organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1174

N,N′-Dicarb­­oxy-N,N′-di­carboxyl­ato(m-phenyl­ene)dimethanaminium monohydrate

aDepartment of Chemistry, Shanghai University, Shanghai 200444, People's Republic of China, and bInstrumental Analysis Center, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: shourongzhu@shu.edu.cn

(Received 18 March 2011; accepted 12 April 2011; online 22 April 2011)

In the title inner salt, C16H20N2O8·H2O, two of four carboxyl groups are deprotonated, while the two imine groups are protonated. The two imino­diacetate groups are located on the same side of the benzene ring plane. Extensive inter­molecular O—H⋯O and N—H⋯O hydrogen bonds occur in the crystal.

Related literature

The title compound tends to form dinuclear metal complexes, which are capable of di­oxy­gen activation, see: Furutachi et al. (2003[Furutachi, H., Murayama, M., Shiohara, A., Yamazaki, S., Fujinami, S., Uehara, A., Suzuki, M., Ogo, S., Watanabe, Y. & Maeda, Y. (2003). Chem. Commun. pp. 1900-1901.]); Zhao et al. (2008a[Zhao, Y., Zhu, S., Shao, M., He, X., Li, M. & Lu, W. (2008a). Inorg. Chem. Commun. 11, 239-242.],b[Zhao, Y., Zhu, S., Shao, M., Jia, T. & Li, M. (2008b). Inorg. Chem. Commun. 11, 925-926.]). For the structures of aromatic-substituted imino­diacetic acids, see: Choquesillo-Laza­rte et al. (2002[Choquesillo-Lazarte, D., Covelo, B., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2002). Polyhedron, 21, 1485-1495.]); Sánchez-Moreno et al. (2003[Sánchez-Moreno, M. J., Choquesillo-Lazarte, D., González-Pérez, J. M., Carballo, R., Martin-Ramos, J. D., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Polyhedron, 22, 1039-1049.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O8·H2O

  • Mr = 386.36

  • Monoclinic, C c

  • a = 22.491 (3) Å

  • b = 5.4342 (7) Å

  • c = 14.3118 (19) Å

  • β = 106.788 (2)°

  • V = 1674.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.988

  • 4927 measured reflections

  • 1891 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.069

  • S = 0.97

  • 1891 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8i 0.96 (3) 2.46 (3) 3.216 (3) 135 (2)
N2—H2A⋯O6ii 0.97 (3) 2.03 (3) 2.896 (3) 148 (2)
O1W—H1WB⋯O8ii 0.85 2.02 2.847 (3) 165
O1W—H1WA⋯O7 0.85 1.88 2.729 (3) 174
O4—H4A⋯O1Wiii 0.85 1.71 2.552 (3) 171
O5—H5A⋯O1iv 0.85 1.65 2.472 (3) 161
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound tends to form dinuclear complexes with transition metal ions. The dinuclear complexes are capable for dioxygen activation (Furutachi et al., 2003; Zhao et al., 2008a). Structures of their dinuclear complexes have been reported. As a part of serial structural investigation of dioxygen activation by dinuclear complexes, the title compound was prepared in the laboratory and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig.1. The compound is not symmetry as the scheme. The asymmetric moiety contains a whole molecule. There are two protons bind to two carboxylate group (O4 and O5). Two protons bind to the imino nitrogen atom N1 and N2 with N—H distances of 0.960 (27) and 0.968 (27)Å respectively, which is 0.1 Å longer than O—H distances (0.851 (2) Å. Different from its zinc(II) complex, the two iminodiacetic moiety are in the opposite side with respect to the central benzyl ring (Zhao et al., 2008a). The phenyl group, [C1/C2/C3/C4/C5/C6]and methylene C7 and C12 are in the same plane, but the N1/C7/C1 and N2/C12/C3 planes are almost perpendicular to the phenyl plane with dihedral angle of 89.4 (3) and 88.6 (3)° respectively, which is comparable to those in N-(p-nitrobenzyl)iminodiacetic acid (Sánchez-Moreno et al., 2003), but quite different from the almost coplanar geometry in N-(2-pyridylmethyl)iminodiacetic acid (Choquesillo-Lazarte et al., 2002). N1/C7/C1 and N2/C12/C3 planes have a dihydral angle of 59.7 (1)°. The bond lengths and angles are in normal ranges and comparable to the above mentioned compounds and its complex (Zhao et al., 2008a; Zhao et al., 2008b). In the compound, the two carboxylate for both iminoaiacetic group are far away with C(9)—C(11) and C(14)—C(16) diantances at 4.089 (3) and 4.667 (3)Å respectively. There are intermolecular H-bonds in the compound. No intramolecular H-bond found in the compound(Fig.2).This is quite different from N-(p-nitrobenzyl) iminodiacetic acid (Sánchez-Moreno et al., 2003) and N-(2-pyridylmethyl)iminodiacetic acid (Choquesillo-Lazarte et al., 2002). In these literatures, there is a proton binding to the imino nitrogen atom. There are N—H···O intramolecular H-bonds. In the title compound, carboxyalte O6/C14/O5 from other molecule links the molecules via O1 and N2 through H—bond to form a pseudo 15–membered ring [H5a/O5/C14/O6/H2a/N2/C12/C3/C2/C1/C7/N1/C10/C11/O1] (Fig.2). O5—H5A···O1ii has the shortest distance of 2.472 (3)Å in all H—bonds. N—H···O H—bond is much weaker than corresponding O—H···O H—bond. It is the intermolecular H-bonds that bind adjacent molecules as shown in Fig. 3 and table 2.

Related literature top

The title compound tends to form dinuclear metal complexes, which are capable of dioxygen activation, see: Furutachi et al. (2003); Zhao et al. (2008a,b). For the structures of aromatic-substituted iminodiacetic acids, see: Choquesillo-Lazarte et al. (2002); Sánchez-Moreno et al. (2003).

Experimental top

To a mixture of bromoacetic acid (41.816 g, 0.30 mol) and lithium hydroxide monohydrate (12.627 g, 0.30 mol) in water (100 ml) containing phenolphthalein was added m-xylenediamine (10.0 g, 73.4 mmol). The reaction mixture was stirred at 70°C for 3 h and during the reaction, pH was maintained at 10 by addition of lithium hydroxide monohydrate (12.627 g, 0.30 mol). After the mixture cooled to ambient temperature, the solution was made acidic (pH = 1) by addition of conc. HCl to give white powder. Yield: 24.3 g (84%).

0.0194 g (0.05 mmol) of the white powder was added 0.5 ml 0.1 mol/L KOH solution, then 5 ml sub-boiled water was added to give a clear solution. Gradually add 0.1 mol/L HNO3, to adjust the pH of the solution to 5. The solution was allowed to stand at room temperature for 3 days. Colorless block crystals suitable for crystal diffraction were obtained.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and O—H = 0.85 Å; Uiso(H) = 1.2Ueq(C,O). As no significant anomalous scattering, Friedels pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. H-bonds in the title compound. Purple bonds are H-Bond.
[Figure 3] Fig. 3. Crystal packing diagram of the title compound.
N,N'-Dicarboxy-N,N'-dicarboxylato(m- phenylene)dimethanaminium monohydrate top
Crystal data top
C16H20N2O8·H2OF(000) = 816
Mr = 386.36Dx = 1.532 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1912 reflections
a = 22.491 (3) Åθ = 3.0–27.3°
b = 5.4342 (7) ŵ = 0.13 mm1
c = 14.3118 (19) ÅT = 296 K
β = 106.788 (2)°Block, colorless
V = 1674.6 (4) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1891 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2818
Tmin = 0.975, Tmax = 0.988k = 67
4927 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.0337P]
where P = (Fo2 + 2Fc2)/3
1891 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H20N2O8·H2OV = 1674.6 (4) Å3
Mr = 386.36Z = 4
Monoclinic, CcMo Kα radiation
a = 22.491 (3) ŵ = 0.13 mm1
b = 5.4342 (7) ÅT = 296 K
c = 14.3118 (19) Å0.20 × 0.10 × 0.10 mm
β = 106.788 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1701 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.988Rint = 0.020
4927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.13 e Å3
1891 reflectionsΔρmin = 0.15 e Å3
252 parameters
Special details top

Experimental. Anal. Calcd for C16H22N2O9: C, 49.73; H, 5.64; N, 7.34%. Found: C, 49.69; H, 5.64; N, 7.34%. 1H NMR (D2O in the presence of K2CO3): d (p.p.m.) = 3.31 (8H, s, NCH2CO2), 3.95 (4H, s, PhCH2N), 7.36 – 7.41 (4H, m, PhH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48342 (11)0.0785 (4)0.53137 (16)0.0231 (5)
C20.54217 (11)0.0180 (4)0.57446 (17)0.0240 (5)
H20.55370.16550.55160.029*
C30.58405 (11)0.1035 (5)0.65160 (17)0.0243 (5)
C40.56643 (12)0.3244 (5)0.68491 (17)0.0281 (5)
H40.59440.40950.73520.034*
C50.50736 (13)0.4184 (5)0.64350 (18)0.0296 (5)
H50.49550.56420.66710.036*
C60.46596 (12)0.2960 (5)0.56708 (18)0.0272 (5)
H60.42640.35960.53960.033*
C70.43870 (11)0.0521 (5)0.44711 (17)0.0246 (5)
H7A0.39710.03900.45380.030*
H7B0.44950.22530.44950.030*
C80.39405 (12)0.0909 (5)0.27035 (18)0.0285 (5)
H8A0.35880.13880.29250.034*
H8B0.41390.23950.25670.034*
C90.37171 (11)0.0596 (5)0.17845 (18)0.0286 (6)
C100.50246 (11)0.0599 (4)0.33451 (18)0.0245 (5)
H10A0.49910.03630.26600.029*
H10B0.52760.07240.37110.029*
C110.53354 (11)0.3057 (4)0.36863 (17)0.0233 (5)
C120.64659 (11)0.0044 (5)0.70305 (17)0.0264 (5)
H12A0.64310.18230.70330.032*
H12B0.65900.05080.77040.032*
C130.68289 (12)0.0009 (4)0.55037 (17)0.0257 (5)
H13A0.71830.04470.52820.031*
H13B0.64770.09600.51340.031*
C140.66863 (11)0.2693 (5)0.52703 (18)0.0258 (5)
C150.75870 (11)0.0232 (5)0.71783 (18)0.0283 (6)
H15A0.78700.03720.67810.034*
H15B0.75410.18510.74350.034*
C160.78576 (12)0.1544 (5)0.80242 (18)0.0293 (5)
H1A0.4248 (13)0.219 (5)0.347 (2)0.028 (7)*
H2A0.6999 (12)0.244 (5)0.658 (2)0.029 (7)*
N10.43897 (9)0.0518 (4)0.34879 (14)0.0228 (4)
N20.69672 (9)0.0663 (4)0.65600 (14)0.0225 (4)
O10.59162 (8)0.3058 (3)0.37755 (12)0.0295 (4)
O20.50164 (9)0.4792 (3)0.38026 (14)0.0342 (4)
O30.38729 (10)0.2699 (4)0.17322 (15)0.0441 (5)
O40.33302 (9)0.0662 (4)0.10907 (14)0.0411 (5)
H4A0.31750.02770.06060.049*
O50.64514 (10)0.3008 (4)0.43420 (13)0.0401 (5)
H5A0.63360.44970.42300.048*
O60.67714 (10)0.4290 (3)0.58908 (14)0.0391 (5)
O70.76142 (10)0.3614 (4)0.79623 (14)0.0398 (5)
O80.83165 (10)0.0772 (4)0.86778 (15)0.0472 (6)
O1W0.78493 (9)0.6735 (4)0.95209 (13)0.0399 (5)
H1WA0.77630.56970.90570.048*
H1WB0.79880.80790.93630.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0222 (11)0.0252 (12)0.0219 (11)0.0016 (9)0.0064 (9)0.0030 (10)
C20.0241 (12)0.0230 (12)0.0252 (11)0.0007 (10)0.0076 (9)0.0015 (10)
C30.0229 (12)0.0274 (12)0.0223 (11)0.0007 (10)0.0062 (9)0.0013 (10)
C40.0319 (14)0.0317 (14)0.0206 (12)0.0044 (11)0.0076 (10)0.0047 (10)
C50.0388 (14)0.0238 (12)0.0286 (13)0.0033 (11)0.0133 (11)0.0013 (10)
C60.0256 (12)0.0297 (13)0.0270 (13)0.0054 (10)0.0088 (10)0.0041 (10)
C70.0213 (12)0.0288 (13)0.0228 (12)0.0038 (9)0.0048 (9)0.0009 (10)
C80.0267 (12)0.0286 (14)0.0267 (12)0.0083 (10)0.0023 (10)0.0008 (10)
C90.0224 (13)0.0371 (15)0.0253 (13)0.0012 (10)0.0053 (10)0.0003 (10)
C100.0228 (12)0.0233 (12)0.0274 (12)0.0014 (10)0.0074 (9)0.0005 (10)
C110.0282 (13)0.0220 (11)0.0186 (10)0.0014 (10)0.0051 (9)0.0018 (9)
C120.0247 (13)0.0321 (13)0.0210 (11)0.0007 (10)0.0047 (10)0.0010 (10)
C130.0272 (12)0.0253 (12)0.0225 (12)0.0023 (10)0.0039 (9)0.0020 (9)
C140.0232 (12)0.0264 (12)0.0268 (12)0.0003 (10)0.0056 (10)0.0008 (10)
C150.0204 (12)0.0309 (14)0.0273 (13)0.0025 (10)0.0032 (10)0.0017 (10)
C160.0266 (13)0.0293 (13)0.0287 (13)0.0069 (10)0.0027 (10)0.0019 (11)
N10.0214 (10)0.0227 (10)0.0221 (10)0.0017 (8)0.0031 (8)0.0006 (8)
N20.0209 (10)0.0196 (10)0.0237 (10)0.0005 (8)0.0012 (8)0.0008 (8)
O10.0246 (9)0.0267 (9)0.0342 (10)0.0039 (7)0.0035 (7)0.0010 (8)
O20.0398 (11)0.0212 (9)0.0443 (11)0.0007 (8)0.0161 (9)0.0021 (8)
O30.0479 (12)0.0371 (12)0.0392 (12)0.0087 (10)0.0007 (9)0.0086 (9)
O40.0414 (12)0.0467 (12)0.0265 (9)0.0075 (9)0.0039 (8)0.0024 (9)
O50.0556 (13)0.0334 (11)0.0257 (9)0.0153 (9)0.0030 (9)0.0036 (8)
O60.0559 (13)0.0224 (9)0.0333 (10)0.0002 (9)0.0037 (9)0.0041 (8)
O70.0476 (12)0.0297 (11)0.0325 (10)0.0013 (9)0.0037 (8)0.0042 (8)
O80.0378 (11)0.0477 (13)0.0397 (11)0.0021 (10)0.0149 (9)0.0032 (10)
O1W0.0443 (12)0.0452 (12)0.0258 (9)0.0013 (9)0.0031 (8)0.0015 (9)
Geometric parameters (Å, º) top
C1—C61.388 (3)C10—H10B0.9700
C1—C21.389 (3)C11—O21.225 (3)
C1—C71.507 (3)C11—O11.275 (3)
C2—C31.394 (3)C12—N21.520 (3)
C2—H20.9300C12—H12A0.9700
C3—C41.391 (4)C12—H12B0.9700
C3—C121.505 (3)C13—N21.498 (3)
C4—C51.387 (4)C13—C141.510 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.385 (4)C13—H13B0.9700
C5—H50.9300C14—O61.216 (3)
C6—H60.9300C14—O51.292 (3)
C7—N11.518 (3)C15—N21.500 (3)
C7—H7A0.9700C15—C161.530 (3)
C7—H7B0.9700C15—H15A0.9700
C8—N11.492 (3)C15—H15B0.9700
C8—C91.506 (4)C16—O71.243 (3)
C8—H8A0.9700C16—O81.248 (3)
C8—H8B0.9700N1—H1A0.96 (3)
C9—O31.204 (3)N2—H2A0.97 (3)
C9—O41.308 (3)O4—H4A0.8501
C10—N11.501 (3)O5—H5A0.8500
C10—C111.521 (3)O1W—H1WA0.8500
C10—H10A0.9700O1W—H1WB0.8500
C6—C1—C2119.5 (2)O1—C11—C10113.3 (2)
C6—C1—C7120.1 (2)C3—C12—N2113.12 (19)
C2—C1—C7120.4 (2)C3—C12—H12A109.0
C1—C2—C3120.7 (2)N2—C12—H12A109.0
C1—C2—H2119.6C3—C12—H12B109.0
C3—C2—H2119.6N2—C12—H12B109.0
C4—C3—C2119.1 (2)H12A—C12—H12B107.8
C4—C3—C12119.1 (2)N2—C13—C14115.3 (2)
C2—C3—C12121.7 (2)N2—C13—H13A108.4
C3—C4—C5120.3 (2)C14—C13—H13A108.4
C3—C4—H4119.9N2—C13—H13B108.4
C5—C4—H4119.9C14—C13—H13B108.4
C6—C5—C4120.2 (2)H13A—C13—H13B107.5
C6—C5—H5119.9O6—C14—O5126.0 (2)
C4—C5—H5119.9O6—C14—C13123.3 (2)
C5—C6—C1120.2 (2)O5—C14—C13110.7 (2)
C5—C6—H6119.9N2—C15—C16110.6 (2)
C1—C6—H6119.9N2—C15—H15A109.5
C1—C7—N1112.71 (19)C16—C15—H15A109.5
C1—C7—H7A109.0N2—C15—H15B109.5
N1—C7—H7A109.0C16—C15—H15B109.5
C1—C7—H7B109.0H15A—C15—H15B108.1
N1—C7—H7B109.0O7—C16—O8127.5 (2)
H7A—C7—H7B107.8O7—C16—C15116.6 (2)
N1—C8—C9111.0 (2)O8—C16—C15115.8 (2)
N1—C8—H8A109.4C8—N1—C10112.15 (19)
C9—C8—H8A109.4C8—N1—C7108.73 (18)
N1—C8—H8B109.4C10—N1—C7113.33 (18)
C9—C8—H8B109.4C8—N1—H1A109.1 (17)
H8A—C8—H8B108.0C10—N1—H1A106.9 (16)
O3—C9—O4126.2 (3)C7—N1—H1A106.4 (17)
O3—C9—C8122.7 (2)C15—N2—C13113.76 (19)
O4—C9—C8111.1 (2)C15—N2—C12109.77 (19)
N1—C10—C11110.46 (19)C13—N2—C12114.90 (19)
N1—C10—H10A109.6C15—N2—H2A104.9 (16)
C11—C10—H10A109.6C13—N2—H2A105.7 (16)
N1—C10—H10B109.6C12—N2—H2A107.0 (17)
C11—C10—H10B109.6C9—O4—H4A109.4
H10A—C10—H10B108.1C14—O5—H5A109.4
O2—C11—O1127.5 (2)H1WA—O1W—H1WB112.4
O2—C11—C10119.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.96 (3)2.46 (3)3.216 (3)135 (2)
N2—H2A···O6ii0.97 (3)2.03 (3)2.896 (3)148 (2)
O1W—H1WB···O8ii0.852.022.847 (3)165
O1W—H1WA···O70.851.882.729 (3)174
O4—H4A···O1Wiii0.851.712.552 (3)171
O5—H5A···O1iv0.851.652.472 (3)161
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x1/2, y1/2, z1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H20N2O8·H2O
Mr386.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)22.491 (3), 5.4342 (7), 14.3118 (19)
β (°) 106.788 (2)
V3)1674.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.975, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4927, 1891, 1701
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 0.97
No. of reflections1891
No. of parameters252
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.96 (3)2.46 (3)3.216 (3)135 (2)
N2—H2A···O6ii0.97 (3)2.03 (3)2.896 (3)148 (2)
O1W—H1WB···O8ii0.852.022.847 (3)165
O1W—H1WA···O70.851.882.729 (3)174
O4—H4A···O1Wiii0.851.712.552 (3)171
O5—H5A···O1iv0.851.652.472 (3)161
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x1/2, y1/2, z1; (iv) x, y1, z.
 

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant Nos. 20971084 and 20801035).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoquesillo-Lazarte, D., Covelo, B., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2002). Polyhedron, 21, 1485–1495.  CAS Google Scholar
First citationFurutachi, H., Murayama, M., Shiohara, A., Yamazaki, S., Fujinami, S., Uehara, A., Suzuki, M., Ogo, S., Watanabe, Y. & Maeda, Y. (2003). Chem. Commun. pp. 1900–1901.  CrossRef Google Scholar
First citationSánchez-Moreno, M. J., Choquesillo-Lazarte, D., González-Pérez, J. M., Carballo, R., Martin-Ramos, J. D., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Polyhedron, 22, 1039–1049.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Zhu, S., Shao, M., He, X., Li, M. & Lu, W. (2008a). Inorg. Chem. Commun. 11, 239–242.  CrossRef CAS Google Scholar
First citationZhao, Y., Zhu, S., Shao, M., Jia, T. & Li, M. (2008b). Inorg. Chem. Commun. 11, 925–926.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds