Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[octaaquabis(µ₄-benzene-1,3,5-tricarboxylato)trizinc] tetrahydrate]

Lin Sun, Tao Run Qiu and Hong Deng*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: dh@scnu.edu.cn

Received 10 March 2011; accepted 16 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.064; w*R* factor = 0.225; data-to-parameter ratio = 13.3.

In the title compound, $\{[Zn_3(C_9H_3O_6)_2(H_2O)_8]\cdot 4H_2O\}_n$, there are two crystallographically independent Zn^{II} ions. One presents a trigonal-bipyramidal coordination geometry defined by five O atoms [three from two carboxylate groups of two benzene-1,3,5-tricarboxylate (BTC) ligands and the other two deriving from three water molecules], while the other lies on an inversion centre and exists in a slightly distorted octahedral coordination geometry defined by six O atoms (two from two carboxylate groups of two BTC ligands and the others from four water molecules). A three-dimensional framework is further strengthened *via* O– $H \cdots$ O hydrogen-bonding interactons.

Related literature

For background to the applications of metal-organic frameworks, see: Batten & Murray (2003); Zhong *et al.* (2008); Qiu *et al.* (2010). For the applications of benzene-1,3,5tricarboxylate, see: Yaghi *et al.* (1997); Xu *et al.* (2008); Xu *et al.* (2007); Liang *et al.* (2009); Wang *et al.* (2009). For compounds exhibiting similar Zn-O distances, see: Hua *et al.* (2010); Chen *et al.* (2010); Yang *et al.* (2008); Xu *et al.* (2007).

Experimental

Crystal data

 $[Zn_{3}(C_{9}H_{3}O_{6})_{2}(H_{2}O)_{8}]\cdot 4H_{2}O$ $M_{r} = 826.59$ Monoclinic, $P2_{1}/n$ a = 14.745 (2) Å b = 6.7960 (12) Å c = 15.183 (3) Å $\beta = 94.543$ (2)°

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.521, T_{max} = 0.569$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.225$ S = 1.132729 reflections 205 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot$	$\cdot \cdot A$
$O4W-H4WB\cdots O6^{i}$	0.85	1.97	2.768 (9)	155	
$O5W-H5WA\cdots O2^{ii}$	0.85	1.99	2.842 (9)	179	
O6W−H6WB···O6 ⁱⁱⁱ	0.84	2.29	3.058 (13)	153	
$O5W - H5WB \cdots O6^{iv}$	0.85	2.59	3.356 (12)	150	
Symmetry codes: (i)	r _ 1 1	$z \perp 1$ (ii)	$-r \perp 1 - v \perp 1$	$-7 \perp 1$	(iii)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge South China Normal University and the National Natural Science Foundation of China, grant No. 20871048, for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2004).

References

- Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 812–822.
- Hua, Q., Zhao, Y., Xu, G. C., Chen, M. S., Su, Z., Cai, K. & Sun, W. Y. (2010). Cryst. Growth Des. 10, 2553–2562.
- Liang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z. & Zuo, J. L. (2009). Cryst. Growth Des. 9, 1041–1053.
- Qiu, Y. C., Li, Y. H., Peng, G., Cai, J. B., Jin, L. M., Ma, L., Deng, H., Zeller, M. & Batten, S. R. (2010). Cryst. Growth Des. 10, 1332–13401.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $V = 1516.7 \text{ (4) } \text{Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 2.45 \text{ mm}^{-1}$ T = 296 K $0.27 \times 0.24 \times 0.23 \text{ mm}$

7485 measured reflections 2729 independent reflections 1990 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

H-atom parameters constrained

1 restraint

 $\Delta \rho_{\rm max} = 1.89 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$

- Wang, X., Wang, W. Y., Liu, S. M., Hou, H. W. & Fan, Y. T. (2009). J. Mol. Struct. 938, 185–191.
- Xu, L., Choi, E. Y. & Kwon, Y. U. (2007). Inorg. Chem. 46, 10670-10680.
- Xu, L., Choi, E. Y. & Kwon, Y. U. (2008). Inorg. Chem. Commun. 11, 1190– 1193.
- Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc. 119, 2861–2868.
- Yang, E. C., Liu, Z. Y., Wang, X. G., Batten, S. R. & Zhao, X. J. (2008). *CrystEngComm*, **10**, 1140–1143.
- Zhong, R. Q., Zou, R. Q., Du, M., Takeichi, N. & Xu, Q. (2008). *CrystEngComm*, **10**, 1175–1179.

supporting information

Acta Cryst. (2011). E67, m630-m631 [doi:10.1107/S160053681101436X]

catena-Poly[[octaaquabis(µ₄-benzene-1,3,5-tricarboxylato)trizinc] tetrahydrate]

Lin Sun, Tao Run Qiu and Hong Deng

S1. Comment

The exploring of metal-organic frameworks (MOFs) has attracted considerable attention not only owing to their intriguing structral architectures and topologies, but also because of their many potential applications in catalysis, ion exchange, and magnetic, optical, and porous materials (Batten & Murray, 2003; Zhong *et al.*, 2008; Qiu *et al.*,2010). 1,3,5-benzenetricarboxylate with six O atoms from its three carboxylate groups is a good choice of O-donor ligand. And such ligand has been widely used to synthesize metal compounds (Yaghi *et al.*, 1997; Xu *et al.*, 2008; Xu *et al.*, 2007; Liang *et al.*, 2009; Wang *et al.*, 2009). Thus, we synthesize a new three-dimensional Zn-BTC metal-organic compound, $\{[Zn_3(BTC)_2(H_2O)_8](H_2O)_4\}$, with achiral channels along *b* direction, which was generated by the reaction of zinc sulfate heptahydrate, 1,3,5-benzenetricarboxylic acid and water at 150°C for 3 days.

There are two kinds of zinc atoms in the title compound (I) (Fig. 1). One is surrounded by five O atoms (three from two carboxylate groups of two BTC ligands and the other two deriving from three water molecules), exhibiting a trigonal bipyramidal geometry, the other is coordinated with six O atoms (two from two carboxylate groups of two BTC ligands; the others from four water molecules) and displays a slightly distorted octahedral geometry. All the BTC ligands have the same coordinated modes and each ligand coordinated to three zinc atoms. The bond distances of Zn—O_{chelated carboxylate} range from 1.999 (5)Å to 2.412 (6) Å. While the bond lengthes of Zn—O_{monodentate carboxylate} fall between 1.946 (6)Å and 2.049 (5) Å. And the Zn—O_w distances are in the normal range of 1.965 (6)–2.150 (6)Å (Table 1). All the distances of Zn —O in compound (I) are comparable to those found in the literatures (Hua *et al.*, 2010; Chen *et al.*, 2010; Yang *et al.*, 2008; Xu *et al.*, 2007). And there are weak interactions between Zn1 and C1 with the distances of 2.554Å and Zn1 and H2WB with with the distances of 2.0711 Å. A three-dimensional architecture is strengthened by the extended O—H…O hydrogen-bonding interactions (Table 2, Fig. 2)

S2. Experimental

A mixture of zinc sulfate heptahydrate (0.287 g; 1 mmol), benzenetricarboxylic acid (0.210 g; 1 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined stainless steel reactor and heated at 120°C under autogenous pressure for 72 h. Then the mixture was cooled down to room temperature at a rate of 5°C per hour, and colorless block crystals were obtained in a yield of 49% based on Zn

S3. Refinement

water H atoms were located in a difference Fourier map and were refined isotropically, Other H-atoms on aromatic ring were placed in calculated positions with C—H = 0.93 Å; refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.

Figure 2

A packing view of (I) along the b axis, showing the O—H…O hydrogen bonds.

catena-Poly[[octaaquabis(µ₄-benzene-1,3,5-tricarboxylato)trizinc] tetrahydrate]

Crystal data	
$[Zn_{3}(C_{9}H_{3}O_{6})_{2}(H_{2}O)_{8}] \cdot 4H_{2}O$ $M_{r} = 826.59$ Monoclinic, $P2_{1}/n$ Hall symbol: -P 2yn a = 14.745 (2) Å b = 6.7960 (12) Å c = 15.183 (3) Å $\beta = 94.543$ (2)° V = 1516.7 (4) Å ³ Z = 2	F(000) = 840.0 $D_x = 1.810 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2729 reflections $\theta = 2.0-25.2^{\circ}$ $\mu = 2.45 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.27 \times 0.24 \times 0.23 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.521, T_{max} = 0.569$

7485 measured reflections	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
2729 independent reflections	$h = -17 \rightarrow 17$
1990 reflections with $I > 2\sigma(I)$	$k = -8 \rightarrow 8$
$R_{\rm int}=0.047$	$l = -18 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.225$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
2729 reflections	$w = 1/[\sigma^2(F_o^2) + (0.124P)^2 + 4.534P]$
205 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.89 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3865 (5)	0.7336 (11)	0.2885 (5)	0.0258 (16)	
C2	0.2896 (5)	0.7366 (11)	0.2512 (5)	0.0247 (16)	
C3	0.2199 (5)	0.7180 (11)	0.3061 (5)	0.0229 (15)	
Н3	0.2334	0.7052	0.3667	0.027*	
C4	0.1296 (5)	0.7180 (11)	0.2720 (5)	0.0251 (16)	
C5	0.0531 (5)	0.6843 (12)	0.3308 (5)	0.0292 (17)	
C6	0.1136 (4)	0.7328 (10)	0.1806 (5)	0.0266 (17)	
H6	0.0539	0.7242	0.1561	0.032*	
C7	0.1800 (5)	0.7589 (11)	0.1259 (5)	0.0241 (16)	
C8	0.1573 (5)	0.7876 (13)	0.0286 (5)	0.0334 (19)	
C9	0.2690 (5)	0.7583 (11)	0.1620 (5)	0.0240 (15)	
Н9	0.3160	0.7728	0.1251	0.029*	
O1	0.4494 (4)	0.7356 (9)	0.2381 (4)	0.0397 (15)	
O2	0.4054 (4)	0.7247 (9)	0.3705 (4)	0.0353 (13)	
O3	0.0741 (4)	0.6348 (9)	0.4086 (3)	0.0358 (13)	
O4	-0.0276 (4)	0.7041 (10)	0.2973 (4)	0.0398 (15)	
O5	0.0728 (4)	0.7813 (10)	0.0033 (4)	0.0407 (15)	
O6	0.2183 (4)	0.8087 (13)	-0.0218 (4)	0.064 (2)	
O1W	0.5996 (4)	0.9590 (10)	0.3383 (4)	0.0472 (16)	
H1WA	0.6200	1.0116	0.2931	0.071*	
H1WB	0.5642	1.0416	0.3600	0.071*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O2W	0.6025 (4)	0.4905 (9)	0.3245 (4)	0.0504 (17)	
H2WA	0.6226	0.4688	0.2739	0.076*	
H2WB	0.5518	0.4334	0.3252	0.076*	
O3W	0.0151 (4)	0.2213 (10)	0.4358 (4)	0.0450 (15)	
H3WA	0.0380	0.2934	0.3975	0.067*	
H3WB	0.0384	0.1073	0.4327	0.067*	
O4W	-0.1226 (4)	0.5373 (11)	0.4216 (4)	0.0475 (17)	
H4WA	-0.1203	0.6053	0.3750	0.071*	
H4WB	-0.1606	0.5920	0.4533	0.071*	
O5W	0.6697 (5)	0.2093 (11)	0.4653 (5)	0.062 (2)	
H5WA	0.6465	0.2278	0.5141	0.092*	
H5WB	0.6894	0.3201	0.4485	0.092*	
O6W	0.8488 (7)	0.0366 (15)	0.4616 (8)	0.114 (4)	
H6WA	0.8232	0.1311	0.4498	0.172*	
H6WB	0.8175	-0.0498	0.4851	0.172*	
Zn1	0.54125 (6)	0.71412 (16)	0.37644 (6)	0.0342 (4)	
Zn2	0.0000	0.5000	0.5000	0.0330 (4)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.024 (4)	0.027 (4)	0.025 (4)	-0.002 (3)	-0.004 (3)	0.004 (3)
C2	0.019 (4)	0.029 (4)	0.026 (4)	0.003 (3)	0.002 (3)	0.005 (3)
C3	0.024 (4)	0.030 (4)	0.015 (3)	0.000 (3)	0.003 (3)	0.002 (3)
C4	0.023 (4)	0.036 (4)	0.016 (4)	0.001 (3)	0.003 (3)	0.002 (3)
C5	0.023 (4)	0.044 (5)	0.020 (4)	0.001 (3)	0.002 (3)	0.000 (3)
C6	0.019 (4)	0.036 (4)	0.024 (4)	-0.004(3)	-0.005 (3)	0.001 (3)
C7	0.021 (4)	0.034 (4)	0.016 (4)	-0.002(3)	-0.001 (3)	0.005 (3)
C8	0.027 (4)	0.054 (5)	0.020 (4)	-0.002(4)	0.001 (3)	0.002 (3)
C9	0.018 (3)	0.036 (4)	0.018 (4)	-0.003(3)	0.003 (3)	0.000 (3)
01	0.018 (3)	0.068 (4)	0.033 (3)	0.001 (3)	0.002 (2)	0.007 (3)
O2	0.024 (3)	0.057 (4)	0.024 (3)	-0.001 (3)	-0.005 (2)	0.000 (2)
O3	0.027 (3)	0.062 (4)	0.018 (3)	-0.003 (3)	0.002 (2)	0.009 (3)
O4	0.020 (3)	0.071 (4)	0.030 (3)	0.002 (3)	0.004 (2)	0.010 (3)
05	0.020 (3)	0.077 (4)	0.024 (3)	0.000 (3)	-0.006(2)	0.005 (3)
O6	0.030 (3)	0.139(7)	0.022 (3)	-0.021 (4)	0.000 (3)	0.012 (4)
O1W	0.041 (3)	0.060 (4)	0.038 (4)	0.001 (3)	-0.010 (3)	0.001 (3)
O2W	0.039 (4)	0.059 (4)	0.051 (4)	0.009 (3)	-0.007 (3)	-0.017 (3)
O3W	0.045 (4)	0.056 (4)	0.035 (3)	0.003 (3)	0.013 (3)	0.001 (3)
O4W	0.029 (3)	0.080 (5)	0.034 (3)	0.006 (3)	0.004 (3)	0.006 (3)
O5W	0.073 (5)	0.064 (5)	0.048 (4)	-0.006 (4)	0.011 (4)	-0.012 (3)
O6W	0.105 (8)	0.080 (7)	0.166 (11)	-0.032 (6)	0.057 (8)	-0.003 (7)
Znl	0.0231 (5)	0.0556 (7)	0.0228 (6)	0.0024 (4)	-0.0043 (4)	-0.0048 (4)
Zn2	0.0246 (7)	0.0539 (9)	0.0211 (7)	0.0012 (6)	0.0059 (5)	0.0050 (6)

Geometric parameters (Å, °)

<u>C1–01</u>	1.248 (9)	O1W—Zn1	1.981 (7)
C1—O2	1.256 (9)	O1W—H1WA	0.8505
C1—C2	1.495 (10)	O1W—H1WB	0.8502
C2—C9	1.372 (11)	O2W—Zn1	1.965 (6)
C2—C3	1.380 (10)	O2W—H2WA	0.8584
C3—C4	1.390 (10)	O2W—H2WB	0.8429
С3—Н3	0.9300	O3W—Zn2	2.150 (6)
C4—C6	1.392 (10)	O3W—H3WA	0.8498
C4—C5	1.511 (10)	O3W—H3WB	0.8494
C5—O3	1.244 (9)	O4W—Zn2	2.099 (6)
C5—O4	1.263 (9)	O4W—H4WA	0.8483
C6—C7	1.344 (10)	O4W—H4WB	0.8518
С6—Н6	0.9300	O5W—H5WA	0.8487
С7—С9	1.382 (10)	O5W—H5WB	0.8538
C7—C8	1.501 (10)	O6W—H6WA	0.7595
C8—O6	1.235 (10)	O6W—H6WB	0.8431
C8—O5	1.275 (10)	Zn1—O5 ⁱⁱ	1.946 (6)
С9—Н9	0.9300	Zn1—H2WB	2.0711
O1—Zn1	2.412 (6)	Zn2—O3 ⁱⁱⁱ	2.049 (5)
O2—Zn1	1.999 (5)	Zn2—O4W ⁱⁱⁱ	2.099 (6)
O3—Zn2	2.049 (5)	Zn2—O3W ⁱⁱⁱ	2.150 (6)
O5—Zn1 ⁱ	1.946 (6)		
O1—C1—O2	119.4 (7)	Zn2—O3W—H3WB	152.2
O1—C1—C2	120.1 (7)	H3WA—O3W—H3WB	107.8
O2—C1—C2	120.5 (7)	Zn2—O4W—H4WA	116.8
C9—C2—C3	119.3 (7)	Zn2—O4W—H4WB	108.0
C9—C2—C1	120.4 (6)	H4WA—O4W—H4WB	107.7
C3—C2—C1	120.4 (7)	H5WA—O5W—H5WB	107.5
C2—C3—C4	120.8 (7)	H6WA—O6W—H6WB	114.2
С2—С3—Н3	119.6	O5 ⁱⁱ —Zn1—O2W	109.2 (3)
С4—С3—Н3	119.6	O5 ⁱⁱ —Zn1—O1W	101.6 (3)
C3—C4—C6	116.9 (6)	O2W—Zn1—O1W	108.0 (3)
C3—C4—C5	121.2 (6)	$O5^{ii}$ —Zn1—O2	101.8 (2)
C6—C4—C5	121.7 (6)	O2W—Zn1—O2	120.0 (2)
O3—C5—O4	124.5 (7)	O1W—Zn1—O2	114.4 (2)
O3—C5—C4	117.4 (7)	O5 ⁱⁱ —Zn1—O1	159.2 (2)
O4—C5—C4	118.0 (7)	O2W—Zn1—O1	86.6 (2)
C7—C6—C4	123.5 (7)	O1W—Zn1—O1	85.5 (2)
С7—С6—Н6	118.3	O2—Zn1—O1	57.8 (2)
С4—С6—Н6	118.3	O5 ⁱⁱ —Zn1—H2WB	111.6
C6—C7—C9	118.0 (7)	O2W—Zn1—H2WB	23.9
C6—C7—C8	120.6 (7)	O1W—Zn1—H2WB	128.1
C9—C7—C8	121.4 (7)	O2—Zn1—H2WB	96.9
O6—C8—O5	124.0 (7)	O1—Zn1—H2WB	77.4
O6—C8—C7	120.6 (7)	O3 ⁱⁱⁱ —Zn2—O3	180.000 (1)

O5—C8—C7	115.4 (7)	O3 ⁱⁱⁱ —Zn2—O4W	87.5 (2)
C2—C9—C7	121.4 (7)	O3—Zn2—O4W	92.5 (2)
С2—С9—Н9	119.3	O3 ⁱⁱⁱ —Zn2—O4W ⁱⁱⁱ	92.5 (2)
С7—С9—Н9	119.3	O3—Zn2—O4W ⁱⁱⁱ	87.5 (2)
C1—O1—Zn1	81.8 (4)	O4W—Zn2—O4W ⁱⁱⁱ	180.000(1)
C1—O2—Zn1	100.9 (5)	O3 ⁱⁱⁱ —Zn2—O3W ⁱⁱⁱ	90.4 (2)
C5—O3—Zn2	131.1 (5)	O3—Zn2—O3W ⁱⁱⁱ	89.6 (2)
C8—O5—Zn1 ⁱ	116.7 (5)	O4W—Zn2—O3W ⁱⁱⁱ	92.0 (3)
Zn1—O1W—H1WA	141.2	O4W ⁱⁱⁱ —Zn2—O3W ⁱⁱⁱ	88.0 (3)
Zn1—O1W—H1WB	98.5	O3 ⁱⁱⁱ —Zn2—O3W	89.6 (2)
H1WA—O1W—H1WB	107.6	O3—Zn2—O3W	90.4 (2)
Zn1—O2W—H2WA	134.0	O4W—Zn2—O3W	88.0 (3)
Zn1—O2W—H2WB	85.1	O4W ⁱⁱⁱ —Zn2—O3W	92.0 (3)
H2WA—O2W—H2WB	107.6	O3W ⁱⁱⁱ —Zn2—O3W	180.000(1)
Zn2—O3W—H3WA	82.1		

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) x+1/2, -y+3/2, z+1/2; (iii) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
O4 <i>W</i> —H4 <i>WB</i> ···O6 ^{iv}	0.85	1.97	2.768 (9)	155
$O5W$ — $H5WA$ ··· $O2^{v}$	0.85	1.99	2.842 (9)	179
O6 <i>W</i> —H6 <i>WB</i> ···O6 ^{vi}	0.84	2.29	3.058 (13)	153
O5 <i>W</i> —H5 <i>WB</i> ···O6 ⁱⁱ	0.85	2.59	3.356 (12)	150

Symmetry codes: (ii) x+1/2, -y+3/2, z+1/2; (iv) x-1/2, -y+3/2, z+1/2; (v) -x+1, -y+1, -z+1; (vi) x+1/2, -y+1/2, z+1/2.