metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Fluoro­benz­yl)quinolinium bis­­(2-sulfanyl­idene-1,3-di­thiole-4,5-di­thiol­ato-κ2S,S′)nickelate(III)

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsyhxy@163.com

(Received 3 April 2011; accepted 20 April 2011; online 29 April 2011)

The crystal structure of the title compound, (C16H13FN)[Ni(C3S5)2], consists of NiIII complex anions and 1-(2-fluoro­benz­yl)quinolinium (fbq) cations. In the complex anion, the NiIII cation is chelated by two 2-sulfanylidene-1,3-dithiole-4,5-dithiol­ate (dmit) dianions in a distorted square-planar geometry; the two dmit mean planes are twisted with respect to each other at a dihedral angle of 8.44 (3)°. In the fbq cation, the dihedral angle between the benzene ring and the quinoline ring system is 80.57 (14)°. The centroid–centroid distance of 3.860 (5) Å between benzene rings indicates ππ stacking between adjacent fbq cations. The distance of 3.4958 (18) Å between the S atom and the centroid of the pyridine ring suggests the existence of a lone-pair–aromatic inter­action between the anion and the cation. A short S⋯S contact [3.387 (2) Å] is also observed in the crystal structure.

Related literature

For the potential applications of bis­(dithiol­ate)–metal complexes, see: Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]). For the lone-pair–aromatic inter­action, see: Egli & Sarkhel (2007[Egli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197-205.]). For the oxidation of NiII compounds, see: Cassoux et al. (1991[Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. (1991). Coord. Chem. Rev. 110, 115-160.]). For the synthesis, see: Wang et al. (1998[Wang, C.-S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H13FN)[Ni(C3S5)2]

  • Mr = 689.64

  • Triclinic, [P \overline 1]

  • a = 8.740 (3) Å

  • b = 12.464 (4) Å

  • c = 12.464 (4) Å

  • α = 76.103 (4)°

  • β = 81.491 (6)°

  • γ = 81.491 (6)°

  • V = 1294.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.786

  • 6461 measured reflections

  • 4475 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.082

  • S = 0.99

  • 4475 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—S4 2.1529 (14)
Ni1—S5 2.1534 (15)
Ni1—S6 2.1502 (14)
Ni1—S7 2.1595 (14)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bis(dithiolate)-metal complexes and their analogues with interesting structures and/or potential applications such as conducting/magnetic or non-linear optical (NLO) materials have been reported in recent years (Cassoux, 1999). We report herein the crystal structure of the title bis-dithiolate-metal complex.

In this compound, the NiII cations of NiCl2.6H2O have been oxidized to NiIII cation by I2 (Cassoux et al., 1991), the NiIII cation is coordinated with two dmitII anions. As shown in Fig. 1, the asymmetric unit of the title compound contains one [NiIII(dmit)2]- anion and one [Fbzql]+ cation. Each NiIII ion is coordinated by four S atoms from two dmit ligands to complete a square-planar geometry, with Ni—S bond lengths ranging from 2.1502 (14) to 2.1595 (14) Å. Some of the [NiIII(dmit)2]- anions are parallel and coplanar arrangements with the shortest S···S distance of 3.387 (2) Å (S3—S8i) [symmetry code: (i) x, y, -1 + z], indicating the existence of the S···S interactions. Adjacent [NiIII(dmit)2]- anions are associated together through such S···S interactions result in a one-dimensional ribbon structure running along the c-axis. Two neighbouring anion ribbons are parallel each other and linked together through S6···S8ii [symmetry code: (ii) 1 - x, -y, 2 - z] interactions forming a double-chain which is further connected to other four anion double-chains through S···S contacts [S2···S2iii: 3.519 (3) Å, S9···S9iv: 3.568 (2) Å [symmetry codes: (iii) -x, -y, 1 - z; (iv) 1 - x, 1 - y, 2 - z] along four orientations to form a three-dimensional supramolecular structure with large channels, as depicted in Fig 2.

Two [Fbzql]+ cations are associated together through face-to-face π···π interactions between two phenyl rings from different 2-fluorobenzyl groups (inter-centeriod distance: 3.8501 (9) Å) to form a bi-molecular unit, which expended to a one-dimensional structure running along the c-axis through another π···π interaction involving adjacent quinoline groups from different bi-molecular units with the shortest interface distance of 3.407 (4) Å.

The voids of the three-dimensional anion supramolecular structure are filled with the cation chains, as shown in Fig 3. Electrostatic attraction between the anions and cations play an important role in the stabilization of the whole structure. Additional investigation of this structure indicates that different noncovalent interactions can be detected between the two kinds of ions. The quinoline group of the [Fbzql]+ cation and neighbouring anion planes are parallel and associated together through lp···π (Egli & Sarkhel, 2007) interactions between one terminal sulfur atom of [NiIII(dmit)2]- anion and the pyridine ring of the quinoline group [S9v-centroid distance 3.4958 (18) Å, symmetry codes: (v) 1 - x, 1 - y, 1 - z]. In addition, the distance between the benzene ring of the quinoline group from [Fbzql]+ cation and the terminal π system of adjacent [NiIII(dmit)2]- anion is about 3.8294 (13) Å, indicating the existence of face-to-face π···π interaction which stabilizes the three-dimensional structure.

Related literature top

For the potential applications of bis(dithiolate)–metal complexes, see: Cassoux (1999). For the lone-pair–aromatic interaction, see: Egli & Sarkhel (2007). For the oxidation of NiII compounds, see: Cassoux et al. (1991). For the synthesis, see: Wang et al. (1998).

Experimental top

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol; Wang et al., 1998) was suspended in dry methanol (20 ml) and sodium (92 mg, 4.0 mmol) was added under a nitrogen atmosphere at room temperature to give a bright-red solution. NiCl2.6H2O (238 mg, 1 mmol) was then added, followed successively by I2 (127 mg, 0.5 mmol) and a solution of N-(2-fluorobenzyl)quinolinium chloride (274 mg, 1 mmol) in methanol at an interval of approximately 20 min. The solution was stirred for a further 30 min and the resulting solid collected by filtration. Single crystals of the title compound were obtained by evaporation of a dilute acetone solution over two weeks at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion in [Fbzql][Ni(dmit)2], showing the atom-labelling scheme, with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Three-dimensional supramolecular structure of [Ni(dmit)2]- anions through S···S contacts. Dashed lines indicate S···S interactions.
[Figure 3] Fig. 3. Packing of [Fbzql][Ni(dmit)2] viewed along c-axis
1-(2-Fluorobenzyl)quinolinium bis(2-sulfanylidene-1,3-dithiole-4,5-dithiolato-κ2S,S')nickelate(III) top
Crystal data top
(C16H13FN)[Ni(C3S5)2]Z = 2
Mr = 689.64F(000) = 698
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.740 (3) ÅCell parameters from 717 reflections
b = 12.464 (4) Åθ = 2.7–25.1°
c = 12.464 (4) ŵ = 1.58 mm1
α = 76.103 (4)°T = 296 K
β = 81.491 (6)°Needle, green
γ = 81.491 (6)°0.20 × 0.20 × 0.16 mm
V = 1294.7 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4475 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.743, Tmax = 0.786k = 1214
6461 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
4475 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C16H13FN)[Ni(C3S5)2]γ = 81.491 (6)°
Mr = 689.64V = 1294.7 (8) Å3
Triclinic, P1Z = 2
a = 8.740 (3) ÅMo Kα radiation
b = 12.464 (4) ŵ = 1.58 mm1
c = 12.464 (4) ÅT = 296 K
α = 76.103 (4)°0.20 × 0.20 × 0.16 mm
β = 81.491 (6)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2981 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.786Rint = 0.054
6461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.99Δρmax = 0.47 e Å3
4475 reflectionsΔρmin = 0.38 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41132 (7)0.16680 (5)0.73700 (5)0.03802 (18)
C10.2375 (6)0.0349 (4)0.3914 (4)0.0535 (14)
C20.2836 (5)0.0542 (3)0.5856 (4)0.0366 (12)
C30.3561 (5)0.1355 (4)0.5140 (4)0.0381 (12)
C40.4629 (5)0.1971 (3)0.9616 (3)0.0342 (11)
C50.5169 (5)0.2876 (3)0.8906 (4)0.0374 (12)
C60.5638 (6)0.3042 (4)1.0876 (4)0.0468 (13)
C70.1790 (7)0.5439 (5)0.3914 (5)0.0612 (16)
C80.2756 (8)0.5221 (5)0.4752 (7)0.084 (2)
H80.35920.46620.47950.101*
C90.2400 (10)0.5875 (8)0.5504 (7)0.107 (3)
H90.30060.57530.60850.129*
C100.1210 (13)0.6688 (7)0.5439 (6)0.112 (4)
H100.10070.71250.59640.134*
C110.0294 (9)0.6875 (5)0.4600 (6)0.084 (2)
H110.05330.74400.45620.101*
C120.0566 (6)0.6248 (4)0.3814 (4)0.0469 (13)
C130.0480 (6)0.6391 (5)0.2939 (4)0.0741 (19)
H13A0.05990.56600.28390.089*
H13B0.14990.67210.32020.089*
C140.0848 (6)0.7917 (4)0.1797 (4)0.0537 (14)
H140.11110.80310.24540.064*
C150.1308 (6)0.8628 (4)0.0803 (5)0.0567 (15)
H150.18560.92170.07910.068*
C160.0947 (6)0.8449 (4)0.0148 (4)0.0556 (15)
H160.12620.89160.08220.067*
C170.0105 (6)0.7573 (4)0.0143 (4)0.0487 (13)
C180.0288 (7)0.7402 (5)0.1135 (5)0.0735 (18)
H180.00380.78500.18180.088*
C190.1159 (8)0.6565 (6)0.1074 (6)0.087 (2)
H190.14260.64380.17240.104*
C200.1649 (7)0.5905 (5)0.0067 (7)0.0769 (19)
H200.22420.53410.00560.092*
C210.1301 (6)0.6045 (4)0.0913 (5)0.0622 (16)
H210.16520.55900.15850.075*
C220.0391 (6)0.6897 (4)0.0882 (5)0.0489 (14)
F10.2101 (5)0.4827 (3)0.3141 (3)0.1095 (14)
N10.0047 (5)0.7081 (3)0.1846 (3)0.0464 (11)
S10.1815 (2)0.00195 (13)0.28683 (12)0.0827 (6)
S20.19521 (17)0.03013 (11)0.52769 (11)0.0559 (4)
S30.34297 (17)0.14623 (11)0.37414 (10)0.0568 (4)
S40.28115 (17)0.03673 (10)0.72632 (10)0.0500 (4)
S50.45265 (16)0.22330 (10)0.55899 (10)0.0477 (4)
S60.38493 (15)0.10156 (9)0.91397 (9)0.0429 (3)
S70.51306 (16)0.31011 (10)0.75026 (10)0.0476 (4)
S80.48219 (16)0.18258 (10)1.10106 (10)0.0458 (3)
S90.58815 (16)0.37899 (10)0.95174 (10)0.0491 (4)
S100.6115 (2)0.34431 (13)1.19276 (12)0.0728 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0479 (4)0.0404 (3)0.0299 (3)0.0144 (3)0.0087 (3)0.0077 (3)
C10.067 (4)0.054 (3)0.047 (3)0.004 (3)0.017 (3)0.023 (3)
C20.039 (3)0.043 (3)0.034 (3)0.007 (2)0.010 (2)0.014 (2)
C30.039 (3)0.044 (3)0.033 (3)0.008 (2)0.005 (2)0.011 (2)
C40.038 (3)0.039 (3)0.026 (3)0.005 (2)0.008 (2)0.005 (2)
C50.047 (3)0.037 (3)0.033 (3)0.010 (2)0.008 (2)0.011 (2)
C60.053 (3)0.045 (3)0.050 (3)0.005 (3)0.011 (3)0.021 (3)
C70.061 (4)0.051 (4)0.063 (4)0.015 (3)0.004 (3)0.001 (3)
C80.059 (5)0.070 (5)0.097 (6)0.011 (4)0.007 (4)0.032 (4)
C90.123 (8)0.128 (8)0.072 (6)0.092 (7)0.027 (6)0.029 (6)
C100.207 (12)0.083 (6)0.057 (5)0.079 (6)0.012 (6)0.017 (5)
C110.114 (6)0.064 (4)0.064 (5)0.011 (4)0.010 (4)0.007 (4)
C120.044 (3)0.045 (3)0.043 (3)0.013 (3)0.000 (3)0.008 (3)
C130.054 (4)0.092 (4)0.066 (4)0.035 (4)0.009 (3)0.017 (3)
C140.059 (4)0.052 (3)0.051 (4)0.014 (3)0.003 (3)0.011 (3)
C150.064 (4)0.045 (3)0.060 (4)0.018 (3)0.009 (3)0.013 (3)
C160.067 (4)0.042 (3)0.049 (4)0.002 (3)0.002 (3)0.002 (3)
C170.050 (3)0.043 (3)0.051 (4)0.001 (3)0.005 (3)0.008 (3)
C180.074 (5)0.088 (5)0.060 (4)0.010 (4)0.019 (4)0.024 (4)
C190.079 (5)0.106 (6)0.092 (6)0.024 (4)0.043 (5)0.056 (5)
C200.059 (4)0.074 (4)0.118 (6)0.005 (4)0.027 (4)0.052 (5)
C210.043 (4)0.056 (4)0.094 (5)0.008 (3)0.012 (3)0.024 (3)
C220.038 (3)0.041 (3)0.069 (4)0.000 (3)0.011 (3)0.014 (3)
F10.135 (4)0.070 (2)0.118 (3)0.015 (2)0.028 (3)0.034 (2)
N10.042 (3)0.045 (2)0.050 (3)0.015 (2)0.004 (2)0.001 (2)
S10.1301 (16)0.0845 (11)0.0519 (10)0.0306 (11)0.0308 (10)0.0277 (9)
S20.0773 (11)0.0535 (8)0.0478 (8)0.0257 (8)0.0199 (8)0.0137 (7)
S30.0775 (11)0.0685 (9)0.0306 (7)0.0251 (8)0.0035 (7)0.0149 (7)
S40.0716 (10)0.0506 (8)0.0327 (7)0.0289 (7)0.0140 (7)0.0010 (6)
S50.0626 (9)0.0536 (8)0.0320 (7)0.0263 (7)0.0031 (7)0.0088 (6)
S60.0614 (9)0.0398 (7)0.0322 (7)0.0198 (7)0.0112 (6)0.0050 (6)
S70.0675 (10)0.0465 (7)0.0334 (7)0.0260 (7)0.0087 (7)0.0047 (6)
S80.0609 (9)0.0488 (8)0.0315 (7)0.0120 (7)0.0095 (6)0.0106 (6)
S90.0645 (10)0.0471 (8)0.0446 (8)0.0213 (7)0.0110 (7)0.0161 (6)
S100.0957 (13)0.0880 (11)0.0528 (10)0.0297 (10)0.0184 (9)0.0335 (9)
Geometric parameters (Å, º) top
Ni1—S42.1529 (14)C10—C111.366 (10)
Ni1—S52.1534 (15)C10—H100.9300
Ni1—S62.1502 (14)C11—C121.368 (7)
Ni1—S72.1595 (14)C11—H110.9300
C1—S11.641 (5)C12—C131.487 (7)
C1—S21.709 (5)C13—N11.475 (6)
C1—S31.731 (5)C13—H13A0.9700
C2—C31.347 (6)C13—H13B0.9700
C2—S41.713 (4)C14—N11.324 (5)
C2—S21.729 (4)C14—C151.383 (6)
C3—S51.712 (4)C14—H140.9300
C3—S31.735 (4)C15—C161.346 (7)
C4—C51.354 (5)C15—H150.9300
C4—S61.713 (4)C16—C171.403 (6)
C4—S81.734 (4)C16—H160.9300
C5—S71.708 (4)C17—C221.399 (6)
C5—S91.742 (4)C17—C181.403 (7)
C6—S101.637 (5)C18—C191.362 (8)
C6—S91.725 (5)C18—H180.9300
C6—S81.732 (4)C19—C201.372 (8)
C7—F11.341 (6)C19—H190.9300
C7—C121.355 (7)C20—C211.357 (8)
C7—C81.390 (8)C20—H200.9300
C8—C91.359 (9)C21—C221.408 (6)
C8—H80.9300C21—H210.9300
C9—C101.337 (10)C22—N11.393 (6)
C9—H90.9300
S6—Ni1—S486.54 (5)N1—C13—H13A108.4
S6—Ni1—S5175.79 (6)C12—C13—H13A108.4
S4—Ni1—S593.15 (5)N1—C13—H13B108.4
S6—Ni1—S793.24 (5)C12—C13—H13B108.4
S4—Ni1—S7172.57 (6)H13A—C13—H13B107.5
S5—Ni1—S787.61 (5)N1—C14—C15122.3 (5)
S1—C1—S2123.9 (3)N1—C14—H14118.8
S1—C1—S3122.9 (3)C15—C14—H14118.8
S2—C1—S3113.2 (3)C16—C15—C14118.6 (5)
C3—C2—S4120.8 (4)C16—C15—H15120.7
C3—C2—S2116.6 (3)C14—C15—H15120.7
S4—C2—S2122.6 (3)C15—C16—C17121.4 (5)
C2—C3—S5121.8 (4)C15—C16—H16119.3
C2—C3—S3115.6 (4)C17—C16—H16119.3
S5—C3—S3122.5 (3)C22—C17—C16118.4 (5)
C5—C4—S6121.0 (3)C22—C17—C18120.5 (5)
C5—C4—S8116.3 (3)C16—C17—C18121.1 (5)
S6—C4—S8122.7 (2)C19—C18—C17118.4 (6)
C4—C5—S7121.6 (3)C19—C18—H18120.8
C4—C5—S9115.7 (3)C17—C18—H18120.8
S7—C5—S9122.7 (2)C18—C19—C20121.0 (6)
S10—C6—S9123.7 (3)C18—C19—H19119.5
S10—C6—S8123.5 (3)C20—C19—H19119.5
S9—C6—S8112.8 (3)C21—C20—C19122.5 (6)
F1—C7—C12117.6 (6)C21—C20—H20118.7
F1—C7—C8118.2 (6)C19—C20—H20118.7
C12—C7—C8124.2 (6)C20—C21—C22118.1 (6)
C9—C8—C7115.7 (7)C20—C21—H21121.0
C9—C8—H8122.1C22—C21—H21121.0
C7—C8—H8122.1C17—C22—N1118.7 (5)
C10—C9—C8122.4 (9)C17—C22—C21119.5 (5)
C10—C9—H9118.8N1—C22—C21121.8 (5)
C8—C9—H9118.8C14—N1—C22120.5 (4)
C9—C10—C11119.9 (9)C14—N1—C13119.6 (4)
C9—C10—H10120.1C22—N1—C13119.8 (4)
C11—C10—H10120.1C1—S2—C297.4 (2)
C12—C11—C10121.4 (7)C1—S3—C397.1 (2)
C12—C11—H11119.3C2—S4—Ni1102.32 (15)
C10—C11—H11119.3C3—S5—Ni1101.87 (15)
C7—C12—C11116.4 (6)C4—S6—Ni1102.21 (14)
C7—C12—C13121.4 (6)C5—S7—Ni1101.89 (14)
C11—C12—C13122.1 (6)C6—S8—C497.5 (2)
N1—C13—C12115.4 (4)C6—S9—C597.6 (2)
S4—C2—C3—S51.4 (6)C17—C22—N1—C143.5 (7)
S2—C2—C3—S5178.4 (2)C21—C22—N1—C14177.2 (4)
S4—C2—C3—S3177.8 (3)C17—C22—N1—C13179.1 (4)
S2—C2—C3—S32.4 (5)C21—C22—N1—C131.6 (7)
S6—C4—C5—S71.0 (6)C12—C13—N1—C1432.3 (7)
S8—C4—C5—S7177.3 (3)C12—C13—N1—C22152.0 (5)
S6—C4—C5—S9178.4 (2)S1—C1—S2—C2178.3 (4)
S8—C4—C5—S93.2 (5)S3—C1—S2—C20.5 (3)
F1—C7—C8—C9179.2 (5)C3—C2—S2—C11.7 (4)
C12—C7—C8—C90.4 (9)S4—C2—S2—C1178.4 (3)
C7—C8—C9—C100.8 (10)S1—C1—S3—C3179.3 (4)
C8—C9—C10—C110.7 (12)S2—C1—S3—C30.5 (3)
C9—C10—C11—C120.2 (11)C2—C3—S3—C11.7 (4)
F1—C7—C12—C11178.7 (5)S5—C3—S3—C1179.1 (3)
C8—C7—C12—C110.0 (8)C3—C2—S4—Ni10.2 (4)
F1—C7—C12—C135.2 (7)S2—C2—S4—Ni1179.6 (2)
C8—C7—C12—C13176.1 (5)S6—Ni1—S4—C2176.51 (17)
C10—C11—C12—C70.1 (8)S5—Ni1—S4—C20.72 (17)
C10—C11—C12—C13175.9 (5)C2—C3—S5—Ni11.8 (4)
C7—C12—C13—N185.7 (6)S3—C3—S5—Ni1177.4 (3)
C11—C12—C13—N198.5 (6)S4—Ni1—S5—C31.26 (17)
N1—C14—C15—C161.1 (8)S7—Ni1—S5—C3171.34 (17)
C14—C15—C16—C170.8 (8)C5—C4—S6—Ni11.8 (4)
C15—C16—C17—C221.5 (8)S8—C4—S6—Ni1176.5 (2)
C15—C16—C17—C18179.0 (5)S4—Ni1—S6—C4174.04 (16)
C22—C17—C18—C190.0 (8)S7—Ni1—S6—C41.47 (16)
C16—C17—C18—C19177.5 (5)C4—C5—S7—Ni10.3 (4)
C17—C18—C19—C200.3 (9)S9—C5—S7—Ni1179.7 (3)
C18—C19—C20—C210.0 (10)S6—Ni1—S7—C51.07 (17)
C19—C20—C21—C220.5 (9)S5—Ni1—S7—C5174.79 (17)
C16—C17—C22—N13.6 (7)S10—C6—S8—C4179.3 (3)
C18—C17—C22—N1178.9 (5)S9—C6—S8—C40.3 (3)
C16—C17—C22—C21177.0 (5)C5—C4—S8—C62.1 (4)
C18—C17—C22—C210.5 (8)S6—C4—S8—C6179.6 (3)
C20—C21—C22—C170.7 (8)S10—C6—S9—C5179.4 (3)
C20—C21—C22—N1178.6 (5)S8—C6—S9—C51.1 (3)
C15—C14—N1—C221.1 (7)C4—C5—S9—C62.6 (4)
C15—C14—N1—C13176.7 (5)S7—C5—S9—C6177.9 (3)

Experimental details

Crystal data
Chemical formula(C16H13FN)[Ni(C3S5)2]
Mr689.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.740 (3), 12.464 (4), 12.464 (4)
α, β, γ (°)76.103 (4), 81.491 (6), 81.491 (6)
V3)1294.7 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.743, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
6461, 4475, 2981
Rint0.054
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.082, 0.99
No. of reflections4475
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—S42.1529 (14)Ni1—S62.1502 (14)
Ni1—S52.1534 (15)Ni1—S72.1595 (14)
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Henan Province (grant No. 2010 A140009) and the Inter­national Technology Cooperation Project of the Science and Technology Department of Henan Province of China (grant No. 104300510044).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationCassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. (1991). Coord. Chem. Rev. 110, 115–160.  CrossRef CAS Web of Science Google Scholar
First citationEgli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds