (14)	0.72792 (9)	1.06910 (9)	0.0180 (3)
H10A	0.0137 (14)	0.7435 (9)	1.1239 (10)	0.013 (3)*
C11	0.15928 (15)	0.81681 (10)	1.03687 (9)	0.0193 (3)
H11A	0.2653 (18)	0.8059 (11)	1.0440 (11)	0.029 (4)*
H11B	0.1335 (16)	0.8755 (11)	1.0745 (11)	0.025 (4)*
C12	0.11502 (14)	0.93996 (9)	0.90881 (9)	0.0182 (3)
O12	0.01249 (10)	0.98789 (7)	0.88602 (7)	0.0248 (2)
C13	0.27147 (16)	1.07485 (10)	0.89143 (10)	0.0225 (3)
H13A	0.2190 (16)	1.1145 (11)	0.9382 (11)	0.023 (4)*
H13B	0.2268 (16)	1.0867 (10)	0.8302 (11)	0.022 (4)*
O13	0.25101 (10)	0.97384 (6)	0.91573 (6)	0.0201 (2)
C14	0.43191 (16)	1.09273 (11)	0.89238 (11)	0.0251 (3)
H14A	0.4769 (18)	1.0798 (12)	0.9539 (13)	0.037 (5)*
H14B	0.4516 (18)	1.1615 (13)	0.8784 (11)	0.038 (5)*
H14C	0.4819 (17)	1.0527 (12)	0.8441 (12)	0.035 (4)*
C15	-0.08571 (14)	0.78122 (10)	0.83087 (9)	0.0179 (3)
H15A	-0.0297 (15)	0.7327 (10)	0.7948 (10)	0.018 (4)*
H15B	-0.0739 (15)	0.8460 (11)	0.8007 (10)	0.018 (4)*
C16	-0.24288 (14)	0.75165 (9)	0.82970 (9)	0.0178 (3)
C17	-0.28700 (15)	0.66465 (10)	0.79108 (9)	0.0205 (3)
H17	-0.2161 (17)	0.6209 (11)	0.7651 (11)	0.030 (4)*
C18	-0.43276 (15)	0.63824 (10)	0.79093 (9)	0.0228 (3)
H18	-0.4629 (16)	0.5773 (11)	0.7644 (11)	0.027 (4)*
C19	-0.53434 (15)	0.69891 (11)	0.83067 (9)	0.0232 (3)
H19	-0.6361 (17)	0.6801 (11)	0.8303 (10)	0.024 (4)*
C20	-0.49157 (15)	0.78651 (10)	0.86906 (9)	0.0224 (3)
H20	-0.5630 (16)	0.8300 (11)	0.8959 (10)	0.022 (4)*
C21	-0.34683 (14)	0.81280 (10)	0.86831 (9)	0.0205 (3)
H21	-0.3146 (16)	0.8746 (11)	0.8952 (10)	0.022 (4)*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0135(6)$	$0.0187(6)$	$0.0189(6)$	$0.0002(5)$	$0.0018(5)$	$-0.0014(5)$
N1	$0.0149(5)$	$0.0182(6)$	$0.0170(5)$	$-0.0009(4)$	$-0.0002(4)$	$0.0011(4)$
C2A	$0.0146(6)$	$0.0196(7)$	$0.0161(6)$	$-0.0012(5)$	$0.0012(5)$	$0.0005(5)$
C2B	$0.0145(6)$	$0.0186(6)$	$0.0162(6)$	$-0.0027(5)$	$0.0009(5)$	$0.0025(5)$
N2	$0.0194(6)$	$0.0191(6)$	$0.0180(5)$	$0.0006(4)$	$0.0011(4)$	$0.0000(4)$
C3A	$0.0165(6)$	$0.0193(6)$	$0.0177(6)$	$-0.0013(5)$	$0.0030(5)$	$0.0042(5)$
C4	$0.0244(7)$	$0.0236(7)$	$0.0164(7)$	$-0.0002(6)$	$0.0044(5)$	$0.0006(5)$
C5	$0.0251(7)$	$0.0226(7)$	$0.0242(7)$	$0.0017(6)$	$0.0096(6)$	$0.0001(6)$
C6	$0.0172(7)$	$0.0221(7)$	$0.0300(8)$	$0.0013(6)$	$0.0049(6)$	$0.0053(6)$
C7	$0.0159(7)$	$0.0225(7)$	$0.0230(7)$	$-0.0026(5)$	$0.0004(5)$	$0.0050(5)$
C8A	$0.0173(6)$	$0.0179(6)$	$0.0177(6)$	$-0.0027(5)$	$0.0028(5)$	$0.0026(5)$
N8	$0.0170(6)$	$0.0184(5)$	$0.0165(5)$	$-0.0004(4)$	$-0.0005(4)$	$0.0013(4)$
C9	$0.0207(7)$	$0.0208(7)$	$0.0157(6)$	$-0.0023(5)$	$-0.0014(5)$	$-0.0002(5)$
C10A	$0.0179(6)$	$0.0216(7)$	$0.0146(6)$	$-0.0013(5)$	$0.0022(5)$	$-0.0014(5)$
C11	$0.0194(7)$	$0.0182(7)$	$0.0204(7)$	$-0.0005(5)$	$-0.0029(5)$	$0.0004(5)$
C12	$0.0187(7)$	$0.0213(7)$	$0.0146(6)$	$0.0013(5)$	$0.0022(5)$	$-0.0021(5)$
O12	$0.0232(5)$	$0.0226(5)$	$0.0284(5)$	$0.0044(4)$	$-0.0022(4)$	$0.0015(4)$
C13	$0.0289(8)$	$0.0154(7)$	$0.0233(7)$	$-0.0024(6)$	$-0.0026(6)$	$0.0023(5)$
O13	$0.0207(5)$	$0.0161(5)$	$0.0235(5)$	$-0.0020(4)$	$0.0003(4)$	$0.0015(4)$
C14	$0.0297(8)$	$0.0199(7)$	$0.0257(8)$	$-0.0066(6)$	$-0.0002(6)$	$0.0008(6)$
C15	$0.0159(6)$	$0.0221(7)$	$0.0156(6)$	$0.0008(5)$	$0.0010(5)$	$0.0000(5)$
C16	$0.0173(7)$	$0.0229(7)$	$0.0130(6)$	$0.0012(5)$	$-0.0013(5)$	$0.0031(5)$
C17	$0.0201(7)$	$0.0248(7)$	$0.0164(6)$	$0.0032(6)$	$-0.0009(5)$	$0.0009(5)$
C18	$0.0242(7)$	$0.0247(7)$	$0.0193(7)$	$-0.0027(6)$	$-0.0052(5)$	$0.0014(6)$
C19	$0.0165(7)$	$0.0322(8)$	$0.0209(7)$	$-0.0019(6)$	$-0.0033(5)$	$0.0043(6)$
C20	$0.0171(7)$	$0.0305(8)$	$0.0195(7)$	$0.0047(6)$	$-0.0005(5)$	$0.0010(6)$
C21	$0.0206(7)$	$0.0232(7)$	$0.0177(6)$	$0.0010(6)$	$-0.0011(5)$	$-0.0008(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{N} 1$	$1.4582(16)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11$	$1.5448(18)$
$\mathrm{C} 1-\mathrm{C} 12$	$1.5147(18)$	$\mathrm{C} 10 \mathrm{~A}-\mathrm{H} 10 \mathrm{~A}$	$0.977(14)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.5409(18)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	$0.997(16)$
$\mathrm{C} 1-\mathrm{H} 1$	$1.008(14)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	$1.005(15)$
$\mathrm{N} 1-\mathrm{C} 2 \mathrm{~A}$	$1.4696(16)$	$\mathrm{C} 12-\mathrm{O} 12$	$1.2019(16)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.4714(16)$	$\mathrm{C} 12-\mathrm{O} 13$	$1.3462(15)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~B}$	$1.5126(18)$	$\mathrm{C} 13-\mathrm{O} 13$	$1.4584(16)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	$1.5590(17)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.505(2)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	$0.984(15)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	$0.993(15)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 2$	$1.3193(16)$	$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	$0.976(15)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 8$	$1.3620(16)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	$0.983(18)$
$\mathrm{N} 2-\mathrm{C} 3 \mathrm{~A}$	$1.3990(17)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	$0.994(18)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	$1.3959(18)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	$0.999(17)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$1.4125(18)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.5108(18)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.383(2)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	$0.994(14)$

supporting information

C4-H4	0.963 (16)
C5-C6	1.405 (2)
C5-H5	0.971 (15)
C6-C7	1.385 (2)
C6-H6	0.971 (16)
C7-C8A	1.3912 (18)
C7-H7	0.961 (15)
C8A-N8	1.3785 (16)
N8-C9	1.4625 (16)
C9-C10A	1.5425 (18)
C9-H9A	1.006 (15)
C9—H9B	0.983 (15)
N1-C1-C12	112.30 (10)
N1-C1-C11	104.04 (10)
C12-C1-C11	111.87 (11)
N1-C1-H1	112.2 (8)
C12-C1-H1	106.7 (8)
C11-C1-H1	109.7 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2 \mathrm{~A}$	105.42 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15$	114.29 (10)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 15$	114.70 (10)
N1-C2A-C2B	117.12 (10)
N1-C2A-C10A	104.65 (10)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 10 \mathrm{~A}$	101.79 (10)
$\mathrm{N} 1-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	108.5 (8)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	110.1 (9)
$\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	114.8 (8)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 8$	114.23 (11)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~A}$	135.40 (12)
N8-C2B-C2A	110.31 (11)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{C} 3 \mathrm{~A}$	103.25 (11)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 2$	129.48 (12)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	119.52 (12)
N2-C3A-C8A	110.99 (11)
C5-C4-C3A	118.11 (13)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.4 (9)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	121.5 (9)
C4-C5-C6	121.55 (13)
C4-C5-H5	120.6 (9)
C6-C5-H5	117.8 (9)
C7-C6-C5	121.44 (13)
C7-C6-H6	118.8 (9)
C5-C6-H6	119.7 (9)
C6-C7-C8A	116.70 (13)
C6-C7-H7	122.1 (9)
C8A-C7-H7	121.2 (9)
N8-C8A-C7	133.13 (12)

C15-H15B	1.004 (15)
C16-C17	1.3885 (19)
C16-C21	1.3982 (18)
C17-C18	1.3973 (19)
C17-H17	0.969 (16)
C18-C19	1.386 (2)
C18-H18	0.967 (16)
C19-C20	1.391 (2)
C19-H19	0.977 (15)
C20-C21	1.3879 (19)
C20-H20	0.975 (15)
C21-H21	0.986 (15)
C9-C10A-H10A	110.0 (8)
C11-C10A-H10A	110.6 (8)
C2A-C10A-H10A	111.4 (8)
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 10 \mathrm{~A}$	105.48 (10)
C1-C11-H11A	112.6 (9)
C10A-C11-H11A	111.2 (9)
C1-C11-H11B	108.4 (9)
C10A-C11-H11B	111.5 (9)
H11A-C11-H11B	107.8 (12)
O12-C12-O13	124.14 (12)
O12-C12-C1	126.49 (12)
O13-C12-C1	109.37 (11)
O13-C13-C14	106.64 (11)
O13-C13-H13A	108.1 (9)
C14-C13-H13A	112.9 (9)
O13-C13-H13B	108.6 (9)
C14-C13-H13B	113.1 (9)
H13A-C13-H13B	107.4 (12)
C12-O13-C13	116.23 (10)
C13-C14-H14A	112.9 (10)
C13-C14-H14B	109.8 (10)
H14A-C14-H14B	106.1 (14)
C13-C14-H14C	111.3 (10)
H14A-C14-H14C	108.3 (14)
H14B-C14-H14C	108.2 (13)
N1-C15-C16	111.48 (10)
N1-C15-H15A	112.1 (8)
C16-C15-H15A	108.3 (8)
N1-C15-H15B	105.5 (8)
C16-C15-H15B	110.3 (8)
H15A-C15-H15B	109.2 (11)
C17-C16-C21	118.93 (12)
C17-C16-C15	121.45 (12)
C21-C16-C15	119.62 (12)
C16-C17-C18	120.71 (13)

$\mathrm{N} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$104.19(11)$
$\mathrm{C} 7-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$122.68(12)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 8-\mathrm{C} 8 \mathrm{~A}$	$107.32(10)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 8-\mathrm{C} 9$	$114.28(11)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 8-\mathrm{C} 9$	$137.56(11)$
$\mathrm{N} 8-\mathrm{C} 9-\mathrm{C} 10 \mathrm{~A}$	$101.61(10)$
N8-C9-H9A	$110.0(8)$
C10A-C9-H9A	$113.2(8)$
N8-C9-H9B	$109.8(9)$
C10A-C9-H9B	$112.6(9)$
H9A-C9-H9B	$109.4(12)$
C9-C10A-C11	$113.90(11)$
C9-C10A-C2A	$106.95(10)$
C11-C10A-C2A	$103.81(10)$

$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 17$	$119.9(9)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{H} 17$	$119.3(9)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 17$	$119.74(13)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{H} 18$	$119.8(9)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{H} 18$	$120.4(9)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$120.07(13)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{H} 19$	$119.4(9)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{H} 19$	$120.6(9)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$	$119.96(13)$
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	$119.7(9)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{H} 20$	$120.3(9)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 16$	$120.58(13)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21$	$121.1(9)$
$\mathrm{C} 16-\mathrm{C} 21-\mathrm{H} 21$	$118.4(9)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 B \cdots \mathrm{O} 12^{\mathrm{i}}$	$1.005(15)$	$2.399(15)$	$3.3344(17)$	$154.5(12)$
$\mathrm{C} 18 — \mathrm{H} 18 \cdots \mathrm{O} 12^{\mathrm{ii}}$	$0.968(15)$	$2.514(16)$	$3.3505(17)$	$144.6(12)$

Symmetry codes: (i) $-x,-y+2,-z+2$; (ii) $-x-1 / 2, y-1 / 2,-z+3 / 2$.

