organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1145

(1RS,2RS,3SR,5RS,7RS)-2,5-Di­chloro-8-oxabi­cyclo­[5.1.0]octan-3-ol

aDepartment of Chemistry, Atatürk University, 25240 Erzurum, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 March 2011; accepted 8 April 2011; online 16 April 2011)

In the title compound, C7H10Cl2O2, the seven-membered ring displays a chair conformation. In the crystal, the hy­droxy H atom is equally disordered over two orientations, and links with an adjacent mol­ecule via an O—H⋯O hydrogen bond in both cases. Weak inter­molecular C—H⋯O hydrogen bonding is also a feature of the crystal structure.

Related literature

For background to syn-bis-epoxides, see: Balcı (1981[Balcı, M. (1981). Chem. Rev. 81, 91-108.]); Akbulut et al. (1987[Akbulut, N., Menzek, A. & Balcı, M. (1987). Tetrahedron Lett. 28, 1689-1692.]); Menzek & Balcı (1993[Menzek, A. & Balcı, M. (1993). Aust. J. Chem. 46, 1613-1621.]); Saraçoğlu et al. (1999[Saraçoğlu, N., Menzek, A., Sayan, Ş., Salzner, U. & Balcı, M. (1999). J. Org. Chem. 64, 6670-6676.]). For background to unsaturated bicyclic endopexide, see: Menzek et al. (2005[Menzek, A., Şengül, M. E., Çetinkaya, Y. & Ceylan, S. (2005). J. Chem. Res. pp. 209-214.]). For background to epoxide and bis-epoxide, see: Şengül et al. (2008[Şengül, M. E., Menzek, A., Şahin, E., Arık, M. & Saracoğlu, N. (2008). Tetrahedron, 64, 7289-7294.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10Cl2O2

  • Mr = 197.05

  • Orthorhombic, P b c n

  • a = 21.9202 (5) Å

  • b = 9.9343 (3) Å

  • c = 8.1005 (2) Å

  • V = 1763.98 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 294 K

  • 0.32 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.845, Tmax = 0.900

  • 32813 measured reflections

  • 1801 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.190

  • S = 1.18

  • 1801 reflections

  • 115 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O2i 0.83 (11) 1.96 (11) 2.746 (7) 159 (12)
O2—H2B⋯O2ii 0.85 1.84 2.692 (8) 174
C2—H21⋯O1iii 0.97 2.43 3.398 (7) 172
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Unsaturated bicyclic endopexides are important compounds for versatile chemical transformations in organic chemistry. In these endoperoxides, diradicals formed by thermal cleavage of the weak O-O bonds react to give the syn-bis-epoxides (Balcı, 1981; Akbulut et al., 1987; Menzek & Balcı, 1993; Saraçoğlu et al., 1999).

Unsaturated bicyclic endopexide, (1), (Scheme 1) was synthesized by the literature method (Menzek et al., 2005). Reaction of endoperoxide, (1), by heating at 453 (5) K gave a mixture of products (Scheme 1). The title compound, (2), was isolated from these mixtures. The other products were not identified. According to the NMR data of dichloride, (2), it was not easy to establish the exact configuration of the molecule. Therefore, the exact structure of dichloride, (2), was determined by X-ray single crystal analysis.

To rationalize the formation of dichloride, (2), we propose the following reaction mechanism as favourable mechanism (Scheme 1). Bis-epoxide, (3), is produced via diradicals formed by thermal cleavage of the weak O-O bonds. HCl formed by elimination from reaction products such as (3) can attack bis-epoxide, (3), to give intermediate (4). Cl- can attack intermediate (4) to give dichloride, (2), as a nucleophile. An epoxide or bis-epoxide ring (Şengül et al., 2008) may be opened by as a nucleophile.

In the title compound, the seven-membered ring A (C1-C7) is, of course, not planar. The planar moieties B (O1/C1/C7), C (C3-C5), D (C2/C3/C5/C6) and E (C1/C2/C6/C7) are oriented at dihedral angles of B/C = 68.75 (46)°, B/D = 13.84 (28)°, B/E = 74.48 (32)°, C/D = 54.91 (42)°, C/E = 6.00 (42)° and D/E = 60.65 (30)°.

In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For background to syn-bis-epoxides, see: Balcı (1981); Akbulut et al. (1987); Menzek & Balcı (1993); Saraçoğlu et al. (1999). For unsaturated bicyclic endopexide, see: Menzek et al. (2005). For epoxide or bis-epoxide, see: Şengül et al. (2008).

Experimental top

For the preparation of the title compound, a mixture of endoproxide (0.5 g, 2.6 mmol) and benzene (5 ml) was placed into a test tube, sealed under vacuum and heated at 453 (5) K for 3 d. After cooling to room temperature, the solvent was evaporated. The residue was submitted to column chromatography (silica gel, 90 g) with AcOEt/hexane (1:6) as eluant. Dichloride (yield: 0.056 g, 9%, m. p. 366-368 K) and a mixture of unidentified products were obtained. Dichloride was crystallized from ethyl acetate/hexane (1:1) as colorless block crystals.

Refinement top

H1, H7, H21, H22 and H41, H42 atoms were positioned geometrically with C—H = 0.98 and 0.97 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H-atoms were located in a difference Fourier map and refined isotropically. The H atom of the OH group was disordered over two orientations. During the refinement process, the disordered H2A and H2B atoms were refined with equal occupancies.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The O-H···O and C-H···O hydrogen bonds are shown as dashed lines.
(1RS,2RS,3SR,5RS,7RS)-2,5-Dichloro- 8-oxabicyclo[5.1.0]octan-3-ol top
Crystal data top
C7H10Cl2O2F(000) = 816
Mr = 197.05Dx = 1.484 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4978 reflections
a = 21.9202 (5) Åθ = 2.3–26.4°
b = 9.9343 (3) ŵ = 0.68 mm1
c = 8.1005 (2) ÅT = 294 K
V = 1763.98 (8) Å3Block, colorless
Z = 80.32 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1801 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2727
Tmin = 0.845, Tmax = 0.900k = 1212
32813 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.020P)2 + 5.1831P]
where P = (Fo2 + 2Fc2)/3
1801 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C7H10Cl2O2V = 1763.98 (8) Å3
Mr = 197.05Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 21.9202 (5) ŵ = 0.68 mm1
b = 9.9343 (3) ÅT = 294 K
c = 8.1005 (2) Å0.32 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1801 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1267 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.900Rint = 0.110
32813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0882 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.28 e Å3
1801 reflectionsΔρmin = 0.34 e Å3
115 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.59049 (9)0.41547 (16)0.1157 (2)0.0883 (6)
Cl20.62620 (9)1.07361 (16)0.1076 (2)0.0841 (6)
O10.7389 (2)0.8227 (5)0.1601 (7)0.1017 (17)
O20.5199 (2)0.8930 (5)0.0928 (7)0.0941 (16)
H2A0.511 (7)0.945 (11)0.017 (12)0.090*0.50
H2B0.50500.89500.19000.090*0.50
C10.7119 (3)0.7145 (7)0.0682 (10)0.084 (2)
H10.73610.68060.02470.101*
C20.6766 (2)0.6091 (6)0.1650 (9)0.0732 (18)
H210.70030.52710.17510.088*
H220.66720.64210.27480.088*
C30.6182 (3)0.5825 (6)0.0692 (8)0.0604 (15)
H30.628 (3)0.578 (7)0.042 (9)0.10 (2)*
C40.5669 (2)0.6810 (5)0.1042 (8)0.0610 (14)
H410.53030.64670.05160.073*
H420.55950.68060.22230.073*
C50.5748 (2)0.8269 (6)0.0507 (8)0.0582 (14)
H50.580 (2)0.832 (5)0.066 (7)0.057 (16)*
C60.6294 (3)0.8926 (5)0.1265 (7)0.0558 (13)
H60.636 (2)0.873 (5)0.231 (7)0.066 (18)*
C70.6885 (2)0.8499 (6)0.0502 (8)0.0703 (17)
H70.69930.89540.05310.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1032 (13)0.0592 (9)0.1024 (14)0.0091 (8)0.0189 (11)0.0044 (9)
Cl20.1150 (14)0.0573 (9)0.0799 (11)0.0025 (9)0.0052 (10)0.0046 (8)
O10.067 (3)0.095 (4)0.143 (5)0.021 (3)0.030 (3)0.028 (3)
O20.067 (3)0.084 (3)0.132 (5)0.024 (2)0.023 (3)0.012 (3)
C10.049 (3)0.097 (5)0.107 (6)0.011 (3)0.009 (4)0.011 (5)
C20.055 (3)0.069 (4)0.096 (5)0.014 (3)0.016 (3)0.010 (3)
C30.066 (4)0.052 (3)0.063 (4)0.001 (3)0.001 (3)0.005 (3)
C40.049 (3)0.058 (3)0.075 (4)0.001 (2)0.009 (3)0.004 (3)
C50.050 (3)0.064 (3)0.061 (4)0.008 (3)0.001 (3)0.004 (3)
C60.066 (3)0.049 (3)0.052 (3)0.001 (2)0.009 (3)0.000 (3)
C70.052 (3)0.075 (4)0.084 (4)0.006 (3)0.009 (3)0.014 (3)
Geometric parameters (Å, º) top
Cl1—C31.806 (6)C3—C21.520 (8)
Cl2—C61.806 (6)C3—C41.518 (7)
O1—C11.434 (8)C3—H30.93 (7)
O1—C71.443 (7)C4—C51.522 (8)
O2—C51.413 (7)C4—H410.9700
O2—H2B0.853 (5)C4—H420.9700
O2—H2A0.82 (2)C5—H50.95 (5)
C1—C71.447 (9)C6—C51.497 (8)
C1—H10.9800C6—C71.497 (8)
C2—C11.521 (8)C6—H60.88 (6)
C2—H210.9700C7—H70.9800
C2—H220.9700
C5—O2—H2B124.0 (5)C3—C4—H41107.7
C5—O2—H2A109 (10)C3—C4—H42107.7
H2B—O2—H2A125 (10)C5—C4—H41107.7
C1—O1—C760.4 (4)C5—C4—H42107.7
O1—C1—C2117.3 (6)H42—C4—H41107.1
O1—C1—C760.1 (4)O2—C5—C4106.1 (5)
O1—C1—H1115.7O2—C5—C6112.3 (5)
C2—C1—H1115.7O2—C5—H5109 (3)
C7—C1—C2120.7 (5)C4—C5—H5110 (3)
C7—C1—H1115.7C6—C5—C4112.9 (5)
C1—C2—H21110.4C6—C5—H5107 (3)
C1—C2—H22110.4Cl2—C6—H6108 (4)
C3—C2—C1106.6 (5)C5—C6—Cl2111.6 (4)
C3—C2—H21110.4C5—C6—C7113.6 (5)
C3—C2—H22110.4C5—C6—H6116 (4)
H21—C2—H22108.6C7—C6—Cl2106.3 (4)
Cl1—C3—H3104 (4)C7—C6—H6101 (4)
C2—C3—Cl1109.6 (4)O1—C7—C159.5 (4)
C2—C3—H3108 (4)O1—C7—C6117.4 (6)
C4—C3—Cl1107.7 (4)O1—C7—H7115.4
C4—C3—C2114.6 (5)C1—C7—C6122.0 (5)
C4—C3—H3113 (4)C1—C7—H7115.4
C3—C4—C5118.4 (5)C6—C7—H7115.4
C7—O1—C1—C2111.5 (6)C3—C4—C5—O2177.8 (5)
C1—O1—C7—C6112.7 (6)C3—C4—C5—C658.7 (7)
O1—C1—C7—C6105.2 (7)Cl2—C6—C5—O244.3 (6)
C2—C1—C7—O1105.9 (8)Cl2—C6—C5—C4164.2 (4)
C2—C1—C7—C60.7 (10)C7—C6—C5—O2164.5 (5)
C3—C2—C1—O1135.8 (5)C7—C6—C5—C475.6 (7)
C3—C2—C1—C766.0 (8)Cl2—C6—C7—C1168.9 (6)
Cl1—C3—C2—C1154.6 (5)Cl2—C6—C7—O199.4 (5)
C4—C3—C2—C184.1 (7)C5—C6—C7—O1137.5 (5)
Cl1—C3—C4—C5170.8 (4)C5—C6—C7—C168.0 (8)
C2—C3—C4—C566.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.83 (11)1.96 (11)2.746 (7)159 (12)
O2—H2B···O2ii0.851.842.692 (8)174
C2—H21···O1iii0.972.433.398 (7)172
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z+1/2; (iii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC7H10Cl2O2
Mr197.05
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)294
a, b, c (Å)21.9202 (5), 9.9343 (3), 8.1005 (2)
V3)1763.98 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.32 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.845, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
32813, 1801, 1267
Rint0.110
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.190, 1.18
No. of reflections1801
No. of parameters115
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O2i0.83 (11)1.96 (11)2.746 (7)159 (12)
O2—H2B···O2ii0.851.842.692 (8)174
C2—H21···O1iii0.972.433.398 (7)172
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z+1/2; (iii) x+3/2, y1/2, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAkbulut, N., Menzek, A. & Balcı, M. (1987). Tetrahedron Lett. 28, 1689–1692.  CrossRef CAS Google Scholar
First citationBalcı, M. (1981). Chem. Rev. 81, 91–108.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMenzek, A. & Balcı, M. (1993). Aust. J. Chem. 46, 1613–1621.  CrossRef CAS Google Scholar
First citationMenzek, A., Şengül, M. E., Çetinkaya, Y. & Ceylan, S. (2005). J. Chem. Res. pp. 209–214.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaraçoğlu, N., Menzek, A., Sayan, Ş., Salzner, U. & Balcı, M. (1999). J. Org. Chem. 64, 6670–6676.  PubMed Google Scholar
First citationŞengül, M. E., Menzek, A., Şahin, E., Arık, M. & Saracoğlu, N. (2008). Tetrahedron, 64, 7289–7294.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds